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Preface

High-throughput techniques for DNA sequencing and gene expression 
analysis have led to a rapid growth in the amount of digital biological data. 
Prominent examples are the growth of DNA sequence information in NCBI’s 
GenBank database and the growth of protein sequences in the UniProtKB/
TrEMBL database. Furthermore, emerging next-generation sequencing tech-
nologies have broken many experimental barriers to genome scale sequenc-
ing, facilitating the extraction of huge quantities of sequences, which will 
further promote the future growth of biological databases.

Computer scientists and biomedical researchers face the challenge of trans-
forming genomic data into biological understanding. Consequently, bioinfor-
matics tools need to be scalable; that is, they need to deal with an ever growing 
amount of data. Unfortunately, the amount of publicly available sequence 
data grows faster than single processor core performance (which is stagnant 
at the moment). Thus, modern bioinformatics tools need to take advantage 
of parallel computing, which has always been a challenging task. In par-
ticular, modern multicore and many-core architectures are revolutionizing 
high- performance computing (HPC) in recent years. Incorporating multiple 
processor cores into a single silicon die has been the recent trend in improv-
ing performance by means of parallelism. As more and more processor cores 
are being incorporated into a single chip, the era of the many-core processor 
has begun. Thus, it is expected that future mainstream processors will be 
parallel systems, with their parallelism continuing to scale with Moore’s law. 
The emergence of many-core architectures, such as general-purpose graphic 
processors (GPGPU), especially compute unifi ed device architecture (CUDA)-
enabled GPUs, and other accelerator technologies, such as fi eld- programmable 
gate arrays (FPGAs) and the Cell/BE, provides the opportunity to signifi cantly 
reduce the runtime of many biological algorithms on commonly available and 
inexpensive hardware with more powerful high-performance computing 
power, which are generally not provided by conventional general-purpose 
processors. These emerging parallel computer architectures therefore pose 
new challenges to the fi eld of bioinformatics, since

New bioinformatics algorithms and applications need to take advan-• 
tage of these new architectures and
Existing bioinformatics tools need to be ported effi ciently to emerg-• 
ing parallel architectures.

This book consists of 14 chapters written by internationally recognized 
experts. To provide necessary background, it contains three introductory 
chapters on important bioinformatics algorithms, GPGPUs, and massively 
threaded programming and on reconfi gurable computing with FPGAs. The 

10768_C000.indd   vii10768_C000.indd   vii 6/17/2010   7:06:28 PM6/17/2010   7:06:28 PM



viii Preface

major part of the book, consisting of 11 chapters, compiles recent approaches 
from prominent researchers in the fi eld to parallelize bioinformatics appli-
cations on a variety of modern parallel architectures. The presented tools 
and algorithms include pairwise sequence alignment, multiple sequence 
alignment, BLAST, motif fi nding, pattern matching, sequence assembly, 
hidden Markov models, proteomics, and evolutionary tree reconstruction. 
Since both parallel computing and bioinformatics are two major technolo-
gies for a traditional and broad community, we envisage this book to be 
benefi cial to researchers, graduate students, engineers, and teachers, who 
are actively involved in research and applications in the fi elds of HPC and 
bioinformatics.

The material of this book is organized as follows: Chapter 1 provides read-
ers with background information on bioinformatics algorithms that is impor-
tant to understand the remaining chapters of this book. This chapter is at an 
introductory level and suitable for readers who are new to the fi eld of bioin-
formatics. In Chapter 2, Rob Farber gives an introduction to GPGPU technol-
ogy and the associated massively threaded CUDA programming model. An 
overview of FPGA architecture and programming is provided by Douglas 
Maskell in Chapter 3. In Chapter 4, Sarje and Aluru present several paral-
lel algorithms for computing alignments on the Cell/BE architecture. This 
includes linear-space pairwise alignment, syntenic alignment, and spliced 
alignment. In Chapter 5, Stamatakis focuses on computational aspects of 
phylogenetic inference. He reviews underlying concepts, current develop-
ments, and advances in orchestrating the phylogenetic likelihood func-
tion on parallel computer architectures ranging from FPGAs up to the IBM 
BlueGene/L supercomputer. Chapter 6, by Liu, Schmidt, and Maskell, covers 
several effective techniques to fully exploit the computing capability of many-
core CUDA-enabled GPUs to accelerate protein sequence database search-
ing, multiple sequence alignment, and motif fi nding. Second-generation 
sequencing machines are able to produce a huge amount of high-throughput 
short-read (HTSR) data. In Chapter 7, Shi, Liu, and Schmidt present a paral-
lel CUDA-based method for correcting sequencing base-pair errors in HTSR 
data. Chapter 8, by Jacob, Lancaster, Buhler, and Chamberlain, deals with an 
FPGA accelerator for BLASTN and BLASTP that exploits the characteristics 
of the streaming model. In Chapter 9, Lavenier and Nguyen present a paral-
lel seed-based algorithm called PLAST for comparing protein banks, and its 
instantiation into two technologies (GPU boards and reconfi gurable acceler-
ators). The algorithm has been thought to express the maximum of parallel-
ism and to be easily speeded up by specifi c hardware platforms. In Chapter 
10, Walters, Chaudhary, and Schmidt show how the Viterbi algorithm for 
database searching with profi le-hidden Markov models can be effi ciently 
parallelized on reconfi gurable hardware (FPGAs) as well as on many-core 
architectures (GPUs) with the CUDA programming model. The FPGA-based 
massively parallel COPACOBANA architecture is the subject of Chapter 11. 
Schimmler, Wienbrandt, Güneysu, and Bissel demonstrate how its usage, 
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Preface ix

originally designed for cryptanalysis, can be extended to bioinformatics 
applications. In Chapter 12, Dandass describes techniques for accelerating 
the performance of string set matching solutions using an implementation of 
the Aho-Corasick algorithm on FPGA devices, with particular emphasis on 
applications in computational proteomics. Chapter 13, by Lin and Stepanova, 
is devoted to a two-phase neural system for recognition of dimeric DNA 
motifs. The authors demonstrate its power by applying a hybrid system into 
genome-wide identifi cation of hormone response elements on DNA. Finally, 
in Chapter 14, Coca, Bogdan, and Beynon advocate the use of FPGAs as an 
alternative approach to conventional HPC for protein identifi cation based on 
mass spectrometry using database searching.

Last but not least, I want to gratefully thank all the authors for their valu-
able contributions.
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Algorithms for Bioinformatics

Bertil Schmidt
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Penalty Function .............................................................................. 10
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1.4 Database Search and Exact Matching .......................................................22
1.4.1 Filtration ............................................................................................22
1.4.2 Suffi x Trees and Suffi x Arrays ....................................................... 24

1.5 References ..................................................................................................... 26

1.1 Introduction

In this chapter we provide some important background on bioinformatics 
algorithms that is important to understand the remaining chapters of this 
book. This chapter is at an introductory level and is suitable for readers who 
are new to the fi eld of bioinformatics. Attention has been paid to provide 
a suffi cient number of examples and illustrations to explain concepts and 
ideas.

We start with the most basic bioinformatics algorithm in Section 1.1: pair-
wise sequence alignment. This includes global and local pairwise alignment 
as well as linear and affi ne gap penalties, which can all be computed in 
quadratic time and space using dynamic programming (DP). Furthermore, 
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2 Bioinformatics: High Performance Parallel Computer Architectures

Hirschberg’s divide-and-conquer approach, which reduces the space com-
plexity from quadratic to linear by just doubling the amount of computation, 
is presented.

Section 1.2 explains how the pairwise alignment problem can be extended 
to multiple sequence alignment (MSA). Unfortunately, the straightforward 
extension of the DP approach leads to an exponential time complexity. 
Therefore, heuristics are commonly used to compute multiple alignments 
in practice. We fi rst present the simple star alignment heuristic and then 
show how this is extended to the progressive alignment approach used in 
ClustalW (which is one of the most popular multiple alignment tools with 
more than 26,000 citations in the ISI web of science).

The most popular bioinformatics tool is undoubtedly the basic local align-
ment search tool (BLAST). BLAST is a sequence database search method, 
where BLASTN is for DNA database search and BLASTP is for protein data-
base search. We explain the fi ltration approach that is the basis of BLAST in 
Section 1.3. We further describe a number of effi cient data structure for exact 
string matching, namely, the suffi x tree and the suffi x array.

Of course there are many more bioinformatics algorithms that are not dis-
cussed in this chapter. The interested reader is referred to corresponding 
books [1–4].

1.2 Pairwise Sequence Alignment

1.2.1 Definitions and Notations

Consider a sequence S of length l over the alphabet Σ. We use the following 
notations.

S• [i . . . j] denotes the substring of S starting at position i and ending at 
position j; that is, S = S[0 . . . l−1].
S• [i] denotes the letter at position i in S.
• S denotes the length of string S; that is, S = l.
The string of length zero is called the empty string and is denoted • 
as ε.
The gap symbol is denoted as −, where −• ∉Σ.

Alphabets used in bioinformatics are often the DNA alphabet with four 
nucleotides (i.e., Σ = {A, C, G, T}) and the protein alphabet with the 20 standard 
amino acids (i.e., Σ = {A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y}).

Given are two sequences • S0 and S1 over the alphabet Σ of length l0 
and l1, respectively. We defi ne a global pairwise sequence alignment of 
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Algorithms for Bioinformatics 3

S0 and S1 as a matrix M of size 2 × n with n ≥ max{l0, l1} with the 
 following properties for all 0 ≤ k ≤ 1 and 0 ≤ i ≤ n−1.
M• [k][i] = − or M[k][i] = Sk[p] for some p ∈ {0, . . . ,lk−1}.
If • M[k][i] = − then M[1−k][i] ≠ −.
If • M[k][i] = Sk[p] and M[k][j] = Sk[q], then p < q, for all i < j.
It exists • j ∈ {0, . . . ,n−1} with M[k][j] = Sk[p] for all 0 ≤ p ≤ lk−1.

In other words, in a global pairwise alignment all letters of both sequences occur 
in the corresponding row of the alignment matrix in the same order as in the 
original sequence, possibly interspersed by gaps. Furthermore, it is not allowed 
to have two gaps in a column of the alignment matrix. An example of two pos-
sible global alignments of a pair of DNA sequences is shown in Figure 1.1.

For a pair of given sequences there is a very large (exponential) number 
of possible global alignments. Thus, we are only interested in certain align-
ments with high alignment scores. Therefore, a pairwise alignment scoring 
method needs to be defi ned. A frequently used method is to score every col-
umn of an alignment independently and then add up the individual column 
scores. This is known as a linear scoring scheme. Given a global pairwise align-
ment M of length n, the linear score of M is defi ned by Equation 1.1, where 
δpair(M[0][i],M[1][i]) is the score of the ith alignment column in M.

,

n

i

M M i M i
1

linear pair
0

score ( ) ( [0][ ] [1][ ])δ
−

=

= ∑
 

(1.1)

The classifi cation of each alignment columns as

An • insertion or a deletion (or indel for short) if it includes a gap
A • match, if it consists of two equal letters
A • mismatch, if it consists of two unequal letters

can be used for a possible defi nition of δpair as shown in Equation 1.2, where 
g (gap penalty), α (match score), and β (mismatch penalty) are parameters of 
the scoring scheme.

T A G A C T A − G

0 1 2 3 4 5 6 7 8

− A C G T A T G

0

1

T A G A C T A G

0 1 2 3 4 5 6 7 8

A C G − − T A T G

0

1

−

M1 M2

−

−−

9

FIGURE 1.1
Two possible global alignments M1 and M2 of S0 = TAGACTAG and S1 = ACGGTATG.
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4 Bioinformatics: High Performance Parallel Computer Architectures

δ α
β

= − = −
= =
 ≠

g  M i   M i  ( )

M i M i  M i M i  ( )

 M i M i  ( )
pair

if [0][ ] or [1][ ] indel
( [0][ ], [1][ ]) if [0][ ] [1][ ] match

if [0][ ] [1][ ] mismatch  

(1.2)

Typically, g and β are negative while α is positive. Using this scheme 
with the parameters g = −1, α = +2, and β = −2 results in the following 
scores for the alignment shown in Figure 1.1: scorelinear(M1) = +5 and 
scorelinear(M2) = −3. In practice, the usage of a single score for match (α) and 
mismatch (β) is often replaced by a more general substitution matrix sbt of 
size Σ × Σ. The reason for using substitution matrices instead of match/
mismatch is that they can model evolutionary events more accurately (i.e., 
the mutation of one amino acid to another amino acid), since they include 
individual scores for each pair of letters. An example of a frequently used 
substitution matrix for amino acids is BLOSUM62 [5], which is shown in 
Figure 1.2.

A R N D C Q E G H I L K M F P S T W Y V
0 −3 −3 −3 −1 −2 −2−3 −3 3 1 −2 1 −1 −2 −2 0 −3 −1 4V
−2 −2 −2 −3 −2 −1 −2−3 2 −1 −1 −2−1 3 −3 −2 −2 2 7Y
−3 −3 −4 −4 −2 −2 −3−2 −2−3 −2 −3−1 1 −4 −3 −2 11W
0 −1 0 −1 −1 −1 −1−2 −2−1 −1 −1−1 −2 −1 1 5T
1 −1 1 0 −1 0 0 0 −1−2 −2 0 −1 −2 −1 4S
−1 −2 −2 −1 −3 −1 −1−2 −2−3 −3 −1−2 −4 7P
−2 −3 −3 −3 −2 −3 −3−3 −1 0 0 −3 0 6F
−1 −1 −2 −3 −1 0 −2−3 −2 1 2 −1 5M
−1 2 0 −1 −3 1 1 −2 −1−3 −2 5K
−1 −2 −3 −4 −1 −2 −3−4 −3 2 4L
−1 −3 −3 −3 −1 −3 −3−4 −3 4I
−2 0 1 −1 −3 0 0 −2 8H
0 −2 0 −1 −3 −2 −2 6G
−1 0 0 2 −4 2 5E
−1 1 0 0 −3 5Q
0 −3 −3 −3 9C
−2 −2 1 6D
−2 0 6N
−1 5R
4A

FIGURE 1.2
The BLOSUM62 substitution matrix for amino acids. Because the matrix is  symmetric, we only 
show the lower triangular part (positive values are shaded).
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Algorithms for Bioinformatics 5

When using a substitution matrix sbt, the defi nition of δpair is modifi ed to 
Equation 1.3.

g  M i   M i
M i M i

sbt M i M ipair

if [0][ ] or [1][ ]
( [0][ ], [1][ ])

[ [0][ ]][ [1][ ]] otherwise
δ

= − = −
= 

  
(1.3)

Consider the two global alignments M3 and M4 shown in Figure 1.3. Both 
alignments have an identical score under a linear scoring scheme; for exam-
ple, for g = −1, α = +2, and β = −2, scorelinear(M3) = +4 = scorelinear(M4). However, 
from a biological perspective, M3 would correspond to two evolutionary 
events (two indels of length two each) while M4 corresponds to only a single 
event (one indel of length four). Hence, M4 should have a higher score than 
M3. Biologists therefore often prefer an affi ne scoring scheme rather than the 
simple linear scoring scheme used so far.

In an affi ne scoring scheme there are two values for scoring indels:

go• : the gap opening penalty, and
ge• : the gap extension penalty.

Under affi ne scoring, a continuous indel of length k is charged go + k ⋅ ge 
rather than k ⋅ g (used in linear scoring). For example, using go = −3, ge = −1, 
α = +2, and β = −2, scoreaffi ne(M3) = −2 and scoreaffi ne(M4) = +1. More formally, 
given a global pairwise alignment M of length n, go, ge, and sbt, the affi ne 
score of M is defi ned by Equation 1.4, where δpair(M[0][i], M[1][i]) is the same 
as in Equation 1.2 or 1.3 with ge used for g, and the ∆ is the number of gap 
openings in M; that is, ( ){ }i k M k i   M k i   i: [ ][ ] and [ ][ 1] or 0∆ = ∃ = − − ≠ − = .

n

i

M M i M i go
1

affine pair
0

score ( ) ( [0][ ], [1][ ])δ
−

=

 = − ∆ ⋅ 
 
∑

 
(1.4)

The linear scoring is also referred to as global pairwise alignment with 
linear gap penalty function and the affi ne scoring to global pairwise alignment 
with affi ne gap penalty function.

A T T T C T G

0 1 2 3 4 5 6 7

A − − T − G

0

1

M3

C

−T

A T T T C T G

0 1 2 3 4 5 6 7

A T − − T G

0

1

M4

C

−−

FIGURE 1.3
Examples of two global alignments that have the same score under a linear scoring scheme. 
However, under an affi ne scoring scheme alignment M4 would be preferred.
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Another important pairwise alignment is local pairwise alignment. Given 
are two sequences S0 and S1 over the alphabet Σ of length l0 and l1, respec-
tively. A local pairwise sequence alignment of S0 and S1 is a global alignment 
of two substrings S0[i0 . . . j0] and S1[i1 . . . j1] of S0 and S1 for any 0 ≤ i0 ≤ j0 ≤ l0 
and 0 ≤ i1 ≤ j1 ≤ l1. The score of a local alignment is the score of the associated 
global substring alignment.

1.2.2 DP for Optimal Pairwise Alignment 
with Linear Gap Penalty Function

In this section we describe how an optimal global pairwise alignment 
(i.e., a pairwise global alignment with maximum score) under a linear 
scoring scheme can be computed with a DP approach with time and space 
complexity of order O(l0 ⋅ l1). Afterward, we show how this DP approach 
can be easily modifi ed to compute an optimal local pairwise align-
ment. The former is also known as the Needleman–Wunsch algorithm 
[6] and the  latter, as the Smith–Waterman algorithm [7]. The generaliza-
tion to optimal alignment with an affi ne scoring scheme is described in 
Section 1.2.3.

Given are two sequences S0 and S1 of length l0 and l1 and a linear scoring 
scheme (consisting either of g and sbt or of g, α, and β). Let H[i][j] denote the 
score of an optimal global pairwise alignment of the prefi xes S0[0 . . . i−1] and 
S1[0 . . . j−1]. For i ≥ 1 and j ≥ 1, only the following three cases are possible for 
the last column of an associated alignment.

 1. S0[i−1] and S1[j−1] are aligned.
 2. S0[i−1] is aligned with a gap.
 3. S1[j−1] is aligned with a gap.

For each case the optimal global alignment score can be computed as 
follows:

 1. δ(S0[i−1],S1[j−1]) plus the optimal alignment global score of the 
 prefi xes S0[0 . . . i−2] and S1[0 . . . j−2] (which is stored in H[i−1][j−1]).

 2. δ(S0[i−1],−) plus the optimal alignment global score of the prefi xes 
S0[0 . . . i−2] and S1[0 . . . j−1] (which is stored in H[i−1][j]).

 3. δ(−,S1[j−1]) plus the optimal alignment global score of the prefi xes 
S0[0 . . . i−1] and S1[0 . . . j−2] (which is stored in H[i][j−1]).

The optimal global alignment score is then the maximum of these three val-
ues. Thus, H[i][j] can be computed using the recurrence relation in Equation 
1.5 for the linear scoring scheme given by g, α, and β.
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 S i S j
H i j

 S i S j

H i j H i j g  i l   j l

H i j g

0 1

0 1

0 1

if [ 1] [ 1]
[ 1][ 1]

if [ 1] [ 1]

[ ][ ] max [ 1][ ] , for all 1 and 1
[ ][ 1]

− = − 
− − +  − ≠ −= − + ≤ ≤ ≤ ≤

 − +


a

b

 
 (1.5)

For the linear scoring scheme given by g and sbt[][], the recurrence relation 
for H[i][j] is given by Equation 1.6.

H i j sbt S i S j

H i j H i j g i l   j l

H i j g

0 1

0 1

[ 1][ 1] [ [ 1]][ [ 1]]
[ ][ ] max [ 1][ ] , f  or all 1 and 1

[ ][ 1]

− − + − −
= − + ≤ ≤ ≤ ≤
 − +

 (1.6)

Any value in the fi rst column of H, that is, H[0][j] for all 1 ≤ j ≥ l1, simply 
refers to the optimal global alignment score for aligning the empty string 
(ε = S0[0 . . . −1]) to the prefi x S1[0 . . . j−1]. There is only one possible alignment 
for this case (aligning S1[0 . . . j−1] to gaps) with the score g ⋅ j. Therefore, the 
initial conditions for the fi rst row and the fi rst column of H are given by 
Equation 1.7.

= =
= ⋅ = >
 ⋅ > =

 i   j

H i j g j  i   j

g i  i   j

0 if 0 and 0
[ ][ ] if 0 and 0

if 0 and 0  

(1.7)

The complete matrix H[i][j] of size (l0 + 1) × (l1 + 1) can now be computed 
(in a row major order) using the aforementioned recurrences for i = 0 . . . l0 
and j = 0 . . . l1. The optimal global pairwise alignment score is then H[l0][l1]. 
Figure 1.4 shows all values of H[][] for the alignment of S0 = AGT and S1 = 
AAGT using g = −2, α = +1, and β = −1.

So far we have computed only the optimal global alignment score, but not 
the actual alignment. The actual alignment can be computed from the DP 
matrix H by a trace-back procedure. The trace-back starts at the lower right 
matrix cell H[l0][l1] and traverses H until it reaches the upper-left matrix cell 
H[0][0]. For each matrix cell H[i][j] that the trace-back traverses, it is checked 
whether the value H[i][j] has been formed from the upper-left neighbor (i.e., 
H[i][j] = H[i−1][j−1] + sbt[S0[i−1]][S1[j−1]]), the left neighbor (i.e., H[i][j] = H[i]
[j−1] + g), or the upper neighbor (i.e., H[i][j] = H[i−1][j] + g). The trace-back 
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8 Bioinformatics: High Performance Parallel Computer Architectures

then moves to the corresponding cell. For cells in the fi rst row (column), the 
trace-back always moves to the left (up). One way to implement the trace-
back procedure is to use trace-back pointers in each matrix cell H[i][j]. A 
trace-back pointer can have one of three values (up-left (← ), left (←), up 
(↑)) depending on which neighbor the value H[i][j] has been formed from. 
Note that, in case of a tie between two or three neighbors, several trace-
back pointers can be stored in a matrix cell. As a consequence, there can be 
several possible trace-back paths from H[l0][l1] to H[0][0], where each dis-
tinct path corresponds to an optimal global alignment. Figure 1.5 shows all 
trace-back pointers for the example shown in Figure 1.4 as well as the two 
possible trace-back paths.

The actual alignment can be constructed from a trace-back path using the 
following three rules for each traversed matrix cell H[i][j] and the column k 
of the alignment matrix M.

If an up-left pointer is used, then • M[0][k] = S0[i] and M[0][k] = S1[j], 
move to H[i−1][j−1], and move to column k−1 in M.
If a left pointer is used, then • M[0][k] = − and M[0][k] = S1[j], move to 
H[i][j−1], and move to column k−1 in M.
If an up pointer is used, then • M[0][k] = S0[i] and M[0][k] = −, move to 
H[i−1][j], and column k−1 in M.

1−1−2−3

−200−1

−5−3−11

−6

−4

−2

−8−6−4−20

T

G

A

TGAA

FIGURE 1.4
The matrix H[][] of size 4 × 5 for the global alignment of the input DNA sequences S0 = AGT 
and S1 = AAGT using g = −2, α = +1, and β = −1. The optimal global pairwise alignment score is 
H[3][4] = +1. S0[i] and S1[j] are also displayed for each row and each column.

T

T

1−1−2−3
−200−1
−5−3−11

−6
−4
−2

−8−6−4−20 0 0

A − T

0 1 2 3

A A G T

0

1

− A G T

0 1 2 3

A A G T

0

1

G

A

A A G

G

FIGURE 1.5
The matrix H with trace-back pointers for the example shown in Figure 1.4 (left). The two 
possible trace-back paths from H[l0][l1] to H[0][0] (center and right). The optimal alignments 
corresponding to each trace-back path are also shown.
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The two optimal alignments corresponding to the two trace-back paths in 
Figure 1.4 are also shown in Figure 1.5.

We now modify the presented DP algorithm to the computation of optimal 
local alignments. This can be done by a slight modifi cation of the defi nition 
of H[i][j]. For local alignment, H[i][j] denotes the score of the best optimal 
global pairwise alignment of any two suffi xes of S0[0 . . . i−1] and S1[0 . . . j−1]; 
that is, the maximum score from all optimal global alignments of S0[p . . . i−1] 
and S1[q . . . j−1] for all 0 ≤ p ≤ i and 0 ≤ q ≤ j. The following four cases are pos-
sible for the last column of an associated alignment:

 1. S0[i−1] and S1[j−1] are aligned.
 2. S0[i−1] is aligned with a gap.
 3. S1[j−1] is aligned with a gap.
 4. Both suffi xes are empty strings (in which the alignment has no 

column).

The scores for the fi rst three cases are computed in the same way as for the 
global alignment recurrence relation. The score for Case 4 is always zero (i.e., 
an optimal local alignment can never have a negative score). The recurrence 
relation for local alignment with the linear scoring scheme given by g, α, and 
β is defi ned by Equation 1.8.

 S i S j
H i j

 S i S j

H i j H i j g   i l   j l

H i j g

0 1

0 1

0 1

if [ 1] [ 1]
[ 1][ 1]

if [ 1] [ 1]

[ ][ ] max [ 1][ ] , for all 1 and 1

[ ][ 1]
0

− = − 
− − +  − ≠ −= − + ≤ ≤ ≤ ≤

 − +


a

b

 (1.8)

For the linear scoring scheme given by g and sbt[][] the recurrence is 
defi ned by Equation 1.9.

H i j sbt S i S j

H i j H i j g    i l   j l

H i j g

0 1

0 1

[ 1][ 1] [ [ 1]][ [ 1]]
[ ][ ] max [ 1][ ] , for all 1 and 1

[ ][ 1]
0


 − − + − −
= − + ≤ ≤ ≤ ≤
 − +


 (1.9)

The initial conditions are of H[0][0] = H[i][0] = H[0][j] = 0 for all 1 ≤ i ≤ l0 and 
1 ≤ j ≤ l1. Since a local alignment considers any two substrings of S0 and S1, the 
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10 Bioinformatics: High Performance Parallel Computer Architectures

score of the optimal local alignment is the maximum score in matrix H. Let 
H[imax][jmax] be a matrix cell with a maximum score. An actual alignment can 
now be found by executing a trace-back procedure, which ends at the fi rst 
matrix cell with the score zero. Figure 1.6 shows an example of an optimal 
local pairwise alignment computation with trace-back.

1.2.3 DP for Optimal Pairwise Alignment 
with Affine Gap Penalty Function

In this section we extend the previously described DP algorithms for optimal 
global and local alignment with a linear scoring scheme to an affi ne scoring 
scheme. The recurrence relations for affi ne scoring need to consider whether 
a gap is opened (for which the penalty is go + ge) or a gap is extended (for 
which the penalty is ge). To model these two situations, three DP matrices 
are used instead of only one. Given two sequences S0 and S1 of length l0 and 
l1 and an affi ne scoring scheme (consisting of go, ge, sbt or of go, ge, α, β), they 
are defi ned as follows for global alignment.

H• [i][j]: Score of an optimal global pairwise alignment of S0[0 . . . i−1] 
and S1[0 . . . j−1].
E• [i][j]: Score of an optimal global pairwise alignment of S0[0 . . . i−1] 
and S1[0 . . . j−1], which ends with S0[i−1] aligned to a gap.
F• [i][j]: Score of an optimal global pairwise alignment of S0[0 . . . i−1] 
and S1[0 . . . j−1], which ends with a gap aligned to S1[j−1].

Thus, the two different gap penalties are used for the calculation of 
 E[i] [j] (and F[i][j]). The value of E[i][j] ends either with a gap extension (in 
which case E[i][j] = E[i−1][j] + ge) or with a gap opening (in which case 

A

T

T

TGAA

A

G

0 0 0 0 0

0

0

0

0

0

0 0 0 1

0 0 0 1

1 1 0 0

1 2 0 0

0 0 3 1

A A

0 1 2

A A G

0

1

G

FIGURE 1.6
The matrix H of size 6 × 5 for the local alignment computation of sequences S0 = TTAAG and S1 
= AAGT using g = −2, α = +1, and β = −1. The optimal alignment trace-back path from H[5][3] 
to H[2][0] and the actual alignment are also shown.
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Algorithms for Bioinformatics 11

E[i] [j] = H[i−1] j] + go + ge). The calculation of F[i][j] is similar. The value of 
H[i][j] is then E[i][j] (S0[i−1] is aligned with a gap), F[i][j] (S1[j−1] is aligned 
with a gap), or H[i][j] + sbt[S0[i−1]][S1[j−1]] (S0[i−1] and S1[j−1] are aligned). 
In summary, the recurrence relations for all 1 ≤ i ≤ l1 and 1 ≤ j ≤ l2 for 
global alignment with the affi ne scoring scheme go, ge, sbt[][] are shown in 
Equations 1.10.

− − + − −
= 



− + +
=  − +

− + +
=  − +

H i j sbt S i S j

H i j E i j

F i j
H i j go ge

E i j
E i j ge
H i j go ge

F i j
F i j ge

0 1[ 1][ 1] [ [ 1]][ [ 1]]
[ ][ ] max [ ][ ]

[ ][ ]
[ 1][ ]

[ ][ ] max
[ 1][ ]
[ ][ 1]

[ ][ ] max
[ ][ 1]

 
(1.10)

The recurrence relations for the scoring scheme go, ge, α, β are the same 
except that H[i][j] + sbt[][] is changed to H[i][j] + α (if S0[i−1] = S1[j−1]) and 
H[i][j] + β (otherwise). The initial conditions for all 1 ≤ i ≤ l1 and 1 ≤ j ≤ l2 are 
given by

H• [0][0] = 0; H[i][0] = go + i ⋅ ge; H[0][j] = go + j ⋅ ge;
E• [0][0] = −∞; E[i][0] = go + i ⋅ ge; E[0][j] = −∞;
F• [0][0] = −∞; F[i][0] = −∞; F[0][j] = go + j ⋅ ge.

An example is shown in Figure 1.7.
An alignment corresponding to the optimal global alignment score can 

again be found by a trace-back procedure from H[l0][l1] to H[0][0]. The rules 
for the trace-back are as follows:

From • H[i][j], move to H[i−1][j−1] (if H[i][j] = H[i−1][j−1] + sbt[S0[i−1]]
[S1[j−1]]), to E[i][j] (if H[i][j] = E[i][j]), or to F[i][j] (if H[i][j] = F[i][j]).
From • E[i][j], move to E[i−1][j] (if E[i][j] = E[i−1][j] + ge), or to H[i−1][j] 
(if E[i][j] = H[i−1][j] + ge + go).
From • F[i][j], move to F[i][j−1] (if F[i][j] = F[i][j−1] + ge), or to H[i][j−1] 
(if F[i][j] = H[i][j−1] + ge + go).

The recurrence relations for optimal local pairwise alignment can be con-
structed by adding the term zero to the maximum computation of H[][] and 
changing the initial conditions. In summary, the recurrence relations for all 
1 ≤ i ≤ l1 and 1 ≤ j ≤ l2 for local alignment with the affi ne scoring scheme go, ge, 
sbt[][] are given by Equations 1.11.
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 − − + − −


= 




− + +
=  − +

− + +
=  − +

H i j sbt S i S j

E i jH i j
F i j

H i j go ge
E i j

E i j ge
H i j go ge

F i j
F i j ge

0 1[ 1][ 1] [ [ 1]][ [ 1]]

[ ][ ][ ][ ] max
[ ][ ]

0

[ 1][ ]
[ ][ ] max

[ 1][ ]
[ ][ 1]

[ ][ ] max
[ ][ 1]

 

(1.11)

The initial conditions are H[0][0] = H[i][0] = H[0][j] = 0; E[0][0] = −∞; E[i][0] = 
go + i ⋅ ge; E[0][j] = −∞; F[0][0] = −∞; F[i][0] = −∞; F[0][j] = go + j ⋅ ge; for 1 ≤ i ≤ l1 
and 1 ≤ j ≤ l2.

1.2.4 Computing Alignments in Linear Space Using Divide and Conquer

A critical resource in the described DP alignment algorithm is memory. 
Assume we want to align two sequences of length one million each. Then the 
DP matrix would have one trillion entries, leading to a memory requirement 
of four terabytes (assuming four bytes per matrix cell). An important improve-
ment is therefore the space-saving divide-and-conquer method that was fi rst 
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0
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0

1
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S
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V
S
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FIGURE 1.7
Matrices H[][], E[][], and F[][] for global pairwise alignment of S0 = VSA and S1 = VLSPA using 
the affi ne scoring scheme α = +2, β = −1, go = −7, and ge = −1. The two trace-back paths from 
H[3][5] to H[0][0] for the two optimal alignments shown on the right are also indicated by trace-
back pointers.
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introduced by Hirschberg [8] and later applied to bioinformatics by Myers and 
Miller [9]. The method reduced the required memory from quadratic to linear; 
that is, for the aforementioned example we would need only a few megabytes 
instead of a few terabytes. The linear-space method is described for optimal 
global pairwise alignment with linear scoring in the following text.

We fi rst note that the optimal alignment score can easily be computed in linear 
space. Consider two input sequences S0 and S1 of length l0 and l1. For the com-
putation of the matrix cell H[i][j], only the values H[i−1][j−1], H[i][j−1], and H[i−1]
[j] are required. When iteratively computing H[][] in row-major order, only the 
values H[i−1][j−1] to H[i−1][l1] and H[i][0] to H[i][j−1] need to be kept at any point 
(i, j) in the iteration. After the calculation of H[i][j], the H[i−1][j−1] is not required 
anymore. Thus, instead of using a two-dimensional DP matrix H of size (l0 + 
1) × (l1 + 1), it suffi ces to use a one-dimensional vector of size (l1 + 2) for score-only 
computation. Figure 1.8 illustrates the linear–space score-only computation.

However, to get an actual optimal alignment and not just the score, a trace-
back path needs to be established. If we want to use only linear space, the trace-
back procedure described in the previous section has to be modifi ed. Let us 
assume that together with the linear–space score-only alignment matrix com-
putation we can identify an optimal midpoint in the middle row l0/2, denoted 
as om(l0/2). In general, om(i), an optimal midpoint in row i, is defi ned as an 
intersection of the trace-back path with row i; that is, the trace-back path of an 
optimal global alignment goes through the cell H[i][om(i)]. The identifi ed opti-
mal midpoint om(l0/2) divides the DP matrix H into four quadrants:

 A. [0 . . . l0/2][0 . . . om(i)].
 B. [0 . . . l0/2][om(i) . . . l1].
 C. [l0/2 . . . l0][0 . . . om(i)].
 D. [l0/2 . . . l0][om(i) . . . l1].

Owing to the trace-back path properties (only left, up, or up-left), we know that 
the path can pass through only quadrants A and D. Therefore, quadrants II and 
III can be eliminated from further consideration. The procedure is then applied 
to identify om(l0/4) in quadrant A and om(3 ⋅ l0/4) in quadrant D, resulting in 

i

j

i

j+1

FIGURE 1.8
Linear–space score-only alignment computation. The values stored in the one-dimensional 
vector HH at iteration step (i,j) are shaded (left); that is, HH[k] = H[i][k] for 0 ≤ k ≤ j−1 and HH[k 
+ 1] = H[i−1][k] for j−1 ≤ k ≤ l1. Afterward, step (i,j + 1) is performed.
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the four quadrants A1, A4, D1, and D4, which the optimal alignment traverses 
(see Figure 1.9). It is recursively applied until the resulting quadrants are small 
enough to compute an actual alignment in quadratic in quadratic space.

It remains to be shown how to fi nd an optimal midpoint in linear space. 
For the two given sequences S0 and S1 of length l0 and l1, an optimal mid-
point om(l0/2) can be found by calculating score(i) for all 0 ≤ i ≤ l1, where 
score(i) is defi ned as the score of the best global alignment of S0 and S1 passing 
through the matrix cell [l0/2][i]. An optimal midpoint can then be found by 
om(l0/2) = argmax0≤i≤l1

{score(i)}. We can calculate the score(i) values by score(i) = 
upper(i) + lower(i); where upper(i) is the optimal global alignment score of 
S0[0 . . . l0/2−1] and S1[0 . . . i−1] and lower(i) is the optimal global alignment score 
of S0

R[l0/2 . . . l0−1] and S1
R[i . . . l1−1] (where S0

R and S1
R denote reverse sequences). 

The values upper(i) (lower[i]) can simply be computed by executing the linear–
space score-only alignment computation for S0[0 . . . l0/2−1] and S1[0 . . . l1−1] (for 
S0

R[l0/2 . . . l0−1] and S1
R[0 . . . l1−1]). The concept is illustrated in Figure 1.10.

Overall, the linear-space divide-and-conquer method needs to compute 
double the amount of DP-matrix cells compared with to the square-space 
method. However, the massive saving of space clearly outweighs this draw-
back. The presented linear-space method can also be extended to local align-
ment as well as to affi ne scoring schemes. The details are omitted here and 
the interested reader is referred to literature [3, 9].

1.3 Multiple Sequence Alignment

1.3.1 Background

In this subsection, the defi nitions and scoring schemes for pairwise align-
ment are generalized for MSA. Afterward, we describe how DP can be used 

l0/2

om (l0/2) om(l0/4)

3l0/4

l0/4

[0][0]

[l0][l1]

[0][0]

[l0][l1]om(3l0/4)

A1A B

C D

A2

A3 A4
D1 D2

D3 D4

FIGURE 1.9
Two steps of the divide-and-conquer algorithm to fi nd an optimal global alignment in linear 
space.
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to compute optimal global MSAs. Unfortunately, this approach leads to an 
exponential runtime in terms of the number of input sequences and is there-
fore unpractical. Consequently, heuristic approaches that run in polynomial 
time are used in practice. A very popular heuristic is the progressive align-
ment approach, which is described in the following subsection.

Given is a set � = {S0, . . . ,St−1} of t sequences over the alphabet Σ with 
Si = li for i ∈ {0, . . . ,t−1}. We defi ne a global MSA of these sequences as a 
matrix M[][] of size t × n with n ≥ max{l0, . . . , lt−1} that has the following prop-
erties for all 0 ≤ k ≤ t−1.

M• [k][i] = − or M[k][i] = Sk[p] for some p ∈ {0, . . . ,lk−1} for all 0 ≤ i ≤ n−1.
For all 0 ≤ • i ≤ n−1, exists r ∈ {0, . . . ,t−1} with M[r][i] ≠ −.
If • M[k][i] = Sk[p] and M[k][j] = Sk[q], then p < q, for all 0 ≤ i < j ≤ n−1.
It exists • i ∈ {0, . . . ,n−1} with M[k][i] = Sk[p] for all 0 ≤ p ≤ lk−1.

In other words, in a global MSA all letters of each sequence occur in the cor-
responding row of the alignment matrix in the same order as in the original 
sequence, possibly interspersed by gaps. Furthermore, it is not allowed to have 
only gaps in any alignment column. An example of a global MSA of four pro-
tein sequences is shown in Figure 1.11. A local MSA of � = {S0, . . . ,St−1} is a global 
MSA of k substrings Sk[ik . . . jk] for any 0 ≤ ik ≤ jk ≤ lk and for each k ∈ {0, . . . ,t−1}.

We now need to defi ne how a MSA can be scored. Given a global MSA M of a 
set of t sequences with n columns, the score of M is defi ned by Equation 1.12.

δ
−

=

= −∑
n

i

score M M i M t i
1

obj
0

( ) ( [0][ ], ..., [ 1][ ])
 

(1.12)

In Equation 1.12, δobj(M[0][i], . . . ,M[t−1][i]) is the score of the ith alignment 
column in the matrix M. The function δobj is called the objective function. 

++++ ++

score(i ) = lower(i ) + upper(i )

0

l0/2

upper (i )

0

l0/2 l0/2

l0

lower(i )

0 l1

0 l1

0 l1

FIGURE 1.10
Optimal midpoint computation in linear space. The rows upper(i) and lower(i) are computed 
by executing the score-only linear-space algorithm for the upper half and the lower half of the 
DP matrix. Then, the row score(i) = lower(i) + upper(i) is calculated, which is used to identify an 
optimal midpoint.
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Several types of objective functions for MSA have been used. Two popular 
objective functions are

Sum-of-pairs function, and• 
Consensus function.• 

Given is an associated linear pairwise alignment scoring scheme δpair. The 
sum-of-pairs score of the ith alignment column is defi ned by Equation 1.13.

δ δ
− −

= = +

− = ∑ ∑
k k

r s r

M i M t i M r i M s i
2 1

obj pair
0 1

( [0][ ], ..., [ 1][ ]) ( [ ][ ], [ ][ ])
 

(1.13)

For example, for the pairwise scoring scheme α = +1, β = −1, and g = −2, 
the sum-of-pairs-score of the MSA M3 shown in Figure 1.11 is score(M3) = 6 
+ 0 − 6 − 4 − 9 − 6 − 6 − 3 − 4 − 4 + 6 + 6 = −24. An important feature of the 
sum-of-pairs score of an MSA is that it is equal to the sum of all pairwise 
global alignments induced by the given MSA. A global MSA of t sequences 
induces a global pairwise alignment for each pair of sequences i, j; that is, 
t ⋅ (t−1)/2 in total. The pairwise alignment of the sequences Si, Sj ∈ �, with i < j, 
is defi ned as the pairwise alignment matrix given by taking the rows i and 
j in the given MSA matrix and removing all columns containing two gaps. 
Figure 1.12 shows all induced pairwise alignments for the example shown 
in Figure 1.11. Using the pairwise scoring scheme α = +1, β = −1, and g = −2, 
it can be seen that the sum of all induced pairwise alignments is: 2 − 4 − 9 + 
1 − 7 − 7 = −24. Please note that an induced pairwise global alignment is not 
necessarily also an optimal pairwise global alignment.

Given is an associated linear pairwise alignment scoring scheme δpair. The 
consensus score of the ith alignment column of the MSA matrix M is defi ned by 
Equation 1.14, where cons(i) is the consensus character for column i.

( )δ δ
−

=

− = ∑
k

r

M i M t i M r i cons i
1

obj pair
0

( [0][ ], ..., [ 1][ ]) [ ][ ], ( )
 

(1.14)

M3

0 1 2 3 4 5 6 7 8 9 01 11

0 P Y R F T − − − I K S M

1 P Y K F − − − S I K S M

2 P Y M Y − − − S S E S M

3 P M D D N P F S F Q S M

FIGURE 1.11
A global MSA of S = {PYRFTIKSM, PYKFSIKSM, PYMYSSESM, PMDDNPFSFQSM}.
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The consensus character is defi ned as the character from ∑ ∪ {−} that maxi-
mizes the overall similarity for column i (see Equation 1.15).

k

c r

cons i M r i c
1

pair
{ } 0

( ) arg max ( [ ][ ], )δ
−

∈Σ∪ − =

 =  
 
∑

 
(1.15)

For the pairwise scoring scheme α = +1, β = −1, and g = −2, the consensus 
sequence of the MSA M3 (see Figure 1.11) consisting of the consensus charac-
ters of each column is PYKF–SIKSM. The corresponding consensus score is 
then score(M3) = 4 + 2 − 2 + 0 − 4 − 2 − 2 + 1 + 0 + 0 + 4 + 4 = +5.

For a given set of three sequences � = {S0, S1, S2} of length l0, l1, l2 and an 
objective δobj, the optimal global MSA score can be computed by a straightfor-
ward extension of the pairwise DP approach. Let H[i][j][k] denote the score of 
an optimal global MSA of the prefi xes S0[0 . . . i−1], S1[0 . . . j−1], and S2[0 . . . k−1]. 
For i ≥ 1, j ≥ 1, and k ≥ 1 only the following seven cases are possible for the last 
column of an associated alignment.

 1. S0[i−1], S1[j−1], and S2[k−1] are aligned.
 2. S0[i−1], S1[j−1], and gap are aligned.
 3. S0[i−1], gap, and S2[k−1] are aligned.
 4. gap, S1[j−1], and S2[k−1] are aligned.
 5. S0[i−1], gap, and gap are aligned.
 6. gap, S1[j−1], and gap are aligned.
 7. gap, gap, and S2[k−1] are aligned.

For each case the optimal global alignment score can be computed by 
the recurrence relation shown in Equation 1.16 for all 1 ≤ i ≤ l0, 1 ≤ j ≤ l1, and 
1 ≤ k ≤ l2.

P Y R F T - I K S M
P Y K F - S I K S M

M0,1
P Y R F T - I K S M
P Y M Y - S S E S M

P Y R F T - - - I K S M
P M D D N P F S F Q S M

P Y K F S I K S M
P Y M Y S S E S M

P Y K F - - - S I K S M
P M D D N P F S F Q S M

M0,2 M0,3

M M1,3
P Y M Y - - - S S E S M
P M D D N P F S F Q S M

M2,3

FIGURE 1.12
The six global pairwise alignments induced by M3 (see Figure 1.11). Mi,j denotes the induced 
pairwise alignment for Si and Sj.
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H i j k S i S j S k

H i j k S i S j

H i j k S i S k

H i j k S j S kH i j k
H i j k S i

H i j k

obj 0 1 2

obj 0 1

obj 0 2

obj 1 2

obj 0

ob

[ 1][ 1][ 1] ( [ ], [ ], [ ])
[ 1][ 1][ ] ( [ ], [ ], )
[ 1][ ][ 1] ( [ ], , [ ])
[ ][ 1][ 1] ( , [ ], [ ])[ ][ ][ ] max
[ 1][ ][ ] ( [ ], , )
[ ][ 1][ ]

δ
δ
δ
δ

δ
δ

− − − +
− − + −
− − + −

− − + −=
− + − −

− + S j

H i j k S k
j 1

obj 2

( , [ ], )
[ [ ][ 1] ( , , [ ])δ










− −
 − + − −  

(1.16)

Initial conditions are given by Equation 1.17.

⋅ = = ≥
= ⋅ = > =
 ⋅ > = =

g k  i , j k

H i j k g j  i , j k

g i  i , j k

if 0 0, 0
[ ][ ][ ] if 0 0, 0

if 0 0, 0  

(1.17)

Obviously, the DP matrix for three sequences has l0 ⋅ l1 ⋅ l2 cells. In general, 
the DP approach to MSA for k input sequences requires O(lk

ave) DP matrix 
cells, where lave is the average sequence length. Furthermore, each inner cell 
depends on O(2k) other cells. Assuming that δobj for a single cell can be cal-
culated in O(k) time, this leads to an overall complexity of O(k ⋅ 2k ⋅ lk

ave), where 
lave is the average sequence length. Obviously, this complexity leads to pro-
hibitive runtimes even for small values of k. The Carillo–Lipman bound [10] 
allows to reduce the number of computed in the DP matrix by determining 
areas where the optimal alignment path cannot pass through. Even though 
this technique reduces the time and space complexity somewhat, overall 
runtimes still remain prohibitive in practice. As a consequence, heuristic 
methods that are suboptimal but run in polynomial time (usually between 
O(k2 ⋅ lave) and O(k2 ⋅ l2

ave)) are used for MSA. We describe the popular progres-
sive alignment approach in the next subsection.

1.3.2 Progressive Alignment

The main idea of the star alignment approach to global MSA is to compute the 
optimal global alignments for each pair of sequences. They are then used to 
determine a center sequence, which is the sequence with the largest overall 
similarity. The MSA is then built by combining all optimal pairwise align-
ments to the center sequence. Obviously, this method is suboptimal since the 
pairwise alignments induced by the constructed MSA from two sequences 
different from the center sequence can be incompatible. Figure 1.13 gives an 
example of the MSA computation by the star method.

The star alignment method uses a star topology to progressively align 
sequences to a growing multiple alignment. This can be generalized to pro-
gressively aligning to a growing multiple alignment along a so-called guided 
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tree. The guided tree is a rooted tree with each leaf node labeled by a unique 
sequence from the input set.

Figure 1.14 shows an example of a guided tree for fi ve input sequences. 
The internal nodes are labeled 1–4. Each internal corresponds to one of the 
following three cases:

S0 S1 S2 S3 S4 Sum
S0 +1 +2 +1 −1 +3
S1 +1 −1 +2 −2 0
S2 +2 −1 +1 0 +2
S3 +1 +2 +1 0 +4
S4 −1 −2 0 0 −−3

+4

CTAG

S3

-CTAG
TCTACS0

CTAG
TTAG

S1

CTAG-
CTACC

S2

C-TAG-
CAT-GC S4

-C-TAG-
TC-TAC-
-T-TAG-
-C-TACC
-CAT-GC

FIGURE 1.13
Star alignment using the input sequence S0 = TCTAC, S1 = TTAG, S2 = CTACC, S3 = CTAG, S4 
= CATGC and the scoring scheme α = +1, β = −1, and g = −1. Top: The matrix with the optimal 
global alignment scores for each pair of sequences. The sequence with the highest sum of all 
pairwise scores for each sequence is taken as the center (i.e., S3). Middle: All optimal global 
pairwise alignments to the center (S3) are taken to get the fi nal MSA (bottom).

S0

S4

S2

S1

S3

1

2

3

4

FIGURE 1.14
A guided tree for fi ve input sequences S0, . . ., S4.
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A pairwise sequence alignment (e.g., internal node 1 and 2 corre-• 
sponding to the alignment of S0–S4 and S1–S3, respectively). This 
results in an alignment profi le, which we denote as prof(A,B) (e.g., 
nodes 1 and 2 represent prof(S0,S4) and prof(S1,S3)).
A pairwise sequence–profi le alignment (e.g., internal node 3 corre-• 
sponds to the alignment of S2 to prof(S0,S4)).
A pairwise profi le–profi le alignment (e.g., internal node 4 corre-• 
sponds to the alignment of prof(prof(S0,S4),S2) to prof(S1,S3)).

The guided tree in Figure 1.14 therefore produces the fi nal MSA 
prof(prof(prof(S0,S4),S2), prof(S1,S3)).

The guided tree is usually computed using a distance-based clustering 
method like UPGMA [11] or neighbor-joining (NJ) [12, 13]. In the following 
section we describe the NJ method, which is used in the popular ClustalW tool 
[14]. Input to NJ is a distance matrix D of size k × k for a set of k input sequences 
� = {S0, . . . ,Sk−1}, where the value D[i][j] denotes the distance between Si and 
Sj. There are many ways to compute a distance value between two sequences. 
For example, ClustalW computes the distance between two protein sequences 
by the number of exact matches in optimal local alignment trace-back path of 
Si and Sj divided by min{li,lj}. NJ then iteratively selects an entry in D. The cor-
responding two sequences are then connected with a node in the guided tree. 
The corresponding two rows in D are then merged to produce a new smaller 
matrix for the next iteration step. Iterations consist of the following steps:

 1. Compute the rate-corrected distance matrix DR from D for all i≠j 
using Equation 1.18.

 ( )
−

=

= − + =
− ∑

k

p

DR i j D i j r i r j r q D q p
k

1

0

1
[ ][ ] [ ][ ] [ ] [ ] with [ ] [ ][ ]

2   (1.18)

 2. Find the minimum entry DR[imin][jmin] in DR.
 3. Create a new node N in the guided tree that joins the two entries cor-

responding to imin and jmin and calculate all distances to N as shown 
in Equations 1.19.

min min min min min

min min min min

min min min min min min

[ ][ ] [ ][ ] [ ] [ ]

[ ][ ] [ ][ ] [ ][ ]

[ ][ ] [ ][ ] [ ][ ] [ ][ ],  for all {0,..., 1} \{ , }

D i N D i j r i r j
D j N D i j D i N

D x N D i x D j x D i j x k i j

= + −
= −
= + − ∈ −

 (1.19)

 4. Replace the rows and columns imin and jmin in D by a new row and col-
umn representing the distances to N. The resulting distance matrix 
is used for the next iteration step.

Figure 1.15 shows an example of a single iteration step of NJ. An iteration of 
NJ has the complexity O(k2). Therefore, the overall NJ complexity is O(k3).
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As mentioned earlier, sequence–profi le alignments and profi le–profi le 
alignments are frequently used in progressive alignment to build up an 
MSA. In the following section we briefl y describe how a sequence can be 
aligned to a profi le using DP. Profi le–profi le alignment is then a straightfor-
ward extension of the sequence–profi le alignment. Given are a sequence S of 
length l, an MSA matrix M of size k × n, and a linear scoring scheme (e.g., α, β, 
and g). For each column 0 ≤ j ≤ n − 1 in M, and each letter c ∈ ∑ ∪ {−}, we now 
build a letter frequency matrix P as shown in Equation 1.20.

{ }i M i j c
P c j

k

[ ][ ]
[ ][ ]

=
=

 
(1.20)

On the basis of the letter frequency matrix, we can now defi ne the score of 
a letter c ∈ ∑ ∪ {−} with profi le column j in Equation 1.21.

b c

b

P c j P b j g P j  c
t c j

g P b j  c
\{ }

[ ][ ] [ ][ ] [ ][ ] if
( , )

[ ][ ] if

α β
∈Σ

∈Σ

 ⋅ + ⋅ + ⋅ − ≠ −
= 

⋅ = −


∑
∑

 

(1.21)

0 3 6 9 12
3 0 5 9 11
6 5 0 10 13
9 9 10 0 19

12 11 13 19 0

D [ ][ ] r[ ]
10
9.3
11.3
15.7
18.3

0
−16.3 0
−15.3 −15.7 0
−16.7 −16.0 −−17.0 0
−16.3 −16.7 −16.7 −15.0 0

DR [ ][ ]

2.8

7.2

C

D

B

E

N

A

A
B
C
D
E

0 3 2.5 12
3 0 2 11

2.5 2 0 11
12 11 11 0

D[ ][ ]
A
B
N
C

FIGURE 1.15
Single NJ iteration step. Starting from the matrix D on the upper left, the rate-corrected matrix 
DR is calculated using the vector r. The minimum in DR is detected and the corresponding 
nodes C and D are joined in the guided tree by the newly created node N. All distances to N are 
calculated, resulting in an updated smaller matrix D.
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The score of a sequence–profi le alignment is then simply the sum of all 
column scores. An example of a letter frequency matrix for a given MSA and 
the score of a sequence–profi le alignment is shown in Figure 1.16.

The optimal global sequence–profi le alignment can be computed by DP 
using the recurrence relation in Equation 1.22.

H i j t S i j

H i j H i j g    i l  j n

H i j t j

0[ 1][ 1] ( [ 1], 1)
[ ][ ] max [ 1][ ] , for all 1 and 1

[ ][ 1] ( , 1)

− − + − −
= − + ≤ ≤ ≤ ≤
 − + − −  (1.22)

The initial conditions are H[i][0] = i ⋅ g for 0 ≤ i ≤ l and H[0][j] = H[0][j−1] + 
t(−,j−1) for 0 ≤ j ≤ n. The time complexity of the sequence–profi le DP algorithm 
is O(l ⋅ n ⋅ ∑). The four steps of the ClustalW progressive alignment method 
can be summarized as follows:

 1. Distance matrix calculation using pairwise alignments.
 2. Guided tree computation using neighbor-joining.
 3. Rooting the guided tree and calculating sequence weights.
 4. Progressively building the MSA following the branching order of 

the rooted guided tree.

1.4 Database Search and Exact Matching

1.4.1 Filtration

Given a query sequence S of length l0 and a sequence D of length l1, where 
D is constructed by concatenating all sequences of a sequence database, 

A- C G A
A G A G A
- G C T A
C G- G C

A 57.0 00.0 52.0 00.0 05.0
C 52.0 0.00 05.0 00.0 52.0
G 00.0 0.75 00.0 57.0 00.0
T 00.0 52.0 00.0 00.0 00.0
− 00.0 00.0 52.0 52.0 52.0

M1 P
C G- CA A
5 4 3 2- 1

M2

(erocs M2  = ) t  + )1,A( g + t  + )2,C( t(−  + )3, t  + )4,G( t )5,C(
2( = ⋅ 57.0 − 3⋅ ( + )52.0 − ( + )1 −3⋅ ( + ))53.0+57.0( −1⋅ 2( + ))57.0+52.0( ⋅ 57.0 − 1⋅  + )52.0
2( ⋅ 52.0 − 3⋅ 5.0 − 1⋅ = )52.0 − 5784.3

FIGURE 1.16
A sequence–profi le alignment M2 of the DNA sequence AACGC to the letter frequency matrix P 
of the MSA M1. The score of M2 is −3.4875 using the scoring scheme α = +3, β = −3, and g = −1.
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the task of a database search tool is to fi nd all signifi cant local alignments 
between S and D. Using a DP-only approach for this problem would lead to a 
complexity of O(l0 ⋅ l1). Unfortunately, this would lead to prohibitive runtimes 
for large databases such as GenBank.

The basic idea for fast sequence database search is therefore fi ltration. 
Filtration assumes that good alignments usually contain short exact matches. 
Such matches can be quickly computed by using data structures such as 
lookup tables. Identifi ed matches are then used as seeds for further detailed 
analysis. The analysis pipeline of the popular BLAST algorithm [15, 16] is 
shown in Figure 1.17.

We briefl y describe each step of the pipeline for BLASTP, which is the ver-
sion of BLAST for searching protein sequence databases.

Stage 1:•  This stage identifi es hits (or seeds). Each hit is defi ned as 
an offset pair (i,j) for which w

k
sbt Q i k D j k T

1

0
( [ ], [ ])

−

=
+ + ≥∑ , where 

sbt is a amino acid substitution matrix, w is the user-defi ned word 
length, and T is a user-defi ned threshold. BLASTP implements 
this stage by preprocessing Q as follows. For each position i of Q 
the neighborhood N(Q[i . . . i + w − 1],T) is computed consisting of all 
w-mers p for which w

k
sbt Q i k p k T

1

0
( [ ], [ ])

−

=
+ ≥∑ . The complete neigh-

borhood of a query is typically stored in an effi cient data structure 
(e.g., lookup table, fi nite-state automaton, or keyword tree). Default 
parameter values are w = 3 and T = 11.
Stage 2• : Stage 2 outputs high-scoring segment pairs (HSPs). HSPs 
are identifi ed by performing an ungapped extension on a diagonal 
d that contains a nonoverlapping hit pair (i1,j1), (i2,j2) within a win-
dow A; that is, d = i1 − j1 = i2 − j2 and w ≤ i2 − i1 ≤ A. The identifi cation 

Word matchingStage 1

Database

Hits

Ungapped extensionStage 2

HSPs

Gapped extensionStage 3

Trace-back & displayStage 4

HSAs

FIGURE 1.17
Stages of the BLAST pipeline.
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of pairs is also known as the two-hit algorithm. If the resulting 
ungapped alignment scores above a certain threshold it is passed 
to Stage 3.
Stage 3:•  This stage outputs HSAs. HSAs are identifi ed by performing 
a seeded banded gapped pairwise DP alignment algorithm using the 
previously identifi ed HSPs as seeds. Alignments that score above a 
certain threshold are then passed to the fi nal stage.
Stage 4: • The fi nal alignments of the highest-scoring sequences are 
calculated and displayed to the user. This requires the computation 
of the trace-back path using the local pairwise DP approach in linear 
space.

Note that each stage of the pipeline progressively reduces the search 
space in the database for signifi cant alignment. In addition, the compu-
tational cost associated with each stage and the sensitivity also progres-
sively increases. However, since the amount of input data is becoming 
signifi cantly smaller for each stage, the actual runtimes generally do not 
increase.

A notable difference of BLASTN (for searching DNA databases) com-
pared to BLASTP is that the length of hits identifi ed in Stage 1 is signifi -
cantly longer (e.g., w = 7, 11, or 15). The PatternHunter [17] database search 
tool introduced the concept of spaced seeds. A spaced seed is similar to a hit 
in Stage 1 of BLASTN, but allows that it is interspersed by mismatches at 
certain positions.

It should also be mentioned that the size of the hits in Stage 1 (i.e., w in 
BLAST) affects sensitivity and runtime of a fi ltration method. In the case 
of BLASTP, a small value of w (e.g., w = 2) leads to more hits in Stages 1 and 
2. This in turn leads to higher sensitivity, since less signifi cant alignment 
might be missed. However, it also increases the runtime, since more data 
needs to be processed in Stages 2 and 3. On the other hand, a large value 
of w (e.g., w = 4) leads to less hits in Stages 1 and 2, which in turn leads 
to lower sensitivity due to the fact that signifi cant alignment might be 
missed. On the positive, it reduces the runtime since less data is processed 
in Stages 2 and 3.

1.4.2 Suffix Trees and Suffix Arrays

Many sequence analysis tools in bioinformatics (such as database search-
ing or read mapping) require some form of exact pattern matching. In the 
exact pattern matching problem, we are given a sequence T (called the text) 
of length n and a sequence P (called the pattern) of length m. We are required 
to fi nd all exact occurrences of P in T; that is, all i ∈ {0, . . . ,n−m} with T[i . . . i + 
m − 1] = P. Performing this task very fast is crucial to many bioinformatics 
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tools, with examples including BLAST [15, 16], MUMmer [18], and Bowtie [19]. 
Approaches for exact matching can be classifi ed into

 1. Hashing
 2. Preprocessing of the pattern(s) (e.g., with a keyword tree [19])
 3. Preprocessing of the text (e.g., with a suffi x tree or a suffi x array).

The third approach is particularly interesting, since the text is usually a 
database or a genome. Thus, in many situations the text can be preprocessed 
offl ine in a suffi x tree or a suffi x array data structure. This preprocessing 
only takes O(n) time; for example, by using Ukkonen’s linear-time suffi x tree 
construction algorithm [20]. Afterward, the actual pattern matching can be 
done in time O(m). This approach is very effi cient, since m is usually much 
smaller than n. In the following section we briefl y describe how exact match-
ing with a suffi x tree and a suffi x array can be done. More details can be 
found in the books by Gusfi eld [3] and Aluru [1].

The suffi x tree of sequence T of length m has the following features:

It has a rooted directed tree with exactly • m leaves numbered from 0 
to m−1.
Each internal node, other than the root, has at least two children.• 
Each edge is labeled with a nonempty substring of • T.

No two edges out of the same node have edge labels beginning with • 
the same letter.
For any leaf • i, the concatenation of edge labels on the path from the 
root to leaf i exactly spells out the suffi x T[i . . . m−1].

The suffi x tree of the sequence T = TACTA$ is shown in Figure 1.18. Note 
that a unique termination symbol is commonly appended to the input 
sequence to guarantee that every suffi x ends in a leaf.
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6 5 2 3 4 1

FIGURE 1.18
Suffi x tree and suffi x array of the T = TACTA$.
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All exact occurrences of the pattern P in the text T can be found using the 
suffi x tree of T by matching P against the suffi x tree starting at the root. If 
P can be completely matched, then every number of all leaf nodes below the 
fi nal matching position in the tree is a starting position of occurrences of P in 
T. If P cannot be completely matched, then P does not occur in T. Figure 1.19 
illustrates an example.

Besides exact pattern matching, suffi x trees can also be used for the effi -
cient solution of other string-based problems. Examples of problems include 
the maximal computation of repeat problems, longest common substrings, 
all-pairs suffi x-prefi x matching, Ziv–Lempel decomposition, common sub-
strings of multiple sequences, exact set matching, and matching statistics 
[3]. To solve some of these problems, the suffi x tree might be traversed top-
down, bottom-up, or with suffi x links.

Because of space and cache effi ciency reasons, suffi x arrays are sometimes 
preferred to suffi x trees. A suffi x array of a string T of length n is defi ned as 
an array of integer n specifying the lexicographical order of the m suffi xes 
of T. The suffi x array of T = TACTA$ is also shown in Figure 1.18, where we 
assume that $ is the lexicographically smallest letter. Suffi x arrays can also be 
constructed effi ciently [21]. Most string problems that can be effi ciently solved 
with suffi x trees can also be effi ciently implemented using a suffi x array [22].
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Matching the two patterns P1 = AC and P2 = CA against the suffi x tree of T = ACGACTACT$.

10768_C001.indd   2610768_C001.indd   26 6/17/2010   7:22:26 PM6/17/2010   7:22:26 PM



Algorithms for Bioinformatics 27

 4. Jones, N.C. and Pevzner, P.A. An Introduction to Bioinformatics Algorithms. MIT 
Press, 2004.

 5. Henikoff, S. and Henikoff, J.G. 1992. Amino acid substitution matrices from 
protein blocks. Proceedings of the National Academy of Science of the USA 89(22), 
10915–10919.

 6. Needleman, S.B. and Wunsch, C.D. 1970. A general method applicable to the 
search for similarities in the amino acid sequence of two proteins. Journal of 
Molecular Biology 48(3), 443–453.

 7. Smith, T.F. and Waterman, M.S. 1981. Identifi cation of common molecular sub-
sequences. Journal of Molecular Biology 147(1), 195–197.

 8. Hirschberg, D.S. 1975. A linear-space algorithm for computing maximal com-
mon subsequences. Communication of the ACM 18(6), 341–342.

 9. Myers, E.W. and Miller, W. 1988. Optimal alignment in linear space. Computer 
Applications in the Biosciences 4(1), 11–17.

 10. Carillo, H. and Lipman, D. 1988. The multiple sequence alignment problem in 
biology. SIAM Journal on Applied Mathematics 48(5), 1073–1082.

 11. Michener, C.D. and Sokal, R.R. 1957. A quantitative approach to a problem of 
classifi cation. Evolution 11, 130–162.

 12. Saitou, N. and Nei, M. 1987. The neighbor-joining method: a new method 
for reconstructing phylogenetic trees. Molecular Biology and Evolution 4(4), 
406–425.7.

 13. Studier, J.A. and Keppler, K.J. 1988. A note on the neighbor-joining algorithm of 
Saitou and Nei. Molecular Biology and Evolution 5(6), 729–731.

 14. Thompson, J.D., Higgins, D.G. and Gibson T.J. 1994. CLUSTAL W: improving 
the sensitivity of progressive multiple sequence alignment through sequence 
weighting, position-specifi c gap penalties and weight matrix choice. Nucleic 
Acids Research 11(22), 4673–4680.

 15. Altschul, S.F., Gish, W., Miller, W., Myers, E.W. and Lipman, D.J. 1990. Basic 
local alignment search tool. Journal of Molecular Biology 215(3), 403–410.

 16. Altschul, S.F., Madden, T.L., Schäffer, A.A., Zhang, J., Zhang, Z., Miller, W. and 
Lipman, D.J. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein 
database search programs. Nucleic Acids Research 25(17), 3389–3402.

 17. Ma, B., Tromp, J. and Li, M. 2002. PatternHunter: faster and more sensitive 
homology search. Bioinformatics 18(3), 440–445.

 18. Kurtz, S., Phillippy, A., Delcher, A.L., Smoot, M., Shumway, M., Antonescu, C. 
and Salzberg, S.L. 2004. Versatile and open software for comparing large 
genomes. Genome Biology 5, R12.

 19. Langmead, B., Trapnell, C., Pop, M. and Salzberg, S.L. 2009. Ultrafast and mem-
ory-effi cient alignment of short DNA sequences to the human genome. Genome 
Biology 10, R25.

 20. Aho, A.V. and Corasick, M.J. 1975. Effi cient string matching: an aid to biblio-
graphic search. Communications of the ACM 18(6), 333–340.

 21. Ukkonen, E. 1995. On-line construction of suffi x trees. Algorithmica 14(3), 
249–260.

 22. Puglisi, S.J., Smyth, W.F. and Turpin, A. 2007. A taxonomy of suffi x array con-
struction algorithms. ACM Computing Surveys 39(2), 1–31.

 23. Abouelhoda, M.I., Kurtz, S. and Ohlebusch, E. 2004. Replacing suffi x trees with 
enhanced suffi x arrays. Journal of Discrete Algorithms 2(1), 53–86.

10768_C001.indd   2710768_C001.indd   27 6/17/2010   7:22:26 PM6/17/2010   7:22:26 PM





29

2
Introduction to GPGPUs and 
Massively Threaded Programming

Robert M. Farber

2.1 Introduction .................................................................................................. 29
2.2 Massive Multithreading Is the Key ........................................................... 31
2.3 CUDA Simplifi es the Creation of Massively Threaded Software .........35

2.3.1 Step 1: Getting (and Keeping) the Data on the GPU ...................38
2.3.2 Step 2: Maximizing the Amount of Work Performed per 

Call to the GPU................................................................................. 39
2.3.3 Step 3: Exploiting Internal Resources on the GPU ...................... 41

2.3.3.1 Register and Shared Memory..........................................42
2.3.3.2 Constant Memory .............................................................43
2.3.3.3 Texture Memory ................................................................43
2.3.3.4 Global Memory ..................................................................44
2.3.3.5 Local Memory ....................................................................45

2.4 Visualization .................................................................................................45
2.5 Conclusion ....................................................................................................46
2.6 References ..................................................................................................... 47

2.1 Introduction

Today, science and technology are inextricably linked. Human insight in bio-
informatics, in particular, is driven by the vast amounts of data that can be 
collected with automated instruments coupled with suffi cient computational 
capability to extract, analyze, model, and visualize results.

As they say, “the proof of the pudding is in the tasting,” and computation-
ally driven advances are very enticing. For example, the Harvard Connectome 
project is in the process of creating a complete “wiring-diagram” of a rat 
brain at a 3 nm/pixel resolution using automated slicing and data collection 
instruments [1]. Just as with the invention of the microscope, projects such 
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as this will let biologists see into the structure of the brain and potentially 
revolutionize the entire fi eld of study.

Of course any recipe for success can fail because of the lack of any single 
ingredient. Unfortunately, many important problems have remained intrac-
table because there were no computers powerful enough or because scientists 
simply could not afford to access machines with the necessary capabilities.

Remarkably, the current revolution in scientifi c computation is happen-
ing because intense competition in computer graphics, mainly driven by the 
computer gaming industry, has evolved graphics processors into extremely 
capable yet low-cost general-purpose computational platforms. These gener-
al-purpose graphics processor units (GPGPUs ) are C-language programma-
ble computers that are capable of delivering well over a terafl op (a terafl op 
represents one trillion fl oating-point operations per second) of fl oating-point 
performance.

NVIDIA coined the phrase “supercomputing for the masses” to convey the 
catalytic effect generally available massively threaded GPGPU technology 
has had on high-performance computing.

To put this in perspective, Sandia National Laboratory in Albuquerque, 
NM, announced in December 1996 that their ASCI Red supercomputer was 
the fi rst to exceed a trillion fl oating-point operations per second. It is truly 
amazing that roughly 10 years later any student or scientist could go to his 
or her favorite electronics store and purchase a terafl op capable graphics pro-
cessing unit (GPU) for a nominal amount.

This computational bonanza is starting to bear fruit, as the scientifi c and 
technical literature over the past couple of years contains an explosion of 
GPGPU-enabled applications and algorithms in an astounding number of 
algorithmic and scientifi c application areas. In other words, it is clear that 
many scientists and programmers, using existing tools, are able to achieve 
one to two orders of magnitude, 10×–100×, of performance increase over con-
ventional hardware when running their applications on GPGPUs. (Some 
researchers have even reported three orders of magnitude, or 1,000×, of faster 
performance when running algorithms that heavily utilize the NVIDIA GPU 
special processing units for transcendental functions.)

In comparing commodity processors versus graphics processors, I noted in 
my Scientifi c Computing column “GPGPUs: Neat Idea or Disruptive Technology?” 
[2] that newer dual- and quad-processor commodity workstations provided 
incremental 2×–4× performance gains. While this level of performance increase 
is nice, it does not fundamentally change how people work.

A 10× performance increase is a signifi cant advance but does not necessar-
ily represent a fundamental change. Machines with this level of performance 
make the computational workfl ow more interactive because computational 
tasks that previously took hours now take minutes and extended computa-
tional work that previously took days can now occur overnight.

Computer hardware that delivers 100× of faster performance is disrup-
tive and has the potential to fundamentally affect scientifi c research by 
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removing time-to-discovery barriers. Algorithms and computational tasks 
that previously would have required a year to complete can fi nish in days 
on the new hardware. Better scientifi c insight becomes possible because sci-
entists can work with more data; utilize more accurate yet computationally 
expensive approximations; and work with larger, more realistic simulations 
and systems of equations. For the experimentalist, the results of newer high-
throughput instruments (or collections of many instruments) can be utilized 
to create higher resolution and more informative pictures of what is occur-
ring in nature. It’s like transitioning from light-based microscopy to a power-
ful new electron microscope that allows one to see more and in much greater 
detail.

2.2 Massive Multithreading Is the Key

Massive multithreading (using hundreds to thousands of simultaneous 
threads) is the key to harnessing computational power of GPGPUs because it 
provides a common paradigm that both programmers and hardware design-
ers can exploit to attain the highest possible performance.

Essentially threads are individual pieces of the same program that can exe-
cute simultaneously. For example, the vector multiply shown in Example 2.1 
can be broken into N separate threads, where each thread simultaneously 
calculates vector c for each element index i.

Example 2.1: A Simple Vector Multiply

for(i = 0; i < N; i++) c[i] = a[i] * b[i]

This example also illustrates the importance of fl oating-point performance 
relative to memory bandwidth, as three memory operations are required 
for every fl oating-point multiply. Assuming that single-precision (32 bit or 
4 byte) fl oating-point values are being used, the memory subsystem of a 
terafl op capable computer would need to provide 12 terabytes per second 
of memory bandwidth for this vector multiply example to run at full speed! 
This is roughly 50×–100× the capability of current GPU technology and 
roughly 375× more than the latest generation of high-end commodity pro-
cessors. When the extra precision of 64-bit (8-byte) fl oating-point arithmetic 
is required, the reader can double these numbers (or halve the effective com-
putational rate).

Massive multithreading (coupled with other architectural features of 
GPGPU hardware) permits graphics processors to achieve extremely high 
fl oating-point performance because the latency of memory accesses can be 
hidden and the full bandwidth of the memory subsystem can be utilized. An 
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extremely low-latency hardware thread scheduler is an essential ingredient 
in this recipe for success.

Roughly speaking, graphics processors can be considered “streaming 
processors” because best performance is achieved when coalesced memory 
operations are used to simultaneously stream data from all of the on-board 
graphics memory banks. (A coalesced memory operation combines simultane-
ous memory accesses by multiple threads into a single memory transaction. 
This is in contrast to a bank confl ict, which occurs when multiple memory 
requests fall in the same memory bank and causes the competing accesses 
to be serialized.)

It is easy to see that a linear increase in memory bandwidth can be achieved 
by simultaneously fetching data from multiple memory banks (or chips). 
From our simple vector multiply example, we can see that tying together two 
memory banks will double both memory bandwidth and fl oating-point per-
formance. Similarly, tying together four banks of memory would result in a 
4× speedup, and so on. Progressive generations of both graphics and conven-
tional processors have used this technique to increase memory bandwidth.

Programming with a large number of threads allows the hardware thread 
scheduler to fully utilize the capabilities of the GPU because it can pick and 
choose amongst the active threads to

Fully utilize all the internal resources of the hardware (fl oating-• 
point, integer, or special function units) by scheduling those threads 
that do not have to wait on the memory subsystem to use whatever 
internal resources that happen to be available at that moment.
Maximize the memory bandwidth of the memory subsystem by • 
working together with internal coalescing units to stream data to/
from all the memory banks at the highest possible data rate.
Minimize the time taken. From a programmer’s point of view, this • 
thread scheduling occurs so quickly that it effectively takes no time 
and happens for free.

Now comes the important part: teaching scientists and programmers how 
to write (or rewrite) portions of their software to exploit the remarkable capa-
bilities possible because of massive multithreading. C-language programmers 
utilizing NVIDIA’s compute unifi ed device architecture (CUDA) in particular 
should fi nd the transition straightforward as they only need to understand a 
few key concepts and the mechanics of some simple additions (e.g., keywords 
and pragmas) to the C-language. In this way they can exploit the superb per-
formance and scaling behavior that GPGPUs can deliver to advance scientifi c 
discovery.

While the concepts discussed in this chapter are general, specifi c capa-
bilities provided by the runtime application programming interface (API) of 
the massively threaded CUDA C-language compiler, libraries, and software 
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development kit (SDK) will be used as examples. This software can be freely 
downloaded off the NVIDIA web site and can be used on all NVIDIA CUDA-
enabled graphics processors or run in emulation mode on conventional pro-
cessors [3]. Please note that the CUDA emulator is not optimized for speed.

Other development platforms exist aside from CUDA that can be used to 
create programs for heterogeneous platforms consisting of CPUs, GPUs from 
multiple vendors, and other processors. OpenCL is a new technology that 
holds promise.

Several companies are developing C and FORTRAN compilers to sup-
port GPU computing. The Portland Group is one such company. Another 
company, CAPS Enterprise, is taking the innovative approach of generat-
ing hardware-specifi c codelets for C and FORTRAN code through the use of 
compiler directives. These codelets can then be used as is to run on GPUs and 
other architectures or they can be hand optimized to deliver the best possi-
ble performance. Their HMPP compiler also supports the ubiquitous mes-
sage passing interface (MPI) that is heavily utilized in distributed scientifi c 
computing.

Many will also discover that structuring code to effi ciently run on a mas-
sively threaded GPGPU has the added bonus of increasing performance and 
scalability on existing multicore processors. This can be an important step in 
“future-proofi ng” applications because multicore workstations (using four to 
eight processing cores) will have to become many-core systems (containing 
tens to hundreds of cores) to compete in the future.

This trend appears to be inevitable because manufacturers must now add 
cores to their processor chips rather than increase clock speed to remain 
competitive. In the past, manufacturers could introduce new generations of 
single-core processors with higher clock speeds, which in turn would entice 
customers to upgrade. If they could, manufacturers would be delighted to 
continue with this same business model. Switching to multicore processors 
affects the entire computer industry: it is disruptive to customers, requires 
that customers change how they design their programs, and forces existing 
software to be rewritten to use the extra processing cores.

Dennard’s scaling laws are at the heart of the change. Effectively they say 
that power density will remain constant even as the number of transistors 
and their switching speed increases. For that relationship to hold, voltages 
need to be reduced in proportion to the linear dimensions of the transistor. 
Fabrication techniques have reduced the size of transistors to the point that 
manufacturers are no longer able to lower operating voltages suffi ciently to 
match the performance gains that can be achieved by simply adding more 
computational cores to the processor chip. In a competitive market, minor 
changes in processor performance do not translate into increased sales for 
CPU manufacturers—so we now have multicore processors. Many in the 
computing industry believe that this trend will continue and the number of 
cores per processor will increase.
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GPGPUs on the other hand evolved in a large and competitive market 
where massive parallelism is the evolutionary pathway to success because 
computer graphics operations that “push pixels” are inherently parallel. 
Simply stated, manufacturers were able to increase performance by adding 
pipelines and shaders to meet the intense market need for ever faster photo-
realistic games and imaging software.

The advent of programmable shaders allowed each pixel or vertex to be 
processed by a short program. With the addition of fl oating-point math 
and looping capability, GPU hardware effectively evolved into single 
program multiple data (SPMD) massively parallel computers with hun-
dreds of processing cores. CUDA was created to take advantage of this 
GPGPU technology by enabling the development of higher-level language 
(e.g., C-language) programs for this massively multithreaded hardware 
environment.

From a hardware standpoint, massively parallel multithreading is achieved 
through the use of a common architectural building block called a multipro-
cessor that can be replicated as required to provide the largest number of pro-
cessing cores for a given price point. This massive replication can be seen in 
Figure 2.1 in the block diagram of the latest 20-series Fermi GPUs. NVIDIA 
generally bundles 32 threads into a warp, which runs single instruction mul-
tiple data fashion (SIMD) on each multiprocessor. SIMD execution allows 
instructions to be broadcast inexpensively and quickly within the multipro-
cessor but requires that all parallel processing happen in lock-step. SIMD 
execution is very effi cient, but be aware that conditionals (if statements) can 

FIGURE 2.1
Block diagram showing 16 multiprocessors each with 32 threads. (From NVIDIA, Tesla Fermi 
launch—FINAL (press kit), p. 4, 2009. With permission.)

10768_C002.indd   3410768_C002.indd   34 6/17/2010   7:23:15 PM6/17/2010   7:23:15 PM



Introduction to GPGPUs and Massively Threaded Programming 35

degrade performance because the multiprocessor must evaluate each branch 
of every conditional operation. Because GPGPUs are built with many mul-
tiprocessing units, they are considered SPMD rather than SIMD computers. 
Look to Flynn’s taxonomy for a better understanding of the classifi cation of 
computer architectures.

2.3 CUDA Simplifies the Creation of 
Massively Threaded Software

Writing massively threaded applications is greatly simplifi ed because CUDA 
and the GPGPU hardware work together to manage threads for the program-
mer. Instead of explicitly creating threads as one would do on a conventional 
processor using a thread library such as pthreads, a CUDA developer writes 
a kernel that will run on the GPU. In reality, a kernel is nothing more that 
a C-language subroutine that runs and utilizes variables that reside on the 
GPU. In addition to the parameters, a call to a kernel includes the specifi ca-
tion of an execution confi guration that defi nes how the threads will be mapped 
to the GPGPU hardware.

Syntactically, the call to a CUDA kernel looks like a C-language subroutine 
call except the execution confi guration is added between triple angle brack-
ets “<<<” and “>>>” as is seen in Example 2.2.

Example 2.2: Example CUDA Kernel Call from the Host Code

cudaKernel <<< nBlocks,nThreadsPerBlock >>> (a_d, b_d, c_d)

The fi rst two parameters between the angle brackets defi ne the number 
of thread blocks, nBlocks, and the number of threads within a thread block, 
nThreadsPerBlock. The total number of simultaneously running threads for 
a given kernel is the product of these two parameters.

A key feature of a thread block, defi ned in the previous example by 
nThreads PerBlock, is that only threads within the block can communicate 
with each other via high-speed shared memory. Otherwise threads cannot 
effectively communicate with each other outside their thread block unless 
the programmer is willing to pay a signifi cant performance penalty to use 
global memory. Without going into further detail, other parameters in the 
execution confi guration can be used to defi ne 2D and 3D topologies and 
shared-memory allocations.

Unlike a C-language subroutine call, kernels are launched asynchronously, 
which means that the host processor merely queues the kernel in a pipe-
line to be launched when the hardware is ready. By changing the execution 
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confi guration, the programmer can easily specify a few or many thousands 
of threads. When not resource constrained, the NVIDIA documentation 
recommends using a large numbers of threads—on order of thousands—to 
future proof your code to maintain high performance on future generations 
of GPU products.

From the programmer’s point of view, the CUDA kernel running on the 
GPU acts as if it were contained within the scope of a loop over the total 
number of threads—except each loop iteration runs in a separate thread 
of execution. Within each thread, the programmer has all the information 
needed to distinguish each thread from all other threads such as thread id 
within a thread block, the number of thread blocks, and coordinates within 
the execution confi guration grid. With this information, the developer can 
then program each thread to perform the appropriate work and with the 
relevant data.

Arguably, we are watching an example of convergent evolution in com-
puter technology as both GPUs and conventional processors adapt accord-
ing to market pressures and technology constraints to become many-core 
processors. At this time, GPGPUs are currently the price and performance 
leader in this evolutionary race that delivers hardware platforms with hun-
dreds of processing cores (currently 512 at the high end) and terafl ops of per-
formance at prices most scientists and students can afford.

Regardless of the process, the end result is clear and massively multi-
threaded programming models will remain an essential part of developing 
software for these evolving hardware platforms.

Physically, the current high-end graphics processors are peripheral cards 
that plug into a host computer via an industry standard PCI express (PCIe) 
slot. Figure 2.2 shows an example of the latest Fermi C2050 GPU. Many host 
computers can support multiple cards. Using four of the current high-end 
NVIDIA GTX 295 GPU cards that cost less that $500 each, for example, it 
is possible to give a student a dedicated workstation that can deliver over 7 
terafl ops of single-precision fl oating-point capability. In contrast the MPP2 
supercomputer recently decommissioned in December 2008 was shared by 
the entire user community at Pacifi c Northwest National Laboratory. Built 
with Itanium processors, it occupied a large computer room and was only 
rated at 11.8 terafl ops.

As can be seen in Table 2.1, there is a signifi cant performance difference 
between the memory bandwidth of global memory (the main memory of 
the GPU) and the PCIe bus. For this reason, many people refer to the PCIe 
bus as a “PCIe straw” because accessing data across the bus is much like 
sipping through a very small straw—it is not possible to move much data 
quickly through the straw. Because of the relatively poor performance of 
the PCIe bus, it is essential from a performance standpoint to get the data 
into the memory space (and onto the memory subsystem) of the graphics 
processor.
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Experience has shown that writing or porting software to graphics proces-
sors consists of three steps:

 1. Getting (and keeping) the data on the GPU to eliminate the PCIe 
memory bandwidth bottleneck

 2. Maximizing the amount of work performed per call to the GPU to 
eliminate the latency incurred when passing even short commands 
and small amounts of data to the GPU over the PCIe bus

 3. Exploiting internal resources on the GPU (such as registers, shared 
memory, etc.) to bypass internal memory bottlenecks and maximize 
performance.

While the concepts and methods discussed in the remainder of this chap-
ter are generally applicable, references to the CUDA runtime API will be 
used to illustrate many of the points.

Figure 2.2
An NVIDIA C2050 GPU. (From NVIDIA, 2009. With permission.)

TABLE 2.1

Transfer Speeds

Data Subsystem Gigabytes Per Second (GiB/s)

NVIDIA GTX 295 Global Memory Bandwidth 223.8

PCIe ×16 version 2.0 8 unidirectional/16 bidirectional
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2.3.1 Step 1: Getting (and Keeping) the Data on the GPU

The CUDA runtime provides two main methods for transferring data 
between the host memory space and the graphics processor:

 1. Explicit programmer-initiated data transfers
 2. Mapped memory data transfers

Explicit transfers can be initiated through the use of cudaMemcpy(). As can 
be seen in Table 2.2, the CUDA runtime methods to transfer data between 
the host, graphics processor, and internally within the GPU are straightfor-
ward and closely resemble the C-language memcpy() routine. By convention, 
the variables a_d and b_d are assumed to reside on the GPU device and a_h 
is assumed to reside in the memory of the host computer.

C-programmers will also fi nd the method used to allocate memory on the 
GPU, cudaMalloc(), is as familiar to use as the standard malloc() routine. When 
allocating regions of memory that will primarily be used to transfer data to/
from the GPU, it is best to use pinned memory (meaning the memory cannot 
be swapped out on a virtual memory machine) allocated with  cudaHostAlloc() 
so PCIe transfers can occur at the highest possible speed.

Transfers initiated with cudaMemcpy() are synchronous, meaning the call 
blocks until the data transfer is complete. Asynchronous data movement is 
important for speed because computation and communication can be over-
lapped so more work per unit time can be performed. Applications in CUDA 
manage concurrent data movement with the streams runtime API. Please 
consult the CUDA documentation for more information.

Program initiated transfers via mapped, pinned memory is a relatively 
new feature introduced in the CUDA 2.2 release. It provides an important 
(and convenient) capability to keep data synchronized between the host and 
GPU memory spaces via bidirectional asynchronous PCIe data transfers.

Having transparently synchronized memory eases the work involved in 
rewriting the computationally intensive portions of an application to run on 
the GPU. Essentially, the developer:

 1. Profi les the existing code to fi nd the computationally intensive 
routines.

TABLE 2.2

Examples Showing Data Movement with CUDAMemcpy()

PCIe Transfer CUDA Runtime Call

Host to Device cudaMemcpy(a_d, a_h, nBytes, cudaMemcpyHostToDevice)
Device to Device cudaMemcpy(b_d, a_d, nBytes, cudaMemcpyDeviceToDevice)
Device to Host cudaMemcpy(a_h, b_d, nBytes, cudaMemcpyDeviceToHost)
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 2. Maps all the variables used by the computationally intensive sec-
tions of code and writes CUDA methods to perform the calculation 
on the GPU. Because mapped, pinned memory keeps the host and 
GPU data synchronized, the developer can focus on writing the GPU 
code and not on data movement.

 3. Eventually moves enough of the calculation to the GPU so it no 
longer becomes necessary to keep data synchronized with the host. 
Unnecessary mappings can then be disabled or removed—thus cre-
ating a GPU-based version of the code that will not be affected by 
the PCI bottleneck.

Mapped, pinned memory provides a wonderful capability to facilitate 
regression testing when porting legacy application code to CUDA. (Regressions 
are unintended consequences and errors that result from program modifi ca-
tions.) Without question, regression testing is an essential software practice 
that is vital to the creation and verifi cation of correctly working software!

When porting legacy software, the developer is provided with an existing 
known working code base that can be used for comparison against GPU 
generated results to identify errors. By transparently maintaining a syn-
chronized version of data between both the host and device memory spaces, 
mapped memory allows comparison between results calculated on the GPU 
and host. By using memcmp() or other simple functions, developers can 
quickly search for the fi rst appearance of a discrepancy between the original 
host and new GPU code. With care, the programmer can exploit the trans-
parent synchronization provided by mapped, pinned memory throughout 
the entire porting project. As a result, there will always be a known working 
version that can be used to compare all calculations performed by new code 
running on the GPU.

2.3.2 Step 2: Maximizing the Amount of Work 
Performed per Call to the GPU

Graphics processors generally run relatively small pieces of computation-
ally intensive code—otherwise known as kernels. Essentially, a kernel is a 
C-language subroutine that runs on each thread of the graphics processor. 
In CUDA, kernel calls are asynchronous so they can be pipelined to max-
imize performance. This also means that a kernel cannot act as a function 
because asynchronous execution precludes returning function values to the 
host code.

The current generation of NVIDIA GT200 graphics processors limits kernel 
sizes to roughly two million instructions per kernel. Of course, an applica-
tion can have many kernels so the size restriction is not really a limiting fac-
tor. However, it does emphasis the computationally intensive off-load nature 
of graphics processors. Most applications will be hybrid codes that run the 
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massively parallel sections of code on the GPU and the remaining serial or 
small-scale parallel sections on the host processor(s).

The adage, “be careful what you ask for because you might get it,” applies to 
GPU computing. Graphics processors are very fast, which is extremely desir-
able but conversely raises the challenge of giving them enough work to do.

Even with pipelined asynchronous calls, there is still some overhead 
incurred in transferring parameters across the PCIe bus, setting up the grid 
in the GPU, and performing other housekeeping chores. To get a sense of the 
numbers, let’s assume this overhead is 4 µsec for 1 terafl op GPU that takes 
four cycles to perform a fl oating-point operation. To achieve peak perfor-
mance, each kernel must perform roughly one million fl oating-point opera-
tions or the GPU will stall waiting for the next kernel to start. If the kernel 
only takes 2 µsec to complete, then 50% of the GPU cycles will be wasted.

Most computationally oriented scientists and programmers are familiar 
with the basic linear algebra subprograms (BLAS) package, which is the de 
facto programming interface for basic linear algebra operations. NVIDIA 
supports this interface with their own library for the GPU called CUBLAS.

BLAS is structured according to three different levels with increasing data 
and runtime requirements. (The following discussion uses Big-O notation, 
which is a convenient way to describe how the size of an input affects the 
consumption by an algorithm of some resource such as time or memory.)

Level-1:•  Vector-vector operations that require O(n) data and O(n) 
work. Examples include taking the inner product of two vectors or 
scaling a vector by a constant multiplier.
Level-2:•  Matrix-vector operations that require O(n2) data and O(n2) 
work. Examples include matrix-vector multiplication or a single 
right-hand-side triangular solve.
Level-3:•  Matrix-vector operations that require O(n2) data and O(n3) 
work. Examples include dense matrix-matrix multiplication.

Table 2.3 illustrates the amount of work that the GPU will be required to 
perform for each fl oating-point value transferred to the GPU.

Effectively, Table 2.3 tells us that Level-3 BLAS operations should run effi -
ciently on graphics processors because they perform many fl oating-point 
operations of work for every fl oating-point value transferred to the GPU. In 
addition, it is necessary to put as many level-1 and level-2 types of BLAS 

TABLE 2.3

Work per Datum According to BLAS Level

BLAS Level Data Work Work Per Datum

1 O(n) O(n) O(1)
2 O(n2) O(n2) O(1)
3 O(n2) O(n3) O(n)
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operations into a single kernel call or risk having the GPU stall, as described 
earlier, because of kernel launch overhead.

The same work-per-datum analysis—and potential to stall the GPU—
applies to non–BLAS-related computational problems as well. NIVDIA pro-
vides performance profi ling tools (such as the CUDA profi ler, cuda-prof, 
and Nexus) to assist developers in identifying ineffi ciencies in their code. 
Experience has shown that incorporating multiple smaller work-per-datum 
tasks together into a single GPU kernel can greatly boost effi ciency.

Unfortunately, some problems may just be too small to justify the costs 
associated with transferring data to/from the GPU. The current generation 
of conventional processors from Intel and AMD has both large caches and 
decent memory bandwidth per processing core, which makes them ideal for 
small-scale parallel work. For example, the CUFFT library is a highly opti-
mized fast fourier transform (FFT) library for NVIDIA CUDA-enabled GPUs. 
While this library can provide excellent performance, there are a number of 
studies in the literature and on the internet that show that it is not worth pay-
ing the data transfer overhead for smaller problems. However, GPU hardware 
and the CUFFT library—as well as conventional processors and libraries 
such as FFTW—are all evolving quickly, so please check the latest literature 
to determine where the break-even point might be for your problems. Please 
note that many FFT-intensive calculations such as Car–Parrinello quantum 
chemistry applications demonstrate excellent performance when running 
on graphics processors.

Previously, we assumed that all the kernel calls could be asynchronously 
queued up in the pipeline. In many cases, it is necessary to pass some value 
or data from the GPU to the host before a calculation can proceed. If this data 
transfer must occur synchronously—which is common for reduction opera-
tions like calculating a sum—then the programmer must plan on the GPU 
stalling for even longer periods of time. Unfortunately, synchronous data 
transfers will break the asynchronous pipelining of kernel launches.

In many cases, synchronization is necessary for correct program execu-
tion. For instance, CUDA can be used to generate or modify data that will 
be rendered by the GPU. (Mixing CUDA computational kernels and 3D ren-
dering in the same application can deliver very high performance for sci-
entifi c visualization.) This requires that the host processor wait until the 
GPU kernel has fi nished before issuing appropriate rendering commands. 
Otherwise, the results of a partially completed calculation might be acciden-
tally rendered to the screen. When synchronization is required, the CUDA 
runtime method cudaSynchronizeThreads() can be called to ensure that all the 
kernels in the pipeline have completed.

2.3.3 Step 3: Exploiting Internal Resources on the GPU

So far, we have discussed only global memory on graphics processors. This 
is by far the largest type of memory on GPUs with capacities measured in 
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gigabytes (a gigabyte equals one billion bytes). Most data will reside in global 
memory. It is also the source and destination for most data transfers.

Data reuse is a key characteristic of application kernels that achieve high 
performance on graphics processors. Our simple vector multiply example 
will not perform well as it demonstrates no data reuse—each element of vec-
tors a, b, and c are used only once. As a result, global memory bandwidth 
becomes the rate-limiting factor for computational throughput.

Conventional processors also rely on data reuse to achieve high-computational 
effi ciency. For smaller problems, internal processor caches can transparently 
buffer application data. In this way, any data reuse can be exploited allowing 
the processor to deliver a high computational throughput on smaller problems 
or those that heavily utilize a smaller amount of data that fi ts well in cache.

These caches are an important reason why it is currently advantageous 
to run some problems, such as smaller FFTs, on the local host processor(s) 
rather than on the GPGPU. Once cache utilization starts to drop, conven-
tional processors also become memory bandwidth limited and application 
performance can precipitously drop.

Graphics processor hardware is evolving quickly. NVIDIA is attempting 
to double the performance of their hardware roughly every 18 months. They 
recently announced the newest generation of GPGPU architecture, Fermi, 
which incorporates a local cache on the multiprocessors. The advent of local 
multiprocessor cache has the potential to greatly expand the domain of prob-
lems that run effi ciently on GPGPU hardware as well as ease the development 
effort for programmers. As mentioned in the FFT discussion, please look to 
the latest performance studies for information that can help decide how to 
most effectively allocate work between the host and GPGPU devices.

GPGPU programmers also have the ability to declare variables in several 
CUDA memory types to both reuse data and exploit various performance 
characteristics.

2.3.3.1 Register and Shared Memory

Obviously, the on-chip register and shared-memory types are highly desirable 
from a performance standpoint because they have single-cycle access times. 
Because they are located on the multiprocessor chip, they are also a very lim-
ited resource. NVIDA provides the CUDA occupancy calculator in the form 
of an Excel spreadsheet to help developers calculate how to best utilize these 
scarce resources. This spreadsheet is freely downloadable from the NVIDIA 
web site, and predefi nes the various multiprocessor register and shared-
memory capacities for each generation of NVIDIA GPGPU architecture.

The CUDA occupancy calculator is an indispensible tool that allows 
GPGPU developers to balance their use of these scarce on-chip memories 
and greatly increase the performance of their application kernels. Using too 
many registers, for example, will force the compiler to utilize local memory 
for register storage. As can be seen in Table 2.4, local memory is signifi cantly 
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slower than register memory, which implies dire performance consequences 
for those application kernels that spill registers to local memory.

Shared memory is effectively the high-speed pathway to share information 
between the threads of a thread block. CUDA developers generally spend much 
effort in partitioning problems to eliminate communications between threads 
that do not belong to the same thread block. Otherwise, slower global memory 
must be used with potentially drastic performance implications. Please note 
that shared memory—like global memory—is also subject to bank confl icts 
and the resulting serialization of accesses will quickly reduce performance.

2.3.3.2 Constant Memory

Constant memory is hardware optimized for the case when all threads read 
from the same location. Essentially, data can be broadcast from constant 
memory to all threads with one cycle of latency when there is a cache hit. 
This is remarkable given that constant memory resides in global memory. 
The constant memory cache includes an intelligent prefetch mechanism so 
the fi rst access incurs only one cycle of latency. Constant memory can only 
be written via a data transfer from the host with the CUDA runtime method 
cudaMemcpyToSymbol(). It is also persistent across kernel calls within the 
same application, which allows constants to be loaded at startup and utilized 
throughout the application lifetime.

2.3.3.3 Texture Memory

From a C-programmer’s perspective, texture memory provides an unusual 
combination of cache memory (separate from register, global, and shared 
memory), local processing capability (separate from the thread processors), 
and a necessary path for CUDA to interact with the display capabilities of 

TABLE 2.4

CUDA Memory Types

Memory Location Cached Access Scope Access Latency

Register On-chip No Read/write One thread Single cycle
Shared On-chip N/A Read/write All threads in a 

block
Single cycle

Constant Off-chip Yes Read All threads + 
host

One to hundreds of 
cycles depending on 
cache locality

Texture Off-chip Yes Read/write 
(CUDA 2.2 
and later)

All threads + 
host

One to hundreds of 
cycles depending on 
cache locality

Global Off-chip No Read/write All threads + 
host

*slow* (400–600 cycles)

Local Off-chip No Read/write One thread *slow* (400–600 cycles)
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the GPU. It is possible, through the judicious use of the caching behavior of 
texture memory to avoid the bandwidth limitations of global memory and 
greatly accelerate GPU application performance.

The easiest way to think of texture memory is as a simple hardware inter-
face with limited processing capability that the CUDA programmer can bind 
to arbitrary regions of the global memory. GPGPUs have multiple texture 
units, each of which

Has roughly 8 KB (a KB, or kilobyte, is a thousand bytes) of local • 
memory per multiprocessor to prefetch data from global memory.
Is optimized for 2D spatial locality and can provide a performance • 
boost when all the threads in a warp access nearby locations in the 
texture according to this expectation of locality.

Also, please note that texture memory can be used as a limited form of high-
performance random-access memory! One ingenious mapping of a random-
access bloom fi ler to texture memory has been implemented within the 
CUDA-EC software [4].

Potentially the most important capability texture memory provides is 
the ability to mix CUDA and visualization code (either OpenGL or DirectX 
based) within the same application. Very high performance can be achieved 
because data never needs to be moved off the GPU—thus avoiding both host 
computer and PCIe bottlenecks. As a result, mixed CUDA and graphics pro-
grams can perform complex data creation, modifi cation, and rendering at 
hundreds of frames per second on the current generation of mid- and high-
end CUDA-enabled graphics processors such as the GeForce GTX 285.

Other performance benefi ts of texture memory include the following:

Packed data may be broadcast to separate variables in a single • 
operation.
8-bit and 16-bit integer input data may be optionally converted to • 
32-bit fl oating-point values in the range [0.0, 1.0] or [−1.0, 1.0] by the 
texture unit hardware.
Linear, bilinear, and trilinear interpolation is performed using dedi-• 
cated hardware separate from the thread processors.

2.3.3.4 Global Memory

Global memory is by far the largest memory space, with capacities measured 
in gigabytes. Briefl y, global memory

Is potentially 150× slower than register or shared memory. Data • 
reuse enabled by other GPGPU memory types is required to prevent 
thread data starvation and achieve high performance.
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Requires coalesced operations to deliver the highest performance.• 
Has the lifetime of the application.• 
Is accessible from either the host or the device.• 

Much of the discussion in this chapter has centered on the memory band-
width and latency issues associated with global memory, which also refl ects 
much of where the effort is spent when programming GPGPUs. Without 
question, data reuse is a mandatory requirement to achieve high-GPGPU 
kernel performance. Massive multithreading helps because it provides the 
large thread count that utilizes the capability of each multiprocessor to sup-
port many outstanding load requests. As a result, load-to-use latency can be 
hidden when accessing data stored in global memory.

The recently announced Fermi architecture, or 20-series of NVIDIA hard-
ware, provides two important advances related to global memory:

 1. Local multiprocessor caches facilitate data reuse and enable more 
applications to achieve high performance.

 2. It breaks the 4 GB global memory barrier imposed by the 32-bit add-
ressing space utilized in previous generations of GPGPUs.

2.3.3.5 Local Memory

Local memory is actually a memory abstraction utilized exclusively by the 
compiler that implies “local in the scope of each thread.” It is not an actual 
hardware component but rather is allocated and resides in global memory. 
Normally, automatic variables declared in a kernel reside in registers, which 
provide the fastest form of memory access. Performance can drastically drop 
when registers are spilled to local memory, so it is important to understand 
the circumstances that might cause the compiler to place automatic variables 
in local memory. They include the following:

There are too many register variables.• 
A structure would consume too much register space.• 
The compiler cannot determine if an array is indexed with constant • 
quantities.

2.4 Visualization

Amusingly, the focus of this chapter has been on utilizing the massively 
threaded computational capabilities provided by graphics processors—
while the remarkable ability of this same hardware to render graphics has 
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been largely ignored. Suffi ce it to say that GPGPUs exhibit extraordinary 
capabilities to display information as well.

Through the use of CUDA, high-performance visualization is possible 
without requiring that data be moved on and off the GPU. As with computa-
tional kernels, eliminating data transfers over the PCI bus removes a signifi -
cant bottleneck and can dramatically speed the rendering process. Much like 
combining calculations in a single kernel, newer OpenGL constructs such 
as primitive restart provide signifi cant performance benefi ts for the CUDA 
programmer by effectively combining multiple rendering operations into a 
single call. Unlike other OpenGL calls, primitive restart only utilizes infor-
mation defi ned and kept on the GPU and does not require transferring any 
index or length arrays from the host to the GPU. A working example of prim-
itive restart is provided in article sixteen of my Doctor Dobb’s Journal series of 
online tutorials [5].

CUDA enables the effi cient interoperability with graphics by mapping 
a pointer from the graphics buffer(s) to CUDA. Once provided with the 
mapped pointer(s), CUDA programmers are then free to exploit their knowl-
edge of CUDA to write fast and effi cient kernels to operate on the graphics 
buffers. The separation is distinct because graphical manipulation of buffers 
currently mapped by CUDA is not allowed.

There are two very clear benefi ts of the separation (yet effi cient interoper-
ability) between CUDA and graphics:

From a programming view:•  When not mapped into the CUDA mem-
ory space, graphics gurus are free to exploit existing legacy code 
bases, their expertise and the full power of all the tools available 
to them.
From an investment view:•  Probably the most important benefi t of this 
separated approach is the effi cient exploitation of existing legacy 
visualization software investments. Essentially, CUDA code can 
be incrementally added to existing visualization software without 
assuming signifi cant risk or requiring that substantial portions of 
the code be rewritten.

2.5 Conclusion

It is possible today to purchase a commodity graphics processor at your 
favorite electronics store that nearly doubles the world record–breaking 
terafl op supercomputer performance announced in December 1996 by 
Sandia National Laboratory. Combining four of these same graphics pro-
cessors that retail for less than $500 in a dedicated workstation can provide 
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a  student with over 7 terafl ops of dedicated computational capability, 
which compares favorably with the recently decommissioned 11.8 tera-
fl op MPP2 supercomputer provided by the Pacifi c Northwest National 
Laboratory for shared use by their entire world-wide user community. The 
latest generation of GPGPUs, announced but as yet untested, tout signifi -
cantly greater computational capabilities and should be available in the 
fi rst half of 2010.

Massively threaded programming models are the key to exploiting the 
capabilities of this massively parallel hardware technology. The myriad of 
scientifi c applications that now utilize GPGPU technology provide ample 
proof that scientists and engineers fi nd the existing CUDA programming 
model, compiler, and development tools to be adequate. Newer models and 
programming pragmas are being advanced to make massively threaded 
programming even more general and familiar to C- and FORTRAN 
programmers.

With so many GPGPU massively threaded applications delivering orders 
of magnitude greater performance than multithreaded software running 
on conventional hardware, it is clear that extraordinary scientifi c advances 
are possible. Technology is only a tool, and scientists who combine knowl-
edge of massively threaded programming with perceptiveness and insight 
are the ones who will likely make the most signifi cant advances in the com-
ing years. In a very real sense, computational biology and bioinformatics are 
transitioning from the “light-based microscopy” of conventional computing 
to the powerful new GPGPU “electron microscopes” of commodity massively 
parallel computing.

Several excellent sources of information exist on the internet that pro-
vide more detailed information about GPGPU computing and CUDA. I 
recommend visiting the NVIDIA CUDA Zone web site for the latest infor-
mation on both CUDA software and hardware [6]. Those who wish to 
learn CUDA should consult my “Supercomputing for the Masses” series 
of tutorials that are freely available online at the Doctor Dobb’s journal 
web site [5].
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3.1 Introduction

The history of the fi eld-programmable gate array (FPGA) dates back to the 
1970s with the commercial development of programmable logic array (PLA) 
and programmable array logic (PAL) devices. While PLA and PAL devices 
have evolved into today’s complex programmable logic devices (CPLD), 
FPGA development took a slightly different route more akin to gate array 
technology. The fi rst commercially successful FPGA, the Xilinx XC2064 [1], 
was developed by Ross Freeman and Bernard Vonderschmitt in 1985. This 
device, called a logic cell array, consisted of three different types of user con-
fi gurable elements: confi gurable logic blocks (CLB), confi gurable I/O blocks 
(IOB), and programmable interconnect. The schematic layout of the XC2064 
logic cell array and the CLB structure is shown in Figure 3.1. The confi gu-
ration of these elements was achieved by writing data to the confi guration 
memory to establish the various logic functions and connections. However, 
it was not until 1989 when Stan Baker of EETimes came up with the term 
FPGA that these devices became known as fi eld-programmable gate arrays 
or FPGAs.

Since their introduction, FPGAs have evolved from relatively small homo-
geneous arrays of confi gurable elements to large heterogeneous computing 
systems consisting of a programmable fabric, an embedded memory, and a 
range of hardwired functional units, such as multipliers, communications 
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transceivers, digital signal processing (DSP) blocks, and even complete 
microprocessors. The major FPGA vendors also provide a range of intellec-
tual property (IP) soft cores, including soft-core processors and peripher-
als, and a comprehensive development environment to compose complete 
FPGA systems. Modern FPGAs provide multimillion equivalent gates with 
embedded computing capability and are large enough for entire systems to 
be implemented onto a single chip. These devices are sometimes called sys-
tem on programmable chip (SoPC) or platform FPGA to parallel the terminol-
ogy used in application-specifi c integrated circuit (ASIC) design.

3.2 The Need for FPGA Computing

As the demand for computing resources increases, central processing unit 
(CPU) development has relied on a combination of clock speed increases and 
changes to the architecture to improve instruction level parallelism. However, 
there is a growing performance gap between the capabilities of the micro-
processor and the data transfer rate of memory. To fi ll this gap, techniques 
such as caching, pipelining, out-of-order execution, and branch prediction are 
being pushed to their limits. These microarchitectural changes come at a cost, 
as running a system with extra circuitry and at a higher frequency consumes 
more power and dissipates more heat. As a result, CPU designers have moved 
toward multicore and many-core technologies to improve performance while 
keeping thermal dissipation within manageable limits. Unfortunately, multi-
core architectures have not really addressed the memory bottleneck issue and 
have introduced a completely new set of problems. To tap their full potential, 
multicore systems require more sophisticated operating systems and better 
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FIGURE 3.1
The XC2064 logic cell array [1], (a) schematic layout, showing the array of CLBs with the confi gu-
rable IOBs around the outside and the programmable interconnect, and (b) schematic of a CLB.
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parallelizing compilers, while applications developers require time to adapt 
and to become profi cient with both the tools and the platform itself. The bot-
tom line is that when it comes to accelerating algorithms, systems based on 
processors alone do not scale well with increasing frequency. Instead, other 
technologies, which can either work in conjunction with existing computing 
platforms or even replace them, need to be developed. One such technology 
is the FPGA-based reconfi gurable computing accelerator.

Virtually since the FPGA’s inception, it has been used for application accel-
eration, particularly in the DSP and digital communications areas. More 
recently, as FPGA devices have become larger, they are being increasingly 
seen as enabling technology, used alongside conventional high-performance 
computing systems, to accelerate computational tasks. Unlike conventional 
microprocessors, which must transfer data from/to registers, or memory, as 
part of the computation cycle, FPGAs can stream data between different pro-
cessing elements eliminating the bulk of the data transfers. FPGA computing 
can achieve higher performance by exploiting the massive inherent parallel-
ism and by using fl exibility to specialize the architecture. A signifi cant advan-
tage over CPU devices is achieved because FPGA resources are confi gurable. 
Precomputed lookup tables are used in place of complex mathematical func-
tions. Issues of memory bandwidth are alleviated by having access to multiple 
memory banks in parallel. The use of custom circuits means that the applica-
tion can be better matched to the architecture. For example, in bioinformat-
ics research, the algorithms for gene and protein sequence matching do not 
require the full integer precision available in modern CPUs, let alone needing 
fl oating point arithmetic. Therefore, adapting the application so that it exploits 
its inherent precision and parallelism, results in better utilization of the avail-
able resources even though the hardware may be clocked at a signifi cantly 
lower frequency than that of the latest CPUs. This approach not only achieves 
algorithm acceleration, but also usually results in a reduced power consump-
tion and heat dissipation.

The fact that the FPGA can be reprogrammed at will and with little 
effort makes it very attractive for developing effi cient implementations of 
algorithms. Because many of these algorithms often originate in the form 
of a software application that requires acceleration, converting the imple-
mentation from software to hardware requires a fair amount of tweaking 
and experimentation. The FPGA offers precisely the right combination of 
resources and fl exibility to help develop, test, and evaluate the performance 
of an algorithm’s implementation. The developer can, and must, choose 
which portions of the algorithm to implement in FPGA hardware and which 
should be left to execute on a CPU. This process is known as hardware- software 
partitioning. Co-synthesis techniques that apply a hardware-software parti-
tioning algorithm to automatically generate a software model that can be 
cross-compiled and a hardware model that can be synthesized are fairly 
mature [2–4]. The end result is that a sequence of instructions is converted 
into a hardware circuit that is functionally equivalent.
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3.3 FPGA Computing Architectures

CPUs are designed to handle a rich mix of operations, while FPGAs are able 
to accelerate a well-defi ned set of repetitive operations. In many software 
applications, most of the computation time is attributable to only a small 
portion of the application, with the execution of the larger part of the code, 
which is necessary for completeness, having little effect on the performance. 
Consequently, an interesting hybrid computing approach couples a CPU 
with an FPGA fabric [5]. This hybrid approach has seen several systems 
proposed that couple a general-purpose CPU with a reconfi gurable array. 
An early example of this is the dynamic instruction set computer (DISC) 
[6]. Later examples include Garp [7] and CHIMAERA [8]. This was followed 
by commercial hybrid platforms, including the Triscend A7 and E5 CSoC 
Families [9, 10], the QuickSilver Technology ADAPT2400 ACM Architecture 
[11], and the Stretch S5 and S6 SCP Engines [12].

An increasing number of new chips include a portion of FPGA-like fabric 
to add fl exibility to adapt to a number of applications. This trend is due to 
companies such as M2000 (now Abound Logic) who market FPGA fabric 
for integration into new ASIC devices [13]. While many hybrid architectures 
have been proposed, most have had little commercial success. As of writing 
the only commercial hybrid device still existent in the market is the Stretch 
S6. The mix of paradigms has the effect of mixing the complexities of appli-
cation design for software and hardware. To adopt such a device, a company 
has to use specialized compiler tools that are as yet unproven. Thus, the ben-
efi t of using such a device does not outweigh the risk inherent in complex 
systems that are only supported by a single vendor.

The FPGA vendors have had slightly more success introducing processors 
embedded inside their FPGA fabrics. Examples of commercially available 
platforms are the Xilinx Virtex-2 Pro, Virtex-4 FX, and Virtex-5 FXT FPGAs 
with an embedded PowerPC [14], and the Altera Excalibur with an embed-
ded ARM [15]. In contrast to the hybrid architecture vendors mentioned pre-
viously, the FPGA development environments of Altera and Xilinx are well 
established. They have built on this advantage and integrated processor cores 
that have well-established programming environments. What is interesting 
is that Xilinx has no plans to incorporate a hard-core processor into its latest 
generation Virtex-6 devices, while Altera after exiting the hard-core proces-
sor arena in 2002 has recently licensed the MIPS32 RISC architecture from 
MIPS Technologies [16]. Alternatively, soft-core processors offer a cheaper 
and lower risk alternative to hybrid architectures, albeit at a lower speed. 
Soft-core processors use standard FPGA resources to build microproces-
sor architectures. In addition to the vendor-specifi c cores, such as the Xilinx 
Microblaze [14] and Altera NIOS-2 [15], there are a range of both commercial 
and open-source cores on offer. Commercial cores include ARM’s FPGA-
optimized Cortex M1 processor [17] and Freescale’s V1 Coldfi re processor 

10768_C003.indd   5210768_C003.indd   52 6/17/2010   7:23:54 PM6/17/2010   7:23:54 PM



FPGA: Architecture and Programming 53

[18] while open-source cores include the LEON SPARC [19] and Opencores 
OpenRISC [20].

As FPGA technology has developed, its use as a computing platform has 
moved from academic research into the commercial domain. Many compa-
nies offer PCI bus FPGA accelerators with the necessary IP to develop hard-
ware accelerated solutions. High-performance computing platforms based 
on FPGA initially developed as research platforms [21, 22] are now a com-
mercial reality, with companies such as Starbridge Systems [23], Nallatech 
[24], and SRC Computers [25] offering high-performance FPGA-based com-
puting solutions. FPGA technology was also briefl y adopted by high-profi le 
supercomputing companies such as Cray with their XD1 platform [26], and 
SGI with their RASC platform [27], although both appear to have discontin-
ued these product lines. The architecture of the Cray XD1 and the SGI RASC 
platforms showing the FPGA accelerator is given in Figure 3.2.

The mainstream microprocessor manufacturers are also showing inter-
est in FPGA accelerators. What started with AMD’s strategy to improve the 
potential of their Opteron processor-based platforms by opening up the 
HyperTransport specifi cation [28] has resulted in a number of tightly coupled 
FPGA accelerators targeted at both AMD and Intel processors. In opening 
up HyperTransport, AMD had hoped that the resulting application-specifi c 
accelerators, closely coupled with their processors, would provide platforms 
that outperform their competitors, thus giving them a competitive edge. 
Initially, two companies developed FPGA platforms that slot into a available 
Opteron socket on a multiple processor motherboard. DRC Computer offers a 
reconfi gurable Xilinx Virtex-4 platform [29] and XtremeData offers an Altera 
Stratix-2 platform [30]. Placing the FPGA at this point in the system provides a 
5.4 GB/s link with up to 4 GB of memory and a 1.6 GB/s link to the other AMD 

(a) (b) 

RapidArray Interconnect Bus 

2 x 2.0GB/s 
4 x 3.2GB/s 

2 x 3.2GB/s 

3.2GB/s

3.2GB/s 

12.8GB/s 9.6GB/s 

16MB QDR SRAM 6MB QDR SRAM 

CPUNUMALink Interconnect Bus 

CPUInterface
Interface

FPGA FPGA 

FIGURE 3.2
(a) XD1 architecture (Modifi ed from Cray, Inc., http://www.cray.com/), and (b) the SCI RASC 
architecture (Modifi ed from SGI, http://www.sgi.com/).
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Opteron processors on the motherboard, as shown in Figure 3.3. In response, 
Intel has also provided the ability to connect to its Xeon processor front side 
bus (FSB) and the QuickAssist accelerator abstraction layer. XtremeData offers 
an Altera Stratix III FPGA-based module, which targets the Intel FSB at 1066 
MHz, while Nallatech [24] offers a stackable Vertix-5-based solution. Both 
Nallatech and Xtreme Data have recently announced that they are develop-
ing FPGA accelerators for Intel’s new high-speed QuickPath interconnect.

3.4 FPGA Development Tools

Similar to software designs, FPGA design descriptions must be optimized 
and translated to a form usable at the physical hardware level. The resulting 
confi guration data, called a bitstream, is then loaded into the FPGA to form the 
connections to make the required hardware circuit. Traditionally, an FPGA 
designer would develop a behavioral register transfer level (RTL) description 
of the required circuit using a hardware description language (HDL), such as 
VHDL or Verilog. This behavioral RTL representation would then be input 
into an FPGA compiler tool, such as Xilinx ISE [14] or Altera Quartus [15], for 
synthesis, logic optimization, and fi nally mapping to a specifi c FPGA.

Both VHDL and Verilog are well-established HDLs, and allow the defi ni-
tion of both high-level algorithms and low-level optimizations in the same 
language. The resultant code is reasonably straightforward for a software 
programmer to interpret, provided that the languages built in concurrency 
are understood. However, as designs become larger and more complicated, it 
becomes more diffi cult to manage the complexity at the HDL level. To meet 
these design challenges, automated EDA tools have been developed to make 
system-level design easier. System-level design tools that can effectively inte-
grate the different design strategies within domains, so as to better lever-
age FPGA resources, are available from both FPGA vendor and third party 

SYS
SBCPU

FPGA PCle-16

2 x 5.0GB/s2 x 1.6GB/s

2 x 4.0GB/s
6.0GB/s

5.4GB/s
DDR Memory

DDR Memory

FIGURE 3.3
The XtremeData XD1000 architecture (Modifi ed from XtremeData, Inc., http://www.
xtremedatainc.com/).
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sources. Xilinx offers a system edition of its ISE design tool that combines a 
DSP and embedded processing development environment with its more con-
ventional FPGA design environment [14]. Altera provides SoPC Builder with 
a set of unbundled tools with similar functionality (i.e., Quartus II, Nios II 
EDK and DSP builder) [15]. Both these tool chains offer seamless integration 
with the MATLAB and Simulink tools from The Mathworks [31]. In addition, 
complete system-level tool chains are available from third party sources, 
such as Mentor Graphics [32] and Synopsys [33].

Even with the advances in EDA tools, good FPGA design still requires a 
signifi cant amount of domain knowledge. Therefore, to bring FPGA com-
puting into the mainstream, where software programmers still predomi-
nantly focus on sequential program design, a number of initiatives looking 

MATLAB/
Simulink

System specifications

Algorithm

Hardware/software partitionerHardware input

Synthesis

Place & route

Bitstream Executable
FPGA

System
co-verfication

RTL simulator

Testbenches

Instruction set
simulator Linker

Compiler

Software description

Software input

HLL source
C/C++C/C++

Netlist

Hardware description
(Verilog/VDHL)

FIGURE 3.4
A typical HLL to hardware design fl ow.
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at synthesis from high-level languages (HLL) have been initiated. Enabling 
synthesis from a HLL also allows designers to leverage on the large amount 
of open-source software that is currently available. A number of commercial 
HLL to HDL tools have been released, most of which target translation from 
the C-language to hardware. These include Handel-C from Agility (acquired 
from Celoxica) [34], Impulse C from Impulse Accelerated Technologies [35], 
Dime-C from Nallatech [24], Catapult C from Mentor Graphics [32], Mitrion-C 
from Mitrionics [36], and C-to-Hardware from Altera [15]. Tools such as 
Simulink HDL Coder from The Mathsworks [31] and the Bluespec Compiler 
from Bluespec [37] allow a more algorithmic approach for generating hard-
ware. A typical HLL to Hardware design fl ow is shown in Figure 3.4.

3.5 Discussion

There are many documented examples in the scientifi c literature where 
FPGA-based computing provides superior performance to CPU-based com-
puting. In the DSP and Image processing domains, these include FPGA imple-
mentations of the DES data encryption algorithm providing a speedup of up 
to two orders of magnitude [38] and video applications with speedups of 
20–100 times [39]. In the bioinformatics domain, FPGA implementations of 
the Smith–Waterman pairwise protein sequence alignment have achieved 
speedups of 120–200 times [40] that of the corresponding software imple-
mentations, while FPGA implementations of the basic local alignment search 
tool (BLAST) have also achieved impressive speedups [41]. These previous 
implementations have all been carefully hand crafted with signifi cant man-
ual input to identify the parallelism and the processing precision, thereby 
achieving the best speedup possible. Solutions based on translating from 
HLLs to hardware, while producing signifi cant application acceleration [42], 
still have some way to go before they are able to achieve the performance 
of these manual designs. Pico Computing has recently announced a 5000X 
acceleration of a graphical tool for visualization of the comparison of two 
DNA sequences on an FPGA cluster [43] using C-to-FPGA tools provided by 
Impulse Accelerated Technologies [35]. This particular algorithm was inher-
ently parallel, thus making it an ideal candidate for acceleration using a large 
number of FPGA devices.

3.6 References

 1. Xilinx XC2064/XC2018 Logic Cell Array, http://www.datasheetarchive.com/
XC2064–100PC68C-datasheet.html, last accessed Nov. 2009.

10768_C003.indd   5610768_C003.indd   56 6/17/2010   7:23:55 PM6/17/2010   7:23:55 PM



FPGA: Architecture and Programming 57

 2. R.K. Gupta, Co-Synthesis of Hardware and Software for Digital Embedded Systems, 
Kluwer Academic Publishers, 1995.

 3. R. Ernst, J. Henkel, T. Benner, Hardware–software co-synthesis for microcon-
trollers, IEEE Design & Test of Computers, 10(4), 64–75, 1993.

 4. F. Balarin et al., Hardware–Software Co-Design of Embedded Systems: The POLIS 
Approach, Kluwer Academic Publishers, 1997.

 5. A. DeHon, The density advantage of confi gurable computing, IEEE Computer, 
33(4), 41–49, 2000.

 6. M.J. Wirthlin and B.L. Hutchings, A dynamic instruction set computer, IEEE 
Symposium on FPGAs for Custom Computing Machines (FCCM ‘95), pp. 99–107, 
Napa Valley, CA, USA, Apr. 1995.

 7. J.R. Hauser, Augmenting a microprocessor with reconfi gurable hardware, PhD 
dissertation, University of California, Berkeley, CA, 2000.

 8. Z.A. Ye, A. Moshovos, S. Hauck, P. Banerjee, CHIMAERA: a high-performance 
architecture with a tightly-coupled reconfi gurable functional unit, Proceedings of 
the 27th Annual International Symposium on Computer Architecture, pp. 225–235, 
Vancouver, BC, Canada, 2000.

 9. Triscend E5 Customizable Microcontroller Platform, http://www.
datasheetarchive.com/datasheet-pdf/027/DSA00484394.html, last accessed Nov. 
2009.

 10. Triscend A7 Confi gurable System-on-Chip Platform, http://www.
datasheetarchive.com/datasheet-pdf/04/DSA0065723.html, last accessed Nov. 
2009.

 11. QuickSilver Technology, Inc., http://www.qstech.com/default.htm, last 
accessed Nov. 2009.

 12. Stretch, Inc., http://www.stretchinc.com/, last accessed Nov. 2009.
 13. Raptor FPGA, http://www.aboundlogic.com/index.html, last accessed Nov. 

2009.
 14. Xilinx, Inc., http://www.xilinx.com/, last accessed Nov. 2009.
 15. Altera Corporation, http://www.altera.com/, last accessed Nov. 2009.
 16. Altera Licenses MIPS32 Processor Architecture, http://www.edn.com/

blog/980000298/post/1410049541.html, Oct. 2009, last accessed Mar. 2010.
 17. ARM Cortex-M1, http://www.arm.com/products/CPUs/ARM_Cortex-M1.

html, last accessed Nov. 2009.
 18. Freescale ColdFire V1 Core, http://www.freescale.com/, last accessed Nov. 

2009.
 19. Aerofl ex Gaisler AB, LEON3 SPARC V8 Processor core, http://www.gaisler.

com/cms/, last accessed Nov. 2009.
 20. OpenRISC 1000 architecture, http://www.opencores.org/openrisc, last 

accessed Nov. 2009.
 21. A. Patel, C.A. Madill, M. Saldana, C. Comis, R. Pomes, P. Chow,  A scal-

able FPGA-based multiprocessor, 14th Annual IEEE Symposium on Field-
Programmable Custom Computing Machines, pp. 111–120, Napa Valley, CA, 
USA, Apr. 2006.

 22. G. Pfeiffer, S. Baumgart, J. Schroeder, M. Schimmler, A massively parallel archi-
tecture for bioinformatics, Computational Science—ICCS 2009, International 
Conference on Computational Science, LNCS 5544, 994–1003, 2009.

 23. Star Bridge Systems, Inc., http://www.starbridgesystems.com/, last accessed 
Nov. 2009.

10768_C003.indd   5710768_C003.indd   57 6/17/2010   7:23:55 PM6/17/2010   7:23:55 PM

http://www.datasheetarchive.com/datasheet-pdf/04/DSA0065723.html
http://www.datasheetarchive.com/datasheet-pdf/04/DSA0065723.html
http://www.edn.com/blog/980000298/post/1410049541.html
http://www.edn.com/blog/980000298/post/1410049541.html
http://www.arm.com/products/CPUs/ARM_Cortex-M1.html
http://www.arm.com/products/CPUs/ARM_Cortex-M1.html
http://www.gaisler.com/cms/
http://www.gaisler.com/cms/
http://www.datasheetarchive.com/datasheet-pdf/027/DSA00484394.html
http://www.datasheetarchive.com/datasheet-pdf/027/DSA00484394.html


58 Bioinformatics: High Performance Parallel Computer Architectures

 24. Nallatech, Inc., http://www.nallatech.com/, last accessed Nov. 2009.
 25. SRC Computers, LLC, http://www.srccomputers.com/index.asp, last accessed 

Nov. 2009.
 26. Cray, Inc., http://www.cray.com/, last accessed Nov. 2009.
 27. SGI, http://www.sgi.com/, last accessed Nov. 2009.
 28. HyperTransport Consortium, http://www.hypertransport.org/, last accessed 

Nov. 2009.
 29. DRC Computer Corporation, http://www.drccomputer.com/, last accessed 

Nov. 2009.
 30. XtremeData, Inc., http://www.xtremedatainc.com/, last accessed Nov. 2009.
 31. The MathWorks, Inc., http://www.mathworks.com/, last accessed Nov. 2009.
 32. Mentor Graphics, Inc., http://www.mentor.com/, last accessed Nov. 2009.
 33. Synopsys, Inc., http://www.synopsys.com/, last accessed Nov. 2009.
 34. Agility DK Design Suite, http://agilityds.com/, last accessed Nov. 2009.
 35. Impulse Accelerated Technologies, Inc., http://www.impulseaccelerated.com/, 

last accessed Nov. 2009.
 36. A.B. Mitrionics, http://www.mitrionics.com/, last accessed Nov. 2009.
 37. Bluespec, Inc., http://www.bluespec.com/, last accessed Nov. 2009.
 38. C. Patterson, High performance DES encryption in Virtex FPGAs using JBits, 

IEEE Symposium on Field-Programmable Custom Computing Machines, pp. 113–121, 
Napa Valley, CA, USA, Apr. 2000.

 39. Z. Guo, W. Najjar, F. Vahid, K. Vissers, A quantitative analysis of the speedup 
factors of FPGAs over processors, International Symposium on Field Programmable 
Gate Arrays, pp. 162–170, Monterey, USA, 2004.

 40. T.F. Oliver, B. Schmidt, D.L. Maskell, Reconfi gurable architectures for bio-
sequence database scanning on FPGAs, IEEE Transactions on Circuits and Systems 
II, 52(12), 851–855, 2005.

 41. P. Krishnamurthy et al., Biosequence similarity search on the mercury system, 
J. VLSI Signal Processing Systems, 49(1), 101–121, 2007.

 42. Y.L. Aung, D.L. Maskell, T.F. Oliver, B. Schmidt, W. Bong, C-based design meth-
odology for FPGA implementation of ClustalW MSA, Pattern Recognition in 
Bioinformatics 2007, LNCS, 4774, 11–18, 2007.

 43. Pico Computing, Inc., FPGA cluster accelerates bioinformatics application 
by 5000×, http://www.picocomputing.com/pdf/PR_Pico_Bioinformatics_
Nov_9_2009.pdf, last accessed Nov. 2009.

10768_C003.indd   5810768_C003.indd   58 6/17/2010   7:23:55 PM6/17/2010   7:23:55 PM

http://www.picocomputing.com/pdf/PR_Pico_Bioinformatics_Nov_9_2009.pdf
http://www.picocomputing.com/pdf/PR_Pico_Bioinformatics_Nov_9_2009.pdf


59

4
Parallel Algorithms for 
Alignments on the Cell BE

Abhinav Sarje and Srinivas Aluru

4.1 Computing Alignments .............................................................................. 61
4.2 Sequence Alignments on the Cell Processor ...........................................63
4.3 A Parallel Communication Scheme ..........................................................63

4.3.1 Tiling Scheme for Aligning Longer Sequences ...........................65
4.3.2 Computing the Optimal Alignment Score 

Using Tiling ......................................................................................66
4.3.3 Computing an Optimal Alignment Using Tiling ....................... 67

4.4 A Hybrid Parallel Algorithm .....................................................................68
4.4.1 Parallel Alignment Scheme Using Prefi x 

Computations ...................................................................................68
4.4.2 Problem Decomposition Using Wavefront Scheme .................... 70
4.4.3 Subproblem Alignment Phase Using Hirschberg’s 

Technique ..........................................................................................72
4.4.4 Further Optimizations: Vectorization and Memory 

Management ..................................................................................... 73
4.4.5 Space Usage ...................................................................................... 74
4.4.6 Performance of the Hybrid Algorithm ......................................... 74

4.5 Algorithms for Specialized Alignments .................................................. 76
4.5.1 Spliced Alignments ......................................................................... 76
4.5.2 Performance of Parallel Spliced Alignment 

Algorithm .......................................................................................... 78
4.5.3 Syntenic Alignments ....................................................................... 79
4.5.4 Performance of Parallel Syntenic Alignment 

Algorithm ..........................................................................................80
4.6 Ending Notes ................................................................................................ 82
4.7 References ..................................................................................................... 82

10768_C004.indd   5910768_C004.indd   59 6/17/2010   7:47:22 PM6/17/2010   7:47:22 PM



60 Bioinformatics: High Performance Parallel Computer Architectures

Alignment of biological sequences enables discovery of evolutionary and 
functional relationships among them. Computing alignments, as a means 
to elucidate different kinds of sequence relationships, is a fundamental tool 
arising in numerous contexts and applications in computational biology. A 
number of algorithms for sequence alignments have been developed in the 
past few decades, the most common being the ones for pairwise global align-
ments (aligning sequences in their entirety [1]) and local alignments (aligning 
sequences that each contain a substring that is highly similar [2]). Some appli-
cations require more complex types of alignments. One such example is when 
aligning an mRNA sequence transcribed from a eukaryotic gene with the cor-
responding genomic sequence to infer the gene structure [3]. A gene consists 
of alternating regions called exons and introns, while the transcribed mRNA 
corresponds to a concatenated sequence of the exons. This requires identify-
ing a partition of the mRNA sequence into consecutive substrings (the exons) 
that align to the same number of ordered, nonoverlapping, nonconsecutive 
substrings of the gene, a problem known as spliced alignment. Another impor-
tant problem is that of syntenic alignment [4], for aligning two sequences that 
contain conserved substrings that occur in the same order (such as genes with 
conserved exons from different organisms, or long syntenic regions between 
genomes of two organisms). An illustration of these four kinds of alignments, 
showing how the regions of two sequences are aligned, is given in Figure 4.1.

Dynamic programming is the most commonly used method for computing 
pairwise alignments [1–4], and takes time proportional to the product of the 
lengths of the two input sequences (although the original Smith–Waterman 
algorithm for local alignment [2] has cubic complexity, it is widely known that 
this can be implemented in quadratic time, as is shown in [5]; also, [3] presents 
an algorithm with cubic complexity, but the spliced alignment problem can be 
treated as a special case of syntenic alignment and solved in quadratic time, 
as will be described later in this chapter). Various parallel algorithms have 
also been developed for these methods. Some of these parallelize the com-
putations within a single processor utilizing its vector processing units and 
single- instruction multiple-data (SIMD) style instructions [6, 7], while other 
algorithms deal with parallelization across multiple processors [8–10]. We 
mainly focus on the latter in this chapter, and present algorithms for comput-
ing pairwise alignments in parallel on the Cell Broadband Engine (CBE). We 
fi rst describe the global/local alignment algorithms using dynamic program-
ming, and a basic parallel computation strategy using the wavefront commu-
nication pattern. Using this strategy, alignment scores can be computed in 
parallel across the different synergistic processing elements of the Cell pro-
cessor. Though this parallel strategy allows effi cient computation of align-
ment scores in linear space, retrieving the actual optimal alignment requires 
quadratic space. We then present a linear space parallel algorithm for the Cell 
processor, which overcomes this limitation and computes an actual optimal 
alignment. Further, we describe how this algorithm can also be extended to 
the more specialized spliced and syntenic alignment problems.
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4.1 Computing Alignments

We start with a brief description of the sequential dynamic programming 
algorithm for computing global alignments. Consider two sequences, S1 = 
a1a2 . . . am and S2 = b1b2 . . . bn over an alphabet ∑, and let “–” denote the gap 
character. A global alignment of the two sequences is a 2 × N matrix, where 
N ≥ max(m, n), such that each row represents one of the sequences with gaps 
inserted in certain positions and no column contains gaps in both sequences. 
The alignment is scored as follows: a function, score: ∑×∑ → \, prescribes 
the score for any column in the alignment that does not contain a gap. We 
assume the score function returns the score for any pair of characters from 
∑ in constant time. Affi ne gap penalty functions are commonly used to deter-
mine the scores of columns involving gaps, so that a sequence of gaps is 
assigned less penalty than treating them as individual gaps—this is because 

S1

(b) Local alignment

(c) Spliced alignment

(d) Syntenic alignment

(a) Global alignment

S2

S1

S2

S1

S2

S1

S2

FIGURE 4.1
Genomic alignments—the thick portions of sequences S1 and S2 show the segments that are 
aligned. (a) Global alignment: Both sequences are aligned in their entirety. (b) Local alignment: 
A substring from each sequence is aligned. (c) Spliced alignment: Ordered series of substrings of 
one sequence is aligned to the entire second sequence. (d) Syntenic alignment: Ordered series of 
substrings of one sequence is aligned with ordered series of substrings on the second sequence. 
For (b), (c), and (d), the goal includes fi nding the aligning regions such that the score of the result-
ing alignment, as given by a score function, is maximized. Both the number and boundaries of 
aligning regions are unknown and need to be inferred by the algorithm. Only the sequences S1 
and S2 are the input for each alignment problem. (From Sarje, A. and Aluru, S., IEEE Transactions 
on Parallel and Distributed Systems, 20(11):1600–1610, 2009. With permission. © 2009 IEEE.)
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a mutation affecting a short segment of a genomic sequence is more likely 
than several individual base mutations. Such a function is defi ned as fol-
lows: for a maximal consecutive sequence of k gaps, a penalty of h + gk is 
applied. Thus, the fi rst gap in a maximal sequence is charged h + g, while 
the rest of the gaps are charged g each. When h = 0, the scoring function is 
called a constant gap penalty function. The score of the alignment is the sum 
of scores over all the columns.

The global alignment problem with affine gap penalty function can 
be solved using three (m + 1) × (n + 1) sized dynamic programming 
tables, denoted C, D (for deletion), and I (for insertion). An element [i, 
j] in a table is used to store the optimal score of an alignment between 
a1a2 . . . ai and b1b2 . . . bj with the following restrictions on the last column 
of the alignment: ai is matched with bj in C, a gap is matched with bj in 
D, and ai is matched with a gap in I. The tables can be computed using 
the following recursive equations, which can be applied row by row, 
column by column, or antidiagonal by antidiagonal (also called minor 
diagonal):

i j

C i j
C i j score a b max D i j

I i j

[ 1, 1]
[ , ] ( , ) [ 1, 1]

[ 1, 1]

− −= + − −
 − −  

(4.1)

C i j h g
D i j max D i j g  

I i j h g

[ , 1] ( )
[ , ] [ , 1]

[ , 1] ( )

− − += − −
 − − +  

(4.2)

( )
( )

C i j h g
I i j max D i j h g

I i j g

[ , 1]
[ , ] [ , 1]

[ , 1]

 − − +
= − − +
 − −  

(4.3)

The fi rst row and column of each table are initialized to –∞ except in the 
following cases (1 ≤ i ≤ m; 1 ≤ j ≤ n):

C[0, 0] = 0
D[0, j] = h + gj
I[i, 0] = h + gi

The maximum of the scores among C[m, n], D[m, n], and I[m, n] gives the opti-
mal global alignment score. By keeping track of a pointer from each entry to 
one of the entries that resulted in the maximum while computing its score, 
an optimal alignment can be constructed by retracing the pointers from the 
optimal score at bottom right to the top left corner of the tables. This proce-
dure is known as trace-back.
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4.2 Sequence Alignments on the Cell Processor

A number of bioinformatics applications dealing with pairwise genomic 
alignments have been ported to the CBE (e.g., [11–14]). Many such applica-
tions employ aligning an input sequence to sequences from a large data-
base and obtaining their alignment scores, for example, BLAST, ClustalW, 
FASTA, and Ssearch. Porting of these applications to the Cell processor is 
discussed in [12–14]. These methods for sequence alignments on the CBE 
are restricted to the basic Smith–Waterman algorithm [2] for local align-
ments. The basic idea common to them is that all the alignments to be per-
formed between the input sequence and each sequence from the database 
are independent of each other, and can be computed individually on each 
of the synergistic processing elements (SPEs) of the CBE. The PowerPC pro-
cessing element (PPE) assigns sequences for independently computing the 
alignment scores to the different SPEs, each of which then simultaneously 
computes the score for the pair of sequences assigned to it and reports the 
score back to the PPE. Hence, the individual SPEs do not need to synchro-
nize with each other.

Although computation of alignment scores is useful in statistical analyses 
to assess the alignment quality, or to fi nd a small subset of sequences, which 
have a high similarity with the query sequence, these implementations do 
not compute the actual alignment, which is necessary to gain biological 
insight into the genomic sequences being aligned. Moreover, they work for 
smaller sequence sizes as only small local stores (256 KB) are available on 
each SPE to store the whole sequences and the dynamic programming tables 
to be computed. Therefore, in this chapter we focus on parallel algorithms 
to compute a single optimal pairwise alignment on the CBE. To perform the 
alignments in parallel, the input sequences and the dynamic programming 
table computations need to be distributed among the various SPEs, which 
also need to synchronize the computations among themselves. In the follow-
ing section we describe these distribution and communication strategies.

4.3 A Parallel Communication Scheme

In this section, we fi rst describe a parallel communication strategy that is 
commonly employed by many parallel alignment algorithms on the CBE 
[15–17]. This scheme, popularly known as the wavefront communication 
scheme, was fi rst proposed by Edmiston et al. [9]. In this method, each table 
is divided into a w × p matrix of block, where p is the number of processing 
elements to be used and w is the number of blocks in one column (w = p in 
the original algorithm). Therefore, each block contains at most n

p[ ] columns 

10768_C004.indd   6310768_C004.indd   63 6/17/2010   7:47:24 PM6/17/2010   7:47:24 PM



64 Bioinformatics: High Performance Parallel Computer Architectures

and r rows, where r is a prechosen block size. Let Bi,j denote a block, where 0 
≤ i < w and 0 ≤ j < p. Each processing element is assigned a unique column of 
blocks to compute: processor Pj computes the blocks Bi,j. The blocks are simul-
taneously computed one antidiagonal at a time. All blocks on an antidiago-
nal can be computed simultaneously as they depend only on blocks on the 
previous two antidiagonals—computation of a block Bi,j on the antidiagonal 
t, where t = i + j, only depends on blocks Bi-1,j and Bi,j-1 from antidiagonal t – 1, 
and block Bi-1,j-1 from antidiagonal t – 2. Because of the block assignment to 
processing elements, each of them only needs to receive the last column of 
a block (plus an additional element) from the previous processing element. 
An illustration of this wavefront pattern is shown in Figure 4.2. Each SPE 
receives all of the fi rst sequence (length m) and a distinct np  length substring 
of the second sequence. The total number of rounds of block computations 
in this scheme is equal to the number of block antidiagonals, which is equal 
to p + w – 1, although each SPE computes exactly w blocks. The SPEs need 
to synchronize with each other after transferring their corresponding right-
most column to the next SPE. For an effi cient implementation, this can be 
achieved using the signal notifi cation registers on the SPEs.

Sequence 2

Sequence 1

B0,0 B1,0 B2,0 B3,0

n/p

r

m

B4,0

B0,1 B1,1 B2,1 B3,1 B4,1

B0,2 B1,2 B2,2 B3,2 B4,2

B0,3 B1,3 B2,3 B3,3 B4,3

B0,4 B1,4 B2,4 B3,4 B4,4

B0,w–1

P0 P1 P2 P3 P4

B1,w–1

Bp–1,0

Bp–1,1

Bp–1,2

Bp–1,3

Bp–1,4

Bp–1,w-1

Pp-1

B2,w–1 B3,w–1 B4,w–1

FIGURE 4.2
Block division in the wavefront technique—SPE j is assigned a column of blocks Bi,j, 0 ≤ i < w, 
as shown by the labels Pj below each column. Block computations follow diagonal wavefront 
pattern, where for antidiagonal t, blocks Bi,j such that i + j = t, are computed simultaneously 
in parallel (shown by blocks in the same shade of gray). SPE Pj (0 ≤ j < p) sends the rightmost 
computed column in its assigned block (shown as thin shaded columns) to SPE Pj+1 for the next 
iteration. (From Sarje, A. and Aluru, S., IEEE Transactions on Parallel and Distributed Systems, 
20(11):1600–1610, 2009. With permission. © 2009 IEEE.)
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The dynamic programming tables can thus be computed on each of the 
SPEs. A simple extension of the block division enables alignment of longer 
sequences, and cannot at once fi t into the local stores of the SPEs, and we 
discuss this next.

4.3.1 Tiling Scheme for Aligning Longer Sequences

Because of the small local stores available on the SPEs, to enable optimal 
alignment score computation of longer sequences, the dynamic program-
ming tables can be first divided into tiles such that the collective memory 
of all the SPEs is sufficient for computation of a tile at once. Therefore, 
the two input sequences are partitioned into segments such that each 
pair of segments, one taken from each input sequence, defines a tile. 
A single tile consists of w × p blocks, where each block contains r rows 
and c columns. The dynamic programming tables are, hence, divided 
into 

m n
rw cp×  tiles. Each tile is computed in parallel among the SPEs using 

the wavefront scheme described earlier. An illustration of the tiling 
scheme is presented in Figure 4.3. All the tiles are processed one by one 
while explicitly storing the last, (cp – 1)th, column of each tile in the main 
memory (when processing the tiles  column-wise). Algorithm 1 gives a 

Sequence 2

Sequence 1

T0,1 T1,1

T1,

n
cp –1,0T1,0T0,0

Tile

c

r

m

n

T

n
cp –1,1T

n m
rwcp –1,T –1m

rw –1T0,mrw –1

FIGURE 4.3
Tiling scheme to process longer sequences—the bold rectangles correspond to tiles. Shown 
here is the case when four SPEs are used, resulting in four columns of blocks in each tile. Each 
tile, denoted by Tk,l, is processed using the wavefront technique (as in Figure 4.2). The shaded 
rightmost columns of the tiles need to be explicitly stored in the main memory, when going 
over the tiles column wise.
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pseudocode representation of this tile processing scheme. Wirawan et al. 
[17] and Aji et al. [15] use this tiling scheme to enable alignment of longer 
sequences.

Many DMA transfers to/from the main memory are required for the til-
ing scheme. The PPE initially divides the problem into tiles and instructs 
the SPEs to process one tile after another. PPE can perform these required 
communications with the SPEs through mailbox notifi cations. The SPEs use 
direct memory access (DMA) transfers to move the corresponding sequence 
fragments and the last column of the previously computed tile from the 
main memory to their local stores. Once the processing of a tile is completed, 
the SPEs transfer the computed scores to the main memory, notify the PPE 
through mailboxes or signal notifi cations, and proceed to process the next 
tile.
Algorithm 1: Tiling scheme. The dynamic programming tables are 
divided into tiles, and each of them are processed using the 
wavefront scheme. All the DMA transfers mentioned here are 
between the main memory and the local stores of the SPEs.

 1 for l ← 0 to n
cp -1 do

 2     DMA transfer lth segment of S2 to local stores of the SPEs;
 3    for k ← 0 to 

m
rw -1 do

 4      DMA transfer kth segment of S1 to local stores of SPEs;
 5    if l = 0 then
 6     Corresponding SPEs initialize 0th rows and 

columns of the tables;
 7    else
 8      DMA transfer (cpl − 1)th column of the tables 

to the local stores of the SPEs;
 9    end
10    Process tile Tk,l in parallel using wavefront scheme;
11     DMA transfer (cp − 1)th column of computed Tk,l to 

main memory;
12     end

13 end

4.3.2 Computing the Optimal Alignment Score Using Tiling

To compute the alignment score entry [i, j] of a dynamic programming 
table, only the entries in previous row (i − 1) and previous column (j − 1) are 
required. Therefore, to compute only the optimal alignment score of the input 
sequences, it is suffi cient to just store a linear array for the last  computed row. 
In the parallel wavefront scheme on the CBE, this linear space usage can 
be achieved for score computations by additionally storing a  linear sized 
column array for the last column of the block being computed, which is com-
municated to the next SPE in charge of computing the next block. Wirawan 
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et al. [17] demonstrate an implementation of this linear space algorithm for 
computing optimal local alignment scores. They also use this scheme in con-
junction with the tiling scheme described earlier to compute optimal align-
ment scores of longer sequences. Therefore, when only the optimal score 
needs to be computed, this linear space method is helpful in light of the 
small local stores available on the SPEs.

4.3.3 Computing an Optimal Alignment Using Tiling

Using the aforementioned linear space technique in conjunction with til-
ing does not allow retrieval of an actual alignment. To obtain an optimal 
alignment along with the score, quadratic space is needed when using the 
above-mentioned tiling scheme. Each tile is computed in parallel among 
the SPEs, while storing all the rows of the dynamic programming tables. 
On completion of a tile, the SPEs initiate DMA transfers to move the com-
puted tile (not just the (cp − 1)th column of each tile, as given in Algorithm 
1) to the main memory, and then proceed to the next tile. For further paral-
lel effi ciency, the SPEs also keep track of their local maximum score when 
performing local alignments, which are transferred to the main memory 
at the end, to be used by the PPE to pick the optimal one. This informa-
tion can then be used by the PPE to perform a trace-back sequentially 
on the fully stored dynamic programming tables residing in the main 
memory to retrieve an optimal alignment. This strategy is demonstrated 
for the Smith–Waterman local alignment algorithm in [15]. This method 
enables obtaining an optimal alignment of longer sequences, though it 
is still restricted by the size of the main memory because of its quadratic 
space usage. It will also be slower due to large memory (quadratic sized) 
transfers taking place from the SPEs to the main memory after computa-
tion of each tile.

Although the tiling scheme for alignment on the Cell processor is useful 
in certain cases, it has the following drawbacks: (1) Linear space usage can 
provide an effi cient implementation, but this yields only the optimal align-
ment score. (2) When an actual alignment is required, this scheme can align 
longer sequence than what can fi t in the local stores of the SPEs, but the 
main memory usage is still quadratic, which can become a limiting factor; 
moreover, it performs slower. In the following section, we describe a parallel 
approach as an extension of the wavefront scheme, for computing an opti-
mal alignment using only linear amount of space on the SPEs and the main 
memory. The alignments are also obtained in parallel during the computa-
tions on the SPEs. Therefore, this approach delivers much faster performance 
and avoids DMA transfers to the main memory until the whole alignment 
computation is fi nished. With only linear space usage, longer sequences can 
be aligned at once.
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4.4 A Hybrid Parallel Algorithm

In the rest of the chapter, we focus on a parallel approach incorporating 
a linear space strategy to increase the size of problems that can be solved 
using the collective SPE memory and also infer an optimal alignment. 
Hirschberg [18] presented a divide-and-conquer algorithm to obtain an 
optimal alignment while using linear space, and we incorporate this strat-
egy in the parallel algorithm discussed later. This scheme should be suffi -
cient for most global/local/spliced alignment problems as the sequences are 
unlikely to exceed several thousand bases. This alignment method for the 
CBE is based on the parallel algorithm by Aluru et al. [8], which we describe 
subsequently.

4.4.1 Parallel Alignment Scheme Using Prefix Computations

The parallel algorithm for computing global alignments in linear space given 
in [8] consists of two phases: (1) problem decomposition phase and (2) subproblem 
alignment phase. In the fi rst phase, the alignment problem is divided into p 
nonoverlapping subproblems, where p is the number of processing elements. 
Once the problem is decomposed, each processing element performs a linear 
space alignment algorithm, computing an optimal alignment for the corre-
sponding subproblem. The result from each processing element is then sim-
ply concatenated to obtain an optimal alignment of the actual problem. We 
describe the problem decomposition phase fi rst.

Initially, the sequence S1 is provided to all the processors and S2 is equally 
divided among them—each processor receives a distinct block of n

p  consecu-
tive columns to compute. Defi ne p special columns, ( ) nC k pk 1= + × , 0 ≤ k ≤ p – 1, 
of a table to be the last columns of the blocks allocated to each processing ele-
ment, except for the last one. The intersections of an optimal alignment path 
with these special columns defi ne the segment of the fi rst sequence to be 
used within a particular processing element independently of other blocks, 
thereby splitting the problem into p subproblems.

To compute the intersections of an optimal path with the special columns, 
the information on the special columns is explicitly stored. In addition to the 
score values, for each entry of a table a pointer is also computed. This repre-
sents the table and row number of the entry in the closest special column 
to the left that lies on an optimal path from C[0, 0] to the entry. The pointer 
information is also explicitly stored for the special columns. Conceptually, 
these pointers give the ability to perform a trace-back through special col-
umns without considering other columns. The entries of the dynamic pro-
gramming tables are computed row by row using parallel prefi x operation as 
described later in linear space (storing only the last computed row, and the 
special columns, thereby using O(m + np ) space).
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Parallel prefi x is a basic operation in parallel computing to compute prefi x 
sums. Given N data items x0, x1, . . . ,xN−1, and a binary associative operator ⊗ 
that operates on these data items and produces a result of the same type, the 
parallel prefi x operation is to compute the N partial sums s0, s1, . . . , sN−1, where 
si = x0 ⊗ x1 ⊗ x2 ⊗ . . . xi in parallel. This operation is used to compute the table 
entries. Consider computing row i of the tables C, D, and I after the (i – 1)th 
rows are already computed. The ith rows of C and I can be computed directly 
as they depend only on (i – 1)th rows (see Equations 4.1–4.3). After computing 
them, the ith row of D can be computed using parallel prefi x. Separating the 
terms that are already computed, let

{C i j g hW j max
I i j g h
[ , 1] ( )[ ]
[ , 1] ( )

− − += − − +
Then,

{=
− −

W jD i j max
D i j g

[ ][ , ]
[ , 1]

Let

X[j] = D[i,j] + jg

{W j jgmax j gD i j
[ ]

1)([ , 1]
+= −+−

{ +=
−

W j jgmax
X j

[ ]
[ 1]

As W[j] + jg is known for all j, X[j]’s can be computed using parallel prefi x 
with max as the binary associative operator. Then, D[i, j] (1 ≤ j ≤ n) can be 
derived using

D[i, j] = X[j] – jg.

On completion, a trace-back procedure along the special columns can 
be used to split the problem into p subproblems in O(p) time. The problem 
decomposition phase is visualized in Figure 4.4. Once the problem is divided 
among the processors, in the second phase each processing element performs 
an alignment on its corresponding segments of sequences while adopting 
Hirschberg’s technique [18, 19] to use linear space.

The hybrid parallel alignment algorithm on the CBE presented here is a 
combination of this special–columns-based parallel alignment algorithm 
with Edmiston’s wavefront communication pattern described previously 
in Section 4.3. In the wavefront alignment scheme, each processing element 
works on a block of the tables independently, communicating the last column 
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to the next processing element when done and then starts computation on its 
next block; the parallel prefi x approach requires the processing elements to 
communicate a single element when computing each row. If implemented 
as such on the CBE, these short but frequent communications for each row 
increase channel stalls in the SPEs, which is reduced to one bulk communi-
cation per block of size r in the wavefront scheme. Each communication leads 
to a synchronization event among the SPEs. To make most use of parallelism 
on the Cell processor, such events should be minimized. Moreover, the block 
size can be optimized for DMA transfer in the wavefront communication 
scheme, which makes it a better choice for the CBE. Furthermore, adopting 
the space-saving method is particularly important for the CBE because of the 
small local store on each SPE.

4.4.2 Problem Decomposition Using Wavefront Scheme

As described earlier in Section 4.3, each dynamic programming table is par-
titioned into a w × p matrix of blocks, the size of each block being nr p× , where 

mr w=  is the number of rows in a block. Each row of blocks contains as many 
blocks as SPEs (=p). Each column of blocks is assigned to a single SPE. The 

Sequence 2

Optimal alignment path

Sequence 1

P0 P1 P2 P3 P4 Pp–1

FIGURE 4.4
Block division in parallel-prefi x based special columns technique—the second sequence is 
divided into vertical blocks, which are assigned to different processors Pi. Special columns 
constitute the shaded rightmost column of each vertical block and the dotted circles show 
intersection of an optimal alignment path with the special columns, which are used for prob-
lem division. The shaded rectangles around the optimal alignment path represent the subdi-
visions of the problem for each processor. (From Sarje, A. and Aluru, S., IEEE Transactions on 
Parallel and Distributed Systems, 20(11):1600–1610, 2009. With permission. © 2009 IEEE.)
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parallel decomposition phase of the special–columns-based algorithm [8] is 
modifi ed to incorporate the wavefront communication scheme and store only 
the last column (special column) for each SPE block. This also enables use of 
double buffering in moving input column sequence, and overlapping of DMA 
transfers with block computations. Each SPE transfers portions of the second 
sequence allotted to it by the PPE from the main memory to its local store. For 
each computation block, it transfers blocks of the fi rst sequence using double 
buffering and performs the table computations in linear space, while storing 
all of the last column. Once done, it transfers the recently computed block of 
last column data to the next SPE and continues computation on the next block. 
This scheme for SPE Pj, 0 ≤ j < p with a total of p SPEs, is shown as pseudocode 
in Algorithm 2. Once the special columns containing pointers to the previous 
special columns are computed, the segments of the fi rst sequence are found, 
which are to be aligned to the segments of the second sequence on the cor-
responding SPEs, thereby decomposing the problem into p independent sub-
problems. This is followed by the sequential alignment phase.

Algorithm 2: Problem decomposition phase of the parallel 
space-saving algorithm for SPE Pj.

 1 Start DMA transfer of 2′S , the allocated S2 segment for SPE Pj
 2 l2 ← length( 2′S );
 3 w ← length(S1)/r;
 4 Start DMA transfer of currentBlock, the first r characters of S1;
 5 for r ← 1 to w − 1 do
 6   if j ≠ 0 then
 7     Receive signal from SPE Pj-1
 8   end
 9     Start DMA transfer of nextBlock, the next r characters of S1;
10   Wait for completion of currentBlock transfer;
11   for i ← 1 to r do
12     Compute entries of row i for three tables re-using 

single row buffer;
13    specialColumn[i] ← last entry in row i;
14   end
15   if j ≠ p − 1 then
16      DMA transfer last computed block of specialColumns 

to next SPE Pj+1;
17      Signal the next SPE Pj+1 that its first column has 

been written;
18   end
19   currentBlock ← nextBlock;
20 end
21 Wait for completion of currentBlock transfer;
22  Perform linear space table computation on currentBlock 

storing the last column in specialColumns array;
23  DMA transfer last block of computed specialColumns to next 

SPE;
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4.4.3 Subproblem Alignment Phase Using Hirschberg’s Technique

Once the alignment problem is decomposed into subproblems among all the 
SPEs, each SPE simultaneously computes optimal alignments for its local sub-
problem making use of Hirschberg’s space-saving technique [18, 19], which 
reduces the space usage from O(mn) to O(m + n) while enabling retrieval of 
an optimal alignment. This method is a divide-and-conquer technique where 
the problem is recursively divided into subproblems, the results of which are 
combined to obtain an optimal alignment of the original problem [20]. In this 
scheme, one of the input sequences is divided into two halves, and tables are 
computed for each half aligned with the other input sequence. This is done 
in the normal top-down and left-to-right fashion for the upper half and in a 
reverse bottom-up and right-to-left manner (aligning the reverses of the input 
sequences) for the lower half. For these computations, it is suffi cient to store a 
linear array for the last computed row. Once the middle two rows are obtained 
from the corresponding two halves, they are combined to obtain the optimal 
alignment score, dividing the second sequence at the appropriate place where 
the optimal alignment path crosses these middle rows. Care needs to be taken 
to handle the gap continuations across the division, and the possibility of mul-
tiple optimal alignment paths. The problem is subsequently divided into two 
subproblems, and this is repeated recursively for each subproblem. An illus-
tration of the recursion using this scheme is shown in Figure 4.5.

Sequence 2

Optimal alignment path

Sequence 1

m/8

m/4

n

m

m/2

FIGURE 4.5
The sequential recursive space-saving scheme—in Hirschberg’s technique, the problem is recur-
sively divided into subproblems around an optimal alignment path, while using linear space. 
The middle two rows are enlarged for the fi rst recursion showing an example of an optimal 
alignment path crossing them (not shown for subsequent divisions). The four bold arrows show 
the direction of computations for the two halves.  (From Sarje, A. and Aluru, S., IEEE Transactions 
on Parallel and Distributed Systems, 20(11):1600–1610, 2009. With permission. © 2009 IEEE.)
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On completion, each SPE contains an optimal alignment of its subproblem, 
and writes it to the main memory through DMA transfers. A concatenation 
of these alignments gives an overall optimal alignment.

Huang [21] describes how to perform space-saving local alignment by 
using space-saving global alignment as a building block. This technique can 
be used in conjunction with this hybrid algorithm to derive a space-saving 
local alignment on the CBE that produces an optimal alignment.

4.4.4 Further Optimizations: Vectorization and Memory Management

SPEs are vector processing units with 128-bit vectors. We present here a basic 
vectorization scheme for this algorithm, to take advantage of this level of 
parallelism on the CBE. In the problem decomposition phase, each of the 
table entries contains a score value along with a pointer to previous special 
column comprising the table number and row number. Using arrays of vec-
tors, all these data for one table entry are grouped together into one vector. 
To minimize space usage, single-dimensional arrays vecEntry[], representing 
a single row of the tables, are reused while computing each row within a 
block. The table entry for column j during computation of a particular row i 
is represented as the vector:

( ) ( ) ( )i j i j i jvecEntry j score tableNum rowNum, , ,[ ] , ,=
 

(4.4)

Here, score(i,j) represents the alignment score corresponding to the table 
entry [i,j], and the two entries tableNum(i,j) and rowNum(i,j) are, respectively, the 
table number and the row number, representing the pointer to the previous 
special column. Hence, there are three such vector arrays, corresponding to 
the tables C, D, and I for global alignment. Subsequent to problem decomposi-
tion phase, each processor runs Hirschberg’s space-saving  technique–based 
algorithm sequentially on its assigned local segments of the input sequences. 
During this phase, only the scores in each entry of the tables need to be 
stored. Hence, the vector construction is different—each entry in a particular 
vector corresponds to the score in each of the three different tables. Such a 
vector for column j, during computation of row [i], is defi ned as.

[ ] [ ] [ ]vecTables j C i j D i j I i j[ ] , , , , ,=  
(4.5)

where C[i, j], D[i, j], and I[i, j] represent the alignment scores for the respec-
tive tables. To use linear space, a single row is stored at a time in the vector 
array vecTables and is then reused for each row. This results in a single array 
for all the three tables. This way of vectorizing also helps in using various 
effi cient SPE intrinsics for computation of the entries.

As the vector buffers for table computation used in the two phases are con-
structed differently, dynamic memory management can be used to minimize 
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memory usage when integrating the two phases. The linear space sequential 
algorithm used in the second phase is a recursive algorithm. Owing to small 
local storage on each SPE, recursive implementations on the Cell are not rec-
ommended, but in this case the same row buffer can be reused for table calcu-
lations during the recursion, limiting the extra memory used within each step 
of recursion so that the stack does not grow rapidly. As mentioned previously, 
the lengths of sequences are split into two in each recursive call, which makes 
the number of recursive calls linear in the order of sequence lengths. Actual 
alignments are obtained in parallel on all the SPEs during the recursion [19].

4.4.5 Space Usage

The local store space usage for table computations (apart from space needed 
for input sequences and output alignment) on a single SPE during the problem 
decomposition phase is (m+n

p )sy bytes, where s is the number of dynamic pro-
gramming tables used (three in the case of global or local alignment), and y is 
the number of bytes needed to represent a single element of a single table (this 
comprises score, tableNum, and rowNum). The computation space usage during 
second phase is lower: (n

p  sy′) bytes, where y′ is number of bytes required to 
store a single table entry (here it is just the score). Owing to small local store of 
256 KB, a limit is put on the maximum input sequence lengths.

4.4.6 Performance of the Hybrid Algorithm

Here we present some basic performance graphs for the hybrid parallel algo-
rithm for global alignment on the CBE. More detailed results can be found in 
[16, 22]. The implementation used for these results was developed on the IBM 
Cell SDK 3.0, compiled with 03 optimization level, and run on a QS20 Cell Blade. 
(The CellBuzz cluster located at the Sony-Toshiba-IBM Center of Competence in 
Georgia Institute of Technology, Atlanta, U.S.A., was used for this purpose.) A 
QS20 Cell blade contains two Cell processors connected by an extension of the 
EIB through a coherent interface, providing a total of 16 SPEs. For these tests, 
the block size r was chosen to be 128 to optimize the DMA transfers.

The runtimes for varying number of SPEs are shown in Figure 4.6 along 
with the speedups. The speedups shown are obtained by comparing the 
parallel Cell implementation with (A1) the parallel implementation running 
on a single SPE on the Cell processor, (A2) a sequential implementation of 
the Hirschberg’s space-saving technique-based global alignment algorithm 
for a single SPE on the Cell processor (to completely eliminate the paral-
lel decomposition phase), and (A3) a generic sequential implementation run 
on a desktop with a 3.2 GHz Pentium 4 processor. On one SPE, the parallel 
implementation obviously performs worse than the serial implementation, 
as it includes the additional problem decomposition phase, which computes 
the whole table to merely return the entire problem as the subproblem to 
solve sequentially. This is used to study the scaling of the algorithm, and a 
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speedup of 11.25 on 16 SPEs is obtained. When compared with the sequential 
implementations, a speedup of almost 8 over a single SPE, and a speedup of 
more than 6.5 over the Pentium 4 processor are obtained.

It can be seen in the runtime/speedup graph (Figure 4.6) that the runtimes 
only show a marginal improvement as the number of SPEs is increased from 
8 to 12, as opposed to the near linear scaling exhibited below 8 and beyond 
12. The latency for data transfer from one Cell processor to the other Cell 
processor on the blade (off-chip communication) is much higher than any data 
transfer between components on a single processor (on-chip communication), 
and these communication times are signifi cant compared to the computa-
tional running time of the implementation. On using more than 8 SPEs, both 
the processors on the Cell blade are used and data needs to be transferred 
from one processor to the other. Owing to the higher off-chip communication 
latency, the runtime using 9 SPEs is similar (or even worse in case of other 
alignment problems discussed in later sections) to the runtime using 8 SPEs. 
A tradeoff is created with the off-chip communication time and computation 
time on the two processors. When amount of computation exceeds the com-
munication time, the runtime further starts to decrease, thereby increasing 
the speedups as seen in Figure 4.6 for more than 12 SPEs.

To assess the absolute performance of the Cell implementation, the metric 
of number of cells in the dynamic programming tables updated per second 
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FIGURE 4.6
Runtimes and speedup of global alignment implementation for an input of size 2048 × 2048. 
A1 is the parallel implementation running on single SPE, A2 is a sequential implementation 
on one SPE and A3 is a sequential implementation running on Pentium 4 processor. Both these 
sequential implementations do not contain the problem decomposition phase. (From Sarje, A. 
and Aluru, S., IEEE Transactions on Parallel and Distributed Systems, 20(11):1600–1610, 2009. With 
permission. © 2009 IEEE.) 
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(CUPS) is used and the results are shown in Figure 4.7, with varying number 
of SPEs. For an implementation where only the alignment scores are com-
puted, the absolute performance obtained would be higher because of algo-
rithmic differences [16].

4.5 Algorithms for Specialized Alignments

We next describe how to extend the parallel global alignment algorithm 
to more specialized alignment problems of spliced alignments and syn-
tenic alignments. Both these alignment problems involve identifi cation of 
an ordered set of subregions from one (spliced alignment) or both (syntenic 
alignment) input sequences, which form a part of the optimal alignment, 
while the remaining subregions are unaligned.

4.5.1 Spliced Alignments

During the synthesis of a protein, mRNA is formed by transcription from 
the corresponding gene, followed by removal of the introns and splicing 
together of the exons. To identify genes on a genomic sequence, or to infer 
gene structure, one can align processed products (mRNA, EST, cDNA, 
etc.) to the genomic sequence. To solve this spliced alignment problem, a 
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FIGURE 4.7
Cell updates per second for the global alignment on input size of 2048 × 2048 is shown in this graph 
for increasing number of SPEs and is given in MCUPS (106 CUPS). CUPS for 1 SPE is shown for the 
parallel implementation running on a single SPE. (From Sarje, A. and Aluru, S., IEEE Transactions 
on Parallel and Distributed Systems, 20(11):1600–1610, 2009. With permission. © 2009 IEEE.)
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solution similar to the one for global alignments is described here. While 
Gelfand et al.’s algorithm [3] has an O(m2n + mn2) runtime complexity, an 
O(mn) algorithm can be easily derived as a special case of Huang’s O(mn) 
time syntenic alignment algorithm [4] by disallowing unaligned regions 
in one of the sequences. This algorithm uses the three tables as before 
along with a fourth table H, which represents those regions of the gene 
sequence that are excluded from the aligned regions (i.e., they correspond 
to introns or other unaligned regions). A large penalty d is used in table H 
to prevent short spurious substrings in the larger sequence from aligning 
with the other sequence. Intuitively, a sequence of contiguous gaps with 
penalty greater than the threshold d is replaced by a path in the table H 
representing this region to be unaligned. The four tables are computed as 
follows:

( )i j

C i j
D i j

C i j score a b max I i j
H i j

[ 1, 1]
[ 1, 1]

[ , ] , [ 1, 1]
[ 1, 1]

− −
 − −= +  − −

− −  

(4.6)

C i j h g
D i j g

D i j max I i j h g
H i j h g

[ , 1] ( )
[ , 1]

[ , ] [ , 1] ( )
[ , 1] ( )

− − +
 − −=  − − +

− − +  

(4.7)

C i j h g
D i j h g

I i j max I i j g
H i j h g

[ 1, ] ( )
[ 1, ] ( )

[ , ] [ 1, ]
[ 1, ] ( )

− − +
 − − +=  − −

− − +  

(4.8)

C i j d
H i j max D i j d

H i j

[ 1, ]
[ , ] [ 1, ]

[ 1, ]

− −= − −
 −  

(4.9)

For a parallel algorithm for spliced alignments on the CBE, the same 
techniques as described for parallel global alignment can be followed. 
Algorithm 2 is used to compute the special columns for the four tables in 
this case. The vectorization also needs to incorporate the additional table 
H. For the problem decomposition phase, the vectorization used on the SPE 
for each of the tables is the same as that given by Equation 4.4. There will 
be four such arrays, one for each of the tables. Owing to the presence of 
the fourth array, memory usage for this problem is higher than that for the 
global alignment problem. The vectorization for the second phase includes 
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an entry for the fourth table, using the following structure for column [j] 
and a particular row i:

vecTables j C i j D i j I i j H i j[ ] [ , ], [ , ], [ , ], [ , ]=  (4.10)

4.5.2 Performance of Parallel Spliced Alignment Algorithm

An implementation of the spliced alignment algorithm, as an extension and 
modifi cation of the global alignment implementation, is used to obtain the 
following performance graphs. Figure 4.8 shows the runtimes and speed-
ups obtained from a synthetic dataset on varying number of SPEs.

To demonstrate the performance on real biological data, Figure 4.9 shows 
the runtimes and speedups for aligning the phytoene synthase gene from 
Lycopersicum (tomato) with the messenger ribonucleic acid (mRNA) corre-
sponding to this gene’s transcription. The scaling obtained is similar to that 
obtained for global alignment implementation. The difference in speedups in 
Figures 4.8 and 4.9 is mainly attributable to the different input sizes (the artifi -
cial data size is larger than the biological data). Moreover, the synthetic dataset 
is random, which results in a more uniform problem decomposition among 
the SPEs, while in the actual biological data the problem sizes for each SPEs 
may be quite different because of the presence of larger unaligned regions.
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FIGURE 4.8
The runtimes of the spliced alignment implementation and the respective speedups on various 
number of SPEs for a synthetic input of size 1408 × 1408 is shown in this graph. The speed-
ups are obtained by comparison with (A1) parallel implementation running on one SPE, (A2) 
sequential implementation for a single SPE, and (A3) sequential implementation on a Pentium 
4 desktop. (From Sarje, A. and Aluru, S., IEEE Transactions on Parallel and Distributed Systems, 
20(11):1600–1610, 2009. With permission. © 2009 IEEE.)
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4.5.3 Syntenic Alignments

Syntenic alignment, used to compare sequences with intermittent similari-
ties, is a generalization of spliced alignment allowing unaligned regions in 
both the sequences. This is used to discover an ordered list of similar regions 
separated by dissimilar regions that do not form part of the fi nal alignments. 
This technique is applicable to comparison of two genes with conserved 
exons, such as counterpart genes from different organisms. A dynamic pro-
gramming algorithm for this has been developed by Huang [4]. Similar to 
spliced alignment, a large penalty d is used to prevent alignment of short sub-
strings. This dynamic programming algorithm also has four tables, but with 
an extension in the table H that both sequences can have substrings excluded 
from aligning. Table defi nitions for C, D, and I remain the same as Equations 
4.6–4.8 for spliced alignment. Defi nition of table H is modifi ed as follows:

C i j d
D i j d
C i j d

H i j max I i j d
H i j
H i j

[ 1, ]
[ 1, ]
[ , 1]

[ , ] [ , 1]
[ 1, ]
[ , 1]

− −
 − −
 − −=  − −

−
−  

(4.11)

A parallel algorithm for solving the syntenic alignment problem is 
described in [10] that is similar to the parallel global alignment algorithm 
described earlier in this chapter. To develop a parallel algorithm for the 
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FIGURE 4.9
This graph shows the runtimes and speedups of spliced alignment implementa- tion on vari-
ous number of SPEs on the Cell blade for phytoene synthase gene from Lycopersicum with its 
mRNA sequence (1792 × 872). (From Sarje, A. and Aluru, S., IEEE Transactions on Parallel and 
Distributed Systems, 20(11):1600–1610, 2009. With permission. © 2009 IEEE.)
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CBE, Algorithm 2 is used with adaptation to compute the modifi ed table 
H. Table H can derive scores from either an entry in previous row or a pre-
vious column. This directionality information is important to retrieve the 
alignment and needs to be stored explicitly. Another way to view this extra 
information is to split the table H into two, Hh and Hv, where they have 
the restrictions of alignment paths going only horizontally or only verti-
cally, respectively. Because of this overhead, space requirement in syntenic 
alignment implementation is even higher. The same scheme for vectoriza-
tion can be followed for construction of the table entries as in Equations 4.4 
and 4.10.

4.5.4 Performance of Parallel Syntenic Alignment Algorithm

The results shown here for syntenic alignment implementation on the CBE 
have been obtained using both synthetic data and alignment of a copy of the 
phytoene synthase gene from Lycopersicum (tomato) and Zea mays (maize). The 
runtimes and speedups of the syntenic alignment implementation run on 
QS20 Cell blade are shown in Figure 4.10. The performance results for syntenic 
alignment of a copy of the phytoene synthase gene from Lycopersicum (tomato) 
and Zea mays (maize) are shown in Figure 4.11. The speedup is better for the 
biological data mainly because of its larger size than the synthetic dataset.
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4.6 Ending Notes

All the three hybrid parallel alignment algorithms run in time proportional 
to the product of the lengths of the input sequences. This fact is supported 
by the scaling graphs shown in Figure 4.12. It shows a linear scaling of run-
times of the algorithms with varying product of input sequence sizes.

The performance of the hybrid parallel algorithms for pairwise global/
local, spliced, and syntenic alignments for biological sequences show that 
the Cell processor is a promising platform for developing high- performing 
applications in bioinformatics that use sequence alignments as a funda-
mental tool. Depending on the type of the application, the various par-
allel algorithms presented in this chapter would be helpful to develop 
an effi cient implementation. The alignment algorithms provide an easy 
overlapping of computations with DMA transfers, a key to achieve high 
parallel effi ciency on multicore architectures. These algorithms clearly 
demonstrate the use of parallelism at the level of SPEs through the prob-
lem decomposition and data distribution, and within the SPEs through 
vectorization.
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The reconstruction of phylogenetic (evolutionary) trees from molecular 
sequence data is a comparatively old problem in bioinformatics, given that 
Joe Felsenstein’s seminal paper [1] on computing the maximum likelihood 
score on trees was already published in 1981, that is, almost 3 decades ago. 
However, signifi cant advances in wet-lab molecular sequencing techniques 
with the introduction of, for example, the 454 sequencers [2], are generat-
ing a highly challenging, unprecedented molecular data fl ood. In addition, 
recent years have witnessed the emergence of multicore and other parallel 
architectures such as graphics processing units (GPUs) or the IBM Cell that 
pose new challenges to the fi eld of phylogenetic or phylogenomic analy-
sis (reconstruction of phylogenies at the genome scale), in particular with 
respect to orchestrating the phylogenetic likelihood function (PLF). In 
fact, the phyloinformatics community faces a continuous struggle to keep 
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up with the rapid speed of data accumulation and provide ever more scal-
able and powerful analysis tools; that is, we just try to keep pace with data 
accumulation.

Memory footprints of more than 50 GB, just to compute the likelihood, on a 
single, fi xed tree as well as resource requirements exceeding 2 million cen-
tral processing unit (CPU) hours to simply conduct a comprehensive and 
thorough real-world ML analysis on one large phylogenomic dataset are 
becoming the norm, rather than the exception.

In the present chapter I will attempt to review the underlying concepts, 
current developments, and advances in orchestrating the PLF on paral-
lel computer architectures ranging from fi eld-programmable gate arrays 
(FPGAs) up to the IBM BlueGene/L supercomputer. The PLF typically 
consumes more than 95% of total execution time in current state-of-the-art 
 maximum likelihood and Bayesian tools for phylogenetic tree reconstruc-
tion. The acceleration and parallelization of the PLF is thus—apart from 
algorithmic innovations—the key component to handle the data fl ood to 
improve scalability of the respective tools. I will also outline potential future 
developments and challenges.

This chapter is organized as follows: In Section 5.1 I will briefl y introduce 
the fi eld of phylogenetic inference and its applications to medical and biolog-
ical research. In the following Section 5.2, I will outline the PLF and respec-
tive important numerical issues and sequential optimization strategies. In 
the subsequent Section 5.3, I will discuss the basic fi ne-grain parallelization 
strategies for the PLF. Thereafter (Section 5.4), I will review recent adapta-
tions to accelerators and supercomputers. I will conclude in Section 5.5 with 
a summary of potential future challenges with respect to the PLF per se, par-
allelization strategies, and necessary adaptations to different input dataset 
shapes.

5.1 Phylogenetic Inference

The goal of phylogenetic inference consists in reconstructing the evolu-
tionary history of a set of n present-day organisms from their respective 
molecular sequence data. Those n organisms, also called taxa, may also 
be represented by a concatenation of molecular data from various genes 
or even the whole genome. Thus, the molecular sequence representing one 
taxon may consist of a mixture of DNA, protein, and even morphological 
or binary characters. A phylogenetic tree, or simply a phylogeny, is usu-
ally represented as unrooted binary tree, where the n present-day taxa are 
located at the leaves of the tree and the inner nodes represent extinct com-
mon ancestors.
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The input data for a phylogenetic analysis under maximum likelihood 
consists of a “good” multiple sequence alignment of the n taxa; that is, by 
insertion of gaps, or essentially nucleotide insertion and deletion events, 
all sequences in the input data will have the same length m after the align-
ment step. While there also exist simpler methods for alignment-free tree 
reconstruction, they have been shown to be generally less accurate [3, 4] than 
alignment-based methods. Alignments that comprise sequence data from 
several genes are called multigene or phylogenomic alignments. A simple exam-
ple for a multiple sequence alignment of DNA data for human, mouse, cow, 
and chicken is provided below.

Cow ATGGCATATCCCA-ACAACTAGGATTCCAAGA----
Chicken ATGGCCAACCACTCCCAACTAGGCTTTC-AGACGCC
Human ATGGCACAT---GCGCAAGTAGGTCTAC-AGACGCT
Mouse ATGGCCCATTCCAACTTGGTCTACAAGACGCCACAT

An open issue, especially within the context of real-world analyses, is the 
defi nition of what a “good” multiple sequence alignment actually is, since no 
objective criterion is available to judge alignment quality. In a recent Science 
paper Loytynoja and Goldman [5] challenged the established opinion on 
how a “good” alignment should look like by arguing in favor of a phylogeny-
aware view of the alignment problem. In addition, the multiple sequence 
alignment problem is a computationally hard problem by itself. Since, this 
chapter mainly focuses on the computational aspects of phylogenetic infer-
ence, we will just assume that the alignment is given, though the problems 
of phylogenetic inference and multiple sequence alignment should be solved 
simultaneously in an ideal world, but current approaches [6–8] are still too 
slow and too resource intensive for practical purposes, especially when we 
consider current input alignment growth.

It is important to note that provided any biologically meaningful opti-
mality criterion to score a given tree topology, such as ML or Maximum 
Parsimony [9], the underlying optimization problem for fi nding the opti-
mal tree is NP-hard [10, 11]. The number of distinct alternative unrooted tree 
topologies for n taxa is = −∏ 3 (2 5)

n
i i  [12]. While there exists a vast amount of liter-

ature covering heuristic search algorithms for the ML optimization problem 
(see [13] for an overview), they all rely on repeatedly executing the likelihood 
function to explore the tree space, which represents the main computational 
and memory bottleneck.

Phylogenetic trees have many important applications in medical and bio-
logical research; current state-of-the-art ML phylogeny programs such as 
PAML [14], PHYML [15], PAUP [16], GARLI [17], RAxML [18], IQPNNI [19], 
TEEFINDER [20], or likelihood-based Bayesian programs such as MrBayes 
[21], PhyloBayes [22], or BEAST [23] have accumulated well above 20,000 cita-
tions to date. Phylogenies can be used, for example, to infer the evolutionary 
history of pappilomaviruses that are associated with cervical cancer [24], to 
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disentangle the evolutionary history of Acer [25] (maple trees), or to analyze 
bacterial communities in permafrost soils [26]. A recent phylogenomic study 
in Nature improved the accuracy of the animal tree of life [27] while another 
recent study in Science assessed the rates of evolution (essentially the speed 
of evolution) and their association to life history in fl owering plants [28]. 
Those two papers also point toward a fundamental problem that will need 
to be tackled in the future: the phylogenomic study [27] contains less than 
100 taxa but a large number of 150 genes—an on-going follow-up study [29] 
even comprises about 1,000 genes. The study by Smith and Donoghue [28] 
is based on two datasets with less than ten genes, but more than 4,000 and 
13,000 taxa respectively. The datasets used have signifi cantly distinct shapes 
that have an impact on algorithm design, scalability, and future paralleliza-
tion strategies that need to be deployed. Here I introduce the term “well-
shaped” alignments for few-taxa/many-gene input datasets and “badly 
shaped” for many-taxa/few-gene datasets (see Figure 5.1). Evidently, badly 
shaped datasets are harder to analyze algorithmically and also more diffi cult 
to parallelize.

5.2 The Phylogenetic Likelihood Function

As already mentioned, the input for a phylogenetic analysis under ML 
consists of a multiple sequence alignment with n sequences (also denoted 
as taxa or tips) and m alignment columns. The branch length values on 
the tree that are returned by ML essentially represent the relative time 

Few taxa

Few genes

Many taxa
“Badly shaped”
hard to parallelize

“Well-shaped”
easy to parallelize

Many genes

FIGURE 5.1
Badly shaped and well-shaped alignments.
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of evolution between nodes in the tree. Here we will initially consider 
only how to compute the likelihood on a fi xed, given, tree topology. Apart 
from the tree topology one also needs several ML model parameters. One 
important parameter is the instantaneous nucleotide substitution matrix 
Q, which contains the transition probabilities for time dt between binary 
(2 x 2 matrix, states: 0 or 1), nucleotide (4 x 4 matrix, states: A, C, G, T), or 
for instance, amino acid (20 x 20 matrix) characters. The transition prob-
ability matrix for time (branch length) t is then computed as P(t) = eQt and 
can be computed via a respective eigenvector/eigenvalue decomposition. 
Note that there also exist various models to accommodate ribonucleic 
acid (RNA) secondary structure information, that is, models that allow to 
group together columns and hence let them evolve together in the respec-
tive DNA/RNA alignment. For secondary structure there exist 6-state (6 x 
6 Q-matrix), 7-state, and 16-state models (for a summary see [30]). Recently, 
61-state codon models (see, e.g., [31]) for protein-coding genes, which group 
together triplets of DNA characters, have also received considerable atten-
tion. As we will see below, the computational complexity for computing the 
likelihood of a single column is directly proportional to the square of the 
number of states. Using DNA as an example, in addition to the Q matrix 
we also need the prior probabilities of observing the nucleotides, for exam-
ple, πA, πC, πG, πT for DNA data, which can be determined empirically from 
the alignment or obtained via an ML estimate. We also need the α shape 
parameter that forms part of the Г model [32] of rate heterogeneity. The Г 
model accounts for the biological fact that different columns in the align-
ment evolve at different speeds. While the Г model is well-established and 
the de facto standard, there exist computationally much more effi cient ways 
to incorporate rate heterogeneity, such as the CAT (category) approxima-
tion of rate heterogeneity [33], which represents perhaps the most under-
estimated paper of the author, despite its huge computational advantages, 
especially in the phylogenomic era. Finally, one also requires the 2n – 3 
branch lengths in the unrooted tree topology.

Given all these parameters to compute the likelihood of a fi xed unrooted 
binary tree topology, initially one needs to compute the entries for all inter-
nal probability vectors (located at the inner nodes) that contain the probabili-
ties P(A), P(C), P(G), P(T) of observing an A,C,G, or T at each site/column c, 
where c = 1 . . . m of the input alignment at the specifi c inner node. Those 
probability vectors are computed bottom-up from the tips toward a virtual 
root that can be placed into any branch of the tree. This important property 
of ML holds as long as the nucleotide substitution model is time reversible; 
that is, evolution occurred in the same way if followed forward or backward 
in time. The most commonly used and general model for DNA substitution 
is the general time reversible (GTR) model [34] of nucleotide substitution. 
However, there also exist proposals for comparatively effi cient and more 
realistic nonreversible substitution models [35]. The procedure described 
earlier for computing the likelihood is also know as the Felsenstein pruning 
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algorithm [1]. Under certain standard model restrictions (time reversibility 
of the model) the overall likelihood score will be the same regardless of the 
placement of the virtual root.

As already mentioned, every probability vector entry ( )L c
G

 at position 
c (c = 1 . . . m) at the tips and at the inner nodes of the tree topology contains 
the four probabilities P(A), P(C), P(G), P(T) of observing a nucleotide A, C, 
G, T at a specifi c column c of the input alignment. The probabilities at the 
tips (leaves) of the tree for which observed data (e.g., the DNA sequences 
of the currently living organisms under study) is available are set to 1.0 for 
the observed nucleotide character at the respective position c, for example, 
for the nucleotide A: ( ) [1.0,  0.0,  0.0,  0.0]L c =

G
. Given a parent node k, and 

two child nodes i and j (with respect to the virtual root), their probability 
vectors 

( )i
L
G

 and 
( )j

L
G

, the respective branch lengths leading to the children 
bi and bj, and the transition probability matrices P(bi), P(bj ), the probability 
of observing an A at position c of the ancestral (parent) vector 

( )
( )

k
AL c
G

 is 
computed as follows:

 

( ) ( ) ( )

( ) (( ) ( ) ) ( )
= =

  =     
∑ ∑

JG JG JGT Tk i j
A S SAS i AS j

S A S A
L c P b L c P b L c

 
(5.1)

As already mentioned, the transition probability matrix P(b) for a given 
branch length b is obtained from Q via P(b) = eQb. Once the two probability 
vectors 

( )i
L
G

 and 
( )j

L
G

 to the left and right of the virtual root (vr) have been 
computed, the likelihood score l(c) for an alignment column c (c = 1 . . . m) can 
be calculated as follows, given the branch length bvr between nodes i and j:

 
( ) ( )

( ) ( ( ) ( ) ( ))π
T Ti j

R SR RS vr
R A S A

l c L c P b L c
= =

= ∑ ∑
JG JG

 (5.2)

The overall score is then computed by summing over the per-column log 
likelihood scores as indicated in Equation 5.3.

1

( ( ))
m

c

LnL log l c
=

= ∑  (5.3)

An important property of the likelihood function is the assumption that 
sites evolve independently; that is, all entries c of the probability vectors L

G
 

can be computed independently. This property represents the main source 
of fi ne-grain parallelism in the PLF. Therefore, for a full tree traversal, only 
one single reduction operation and hence synchronization point is required 
when the virtual root is reached (see Equation 5.3).

When the Г model of rate heterogeneity is used, the computation is slightly 
more complex, since initially the Г function is approximated by usually four 
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discrete rates r0, r1, r2, r3 using standard numerical techniques (see, e.g., [36]). 
Then, for each branch we need to compute four transition probability matri-
ces: 0( ) QtrP t e= ,  . . . , 3( ) QtrP t e=  and also need to calculate a separate probabil-
ity vector L

G
 for every discrete rate, which results in a four-fold increase in 

fl oating point operations and memory consumption of the inner probability 
vectors. The log likelihood at the root is then calculated as.

0 1 2 3

1

(0.25 ( ( ) ( ) ( ) ( )))
m

c
LnL log l c l c l c l c

=

= × + + +∑  (5.4)

where l0(c), . . . ,l3(c) are the per-site likelihoods at column c of the alignment 
for the 4 discrete Г rates r0, . . . ,r3.

To compute the maximum likelihood value for such a fi xed tree  topology 
all individual branch lengths, as well as the substitution rates in the 
Q matrix and the α shape parameter of the Г distribution, must also be 
optimized via an ML estimate. For the Q matrix and the α shape param-
eter the most common approach in state-of-the-art ML implementations 
consists in using Brent’s algorithm [37]. A key computational issue is that 
to evaluate changes in Q or α the entire tree needs to be retraversed, that 
is, a full tree traversal needs to be conducted from the leaves toward the 
virtual root to correctly recompute the likelihood. For the optimization of 
branch lengths the Newton–Raphson method is commonly used. To opti-
mize the branches of a tree, the branches are repeatedly visited and opti-
mized one by one until the achieved likelihood improvement (or branch 
length change) is smaller than some predefi ned ϵ. Since the branch length 
is optimized with respect to the likelihood score, the Newton–Raphson 
method operates only on a single pair of probability vectors ( )i

L
G , ( )j

L
G  that are 

located at either ends of the branch to be optimized. The Newton–Raphson 
method requires the computation of the fi rst and second derivative of the 
likelihood function. Because we intend to maximize the likelihood func-
tion, we need to determine the root of the fi rst derivative of the likeli-
hood function. Note that a reduction operation to compute the overall 
value (accumulate over all columns) for the fi rst and second derivative is 
required at every iteration of the Newton–Raphson procedure. Evidently, 
when a branch of the tree is updated this means that a large number of 
probability vectors L

G
 in the tree are affected by this change and hence 

need to be recomputed to maintain a state that is consistent with the new 
branch length confi guration.

An important implementation issue is the assignment of memory space 
for the probability vectors to inner nodes of the tree. There exist two alterna-
tive approaches: a separate vector can be assigned to each of the three out-
going branches of an inner node (PHYML uses this approach), or only one 
vector can be assigned to each inner node (GARLI, RAxML, and MrBayes, 
among others deploy this technique). In the latter case, which evidently is 
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signifi cantly more memory effi cient, the probability vectors always main-
tain a rooted view of the tree; that is, they are oriented toward the current 
virtual root of the tree. In the case that the virtual root is then relocated 
to a different branch (e.g., to optimize the respective branch length), a cer-
tain number of vectors, for which the orientation to the virtual root has 
changed, need to be recomputed. If the tree is traversed in an intelligent 
way, for example, for branch length optimization, the number of probabil-
ity vectors that will need to be recomputed after relocations of the virtual 
root can be minimized. An example for this type of data organization is 
provided in Figure 5.2. RAxML also uses this type of rooted probability 
vector organization to handle large-scale alignments, since current phy-
logenomic datasets can require up to 89 GB of main memory under the Г 
model, even when using this effi cient organization of the inner (ancestral) 
vectors.

5.2.1 Avoiding Numerical Underflow

The methods deployed to avoid numerical underfl ow via appropriate scaling 
mechanisms represent an important implementation and performance issue. 
As can be derived from Equation 5.1 the values in the probability vectors L

G
 at 

the inner nodes of the tree will progressively become smaller as we approach 
the virtual root in the tree, since we are always conducting multiplications 
with probability values in the transition probability matrix P(t). Therefore, 
for trees with many taxa, measures need to be taken to avoid numerical 

Virtual Root

Virtual root

Relocate virtual root

Relocate and 
Recompute

FIGURE 5.2
Rooted organization of the probability vectors at inner nodes. This fi gure also shows the cyclic 
distribution of probability vector entries to two threads.
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underfl ow in the probability vectors. A detailed analysis of numerical issues 
regarding large-scale phylogenetic analyses is provided in [38].

Scaling of the probability vector entries may be conducted as follows: 
at a column c of an ancestral probability vector for DNA data L

G
 we scale 

the entries if ( ) ( ) ( ) ( )A C G TL c L c L c L c< ∧ < ∧ < ∧ <
JG JG JG JG

� � � � , where ϵ = 1/2256 for 
double precision (DP) and ϵ = 1/232 for single precision (SP) arithmetics. 
Note that the decision to scale only a probability vector entry when all 
values in that column c are smaller than ε may potentially be dangerous 
if the differences between the individual values become too large. So far, 
we have not observed any numerical instability because of this strategy 
in RAxML, but this potential problem may become prevalent for 61-state 
codon models.

If probability vector column c at vector L
G

 needs to be scaled, we simply 
multiply all entries ( ), ( ), ( ), ( )A G TCL c L c L c L c

JG JG JG JG
 by 2256 under DP or 232 under SP, 

respectively (see Section 5.2.3 for a discussion of single vs. double precision 
arithmetics trade-offs).

To correct for the scaling multiplications once the virtual root is reached, 
we need to keep track of the total number of scaling events conducted per 
column. We use integer vectors U

JJG
 that maintain the scaling events and cor-

respond to the respective probability vectors at inner nodes. As we traverse 
the tree to compute an ancestral vector 

( )k
L
G

 from two child vectors 
( )i

L
G

 and 
( )j

L
G

 the scaling vector is initially updated as follows 
( ) ( ) ( )

( ) : ( ) ( )
k i j

U c U c U c= +
JJG JJG JJG

 . 
Then, if an entry of 

( )k
L
G

 needs to be scaled at position c we increment 
( ) ( )

( ) : ( ) 1
k k

U c U c= +
JJG JJG

. The scaling vectors at the tips of the tree are not allocated, 
but implicitly initialized with 0.

At the virtual root, given 
( )i

L
G

, 
( )j

L
G

 and the corresponding scaling vectors 
( )i

U
JJG

, 
( )j

U
JJG

 we can compute the likelihood as follows:

( ) ( )( ) ( )
( ) ( )

256

1
( ) ( ( ) ( ) ( ))

2

i jU c U c T Ti j
R SR RS vr

R A S A
l c L c P b L cπ

+

= =

 =   
∑ ∑

JG JG
 (5.5)

If we take the logarithm of l(c) and ϵ = 1/2256 this can be rewritten as:

( ) ( )
( ) ( )( ( )) ( ( ) ( ) log( )) log ( ( ) ( ) ( ))π

= =

 = + +   
∑ ∑

JG JGT Ti ji j
R SR RS vr

R A S A
log l c U c U c L c P b L c�  (5.6)

This does not appear to be the most effi cient method for likelihood scaling, 
in particular because of the conjunction of comparisons on fl oating point 
numbers that we use to decide if scaling is required at every single itera-
tion of the for loop over a vector L

G
. However, our experiments with vari-

ous alternative scaling methods indicate that this method is indeed very 
effi cient.
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An alternative to the aforementioned method consists of keeping track of 
scaling events across all entries c = 1 . . . m of a probability vector L

G
. In this 

case every inner node of the tree will store only one integer value u instead 
of an integer arrayU

JJG. As we traverse the tree to compute an ancestral vector 
( )k

L
G

 from two child vectors ( )i
L
G

 and ( )j
L
G

 the single scaling entry at node k, uk, 
is computed as uk := ui + uj. During the computation of vector ( )k

L
G

 we simply 
count the total number s of scaling events that occurred along this vector, 
where 0 ≤ s ≤ m − 1 and add it to the node scaling value uk := uk + s. When we 
reach the root we compute the likelihood across all sites as follows:

1

( ) log( ) log( ( ))
m

i j
c

LnL u u l c
=

= + + ∑�  (5.7)

The method outlined in Equation 5.7, which was suggested to us by Minh 
Bui from the University of Vienna, clearly requires less arithmetic opera-
tions and less memory for scaling. On a large phylogenomic DNA dataset 
with 404 taxa and 11 genes we measured a performance improvement of 
7% for RAxML with the aforementioned scaling method. While all of this 
may appear relatively simple, in the real world and for a widely used tool 
such as RAxML it is not. The problem is that the aforementioned method 
does not allow to obtain correct per-site (per-column) log likelihood val-
ues log(l(c)) that are required, for example, to conduct some of the standard 
statistical tests (Goldman et al. provide an excellent summary of statisti-
cal tests in [39]) to assess if two trees have signifi cantly different likeli-
hood scores or not. In reality we face diffi cult software engineering issues 
that are outlined by the aforementioned example, and constantly have to 
strive for a balance between effi ciency and code complexity. In the afore-
mentioned example we decided to integrate both approaches, for example, 
scaling with scaling vectors and with per-node scaling counters in RAxML 
to offer faster scaling and faster likelihood computations when the per-site 
log likelihood scores are not required, which is the case for tree searches, 
but at the same time maintain all functionalities of RAxML, for example, 
the computation of the extended likelihood weights ELW statistics [40] or 
the option to print per-site log likelihood values to a fi le for usage with the 
CONSEL package [41].

Overall, more research is required to devise better scaling procedures, 
which as we demonstrate here can have a huge impact on program perfor-
mance, especially under SP, which in turn is important for GPU implementa-
tions of the PLF.

5.2.2 Memory Requirements

The memory requirements for ML-based phylogeny programs are domi-
nated by the space required for the inner probability vectors L

G
 and, to a lesser 

extent, the inner scaling vectors U
JJG or per-node scaling numbers u. Depending 
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on the memory organization and data structures used, we need to assign at 
least one probability vector and one scaling vector to each of the n–2 inner 
(ancestral) nodes of the tree. Since for the values at the leaves we only have, 
for example, 15 alternative probability vector entries using ambiguous DNA 
character encoding, we need to store only one vector L

G
 of length 15 that 

can then be accessed using the raw input sequences as an index. The input 
sequences can be stored as simple character arrays and the respective small 
table may be viewed as a lookup table. Hence, the memory requirements 
for computing the likelihood on a DNA alignment (without accommodating 
for rate heterogeneity) with n taxa and m columns are n · m · 1 bytes for the 
input sequences, (n – 2) · m · 4 · 8 bytes for the probability vectors, and (n – 
2) · m · 4 bytes for the scaling vectors. If we use the standard Г model of rate 
heterogeneity with 4 discrete rates r0, . . . ,r3 the space requirements for the 
probability vectors increase to (n – 2) · m · 16 · 8 bytes, while the remaining 
values remain unchanged. Hence, the memory requirements are dominated 
by the space required for the probability vectors located at the inner nodes of 
the tree and can be reduced by almost factor 2 using single precision arith-
metics. In addition, when the CAT approximation of rate heterogeneity [33] is 
being used, memory requirements can be reduced by a factor of 4 compared 
to the standard Г model. This is an important issue, since we are receiving 
an increasing number of reports from RAxML users that they are encoun-
tering memory shortages. Memory requirements can be reduced dramati-
cally, especially for large phylogenomic alignments by using SP arithmetics 
and the CAT approximation. On a protein dataset with 232 taxa and 349,718 
alignment sites, the Г model under double precision requires 44GB of main 
memory compared to only 5GB of memory for CAT and single precision. 
Such a reduction in memory requirements, which can be further improved 
(see [42]) by taking into account the large number of missing sequence data 
in phylogenomic alignments, will help many typical users who do not have 
access to high-performance computing (HPC) resources to conduct large-
scale analyses on their desktop.

5.2.3 Single or Double Precision?

One of the key design decision when implementing the PLF is whether to 
use single or double precision fl oating point arithmetics for the implemen-
tation. As outlined in the previous section, a single-precision implementa-
tion can yield signifi cant computational advantages and memory savings. 
Memory savings are the main reason why MrBayes uses single precision. 
Note that memory consumption is an even more critical issue for Bayesian 
approaches that typically deploy a Metropolis-Coupled Markov-Chain 
Monte-Carlo [43] approach with several heated and one cold chain. The 
usage of multiple chains means that as many trees and associated data 
structures as there are chains need to be kept in memory and hence the 
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memory footprint is proportional to the number of chains as well. The key 
dilemma here is that more chains will yield better results, or at least higher 
confi dence for convergence assessment, but that they will also require more 
memory. A reduction of the number of chains because of memory shortage 
may have fatal effects on the quality of the trees produced by Bayesian 
inferences (see [44] for a discussion of potential pitfalls of Bayesian phylo-
genetic inference).

Another key driving factor to work on SP implementations is the current 
performance gap between SP and DP arithmetics on GPUs that amounts to 
one order of magnitude. At present, it is hard to predict if, as has happened 
with the IBM Cell, DP performance will dramatically improve on GPUs in 
the future. The SP-DP performance gap on GPUs is also one of the main 
reasons why GARLI (Derrick Zwickl, personal communication) and RAxML 
[45] have recently been ported to SP arithmetics.

The standard approach currently consists in conducting the numerically 
sensitive operations, such as Eigenvector/Eigenvalue decomposition, compu-
tation of the P(t) matrix under DP, then cast P(t) to SP and conduct the compu-
tation of the probability vector entries in L

G
, that is, the main computational 

bulk, under SP. The “classic” ML programs RAxML and GARLI also allow 
for a more straightforward assessment of the impact of the induced loss of 
precision on topological accuracy, because every search under SP will just 
return one single tree that can then be compared to the tree returned by the 
DP likelihood kernel.

Following an analysis in [45] and a personal communication with Derrick 
Zwickl, it is not necessary to adopt a mixed-precision approach as proposed, 
for example, for systems of linear equations in [46], but it suffi ces to use SP 
all the way, since the tree topology has the by far largest infl uence on the 
likelihood score and small deviations in likelihood scores between SP and 
DP are negligible. The observation that modifi cations of the tree topology 
yield the largest improvements in likelihood scores is also used to devise 
fast heuristic search algorithms (see [15, 17, 18, 47–49] for examples). As out-
lined in [45] SP also allows for better exploitation of general-purpose CPUs 
by SSE3 vector instructions than DP, because four, instead of two, operations 
can be executed per cycle. Surprisingly, current commercial compilers such 
as the Intel icc compiler (versions 10.x and 11.x) are not able to automati-
cally  vectorize the RAxML code despite the fact that the loops appear to be 
relatively  straightforward to vectorize to the human eye.

However, there are two major drawbacks to the usage of SP. As described 
in Section 5.2.1 the scaling threshold ε for SP is signifi cantly smaller than for 
DP, which means that a signifi cantly higher number of scalings, that is, mul-
tiplications by 232, are required. We fi nd that the number of such multiplica-
tions increases by one order of magnitude in the SP version of RAxML. This 
actually led to a performance decrease, despite using SSE3 intrinsics under 
SP, compared to DP. However, in the experiments described in [45], we used 
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only single-gene alignments with relatively small memory footprints. A fol-
low-up analysis on the aforementioned phylogenomic alignment with 232 
taxa and 349,718 columns showed that the SP version is actually faster than 
the DP version, both under Г and under the CAT approximation. Under the 
WAG+Г [50] the DP version (without SSE3) required 37.7 hours, compared to 
the SP version that required 22 hours and the SSE3 vectorized SP version that 
required only 13.4 hours for the fi rst six iterations of the search algorithm on 
a SUN x4600 multicore system with 32 CPUs and 64GB of main memory. We 
assume that this impressive speedup is partially due to cache effects, since 
the memory footprint is reduced from 44 GB to about 22 GB, but this hypoth-
esis requires further analysis.

While these results are promising, the second major drawback of SP is a 
loss of accuracy for datasets with more than 1,000 taxa. While we have dem-
onstrated in [45] that the SP implementation in RAxML is reliable up to about 
2,000 taxa, further tests have revealed that apparently for alignments with 
more than 2,000 taxa the loss in precision induced by SP arithmetics is too 
great in order to achieve numerical stability. We have found that at least the 
RAxML SP implementation is not able to optimize branch lengths and model 
parameters on trees with 4,000, 6,000, and 7,000 taxa. This may simply be a 
problem that is associated with the specifi c implementation in RAxML, but 
we are not aware of any other study that assesses SP precision issues in the 
ML function on such large datasets.

To this end, SP seems to be a feasible solution for handling memory-
 intensive phylogenomic datasets up to 500 or 1,000 taxa, but SP implemen-
tations of the ML function should be handled with extreme care when 
many-taxon trees are analyzed. Although the SP implementation in MrBayes 
may be considerably more stable, these problems may nonetheless occur 
with Bayesian inferences and it would be important to conduct compara-
tive studies on many-taxon trees using SP and DP arithmetics for the most 
widely used Bayesian inference programs.

5.3 Parallelization Strategies

As outlined in the previous section and as can be derived from Equations 
5.1, 5.2, and 5.3 the bulk of all PLF computations consists of for-loops over 
the length m of the vectors L

G
. These for-loops require about 95% of total 

execution time in all standard likelihood-based phylogenetic tools and are 
thus the candidate functions for a fi ne-grain parallelization. An important 
property of the likelihood function that actually enables such a fi ne-grain 
parallelization is the assumption that sites evolve independently; that is, all 
entries c of the probability vectors L

G
 can be computed simultaneously. This 
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property represents the main source of fi ne-grain parallelism in the PLF (see, 
e.g., [51]).

5.3.1 Parallel Programming Paradigms

The most straightforward approach is to use OpenMP for parallelization 
[52]. However, OpenMP has some major drawbacks: for nonexpert users it 
will be diffi cult to install an OpenMP-based compiler. Moreover, a com-
mercial compiler is required, since the current gcc version implements a 
strict fork-join paradigm for the threads, in contrast to a synchronization 
via barriers that avoids thread initialization and termination for every par-
allel region that is traversed as implemented in the icc copiler. This is a 
performance critical issue for OpenMP-based PLF implementations, since 
a prohibitively large number of parallel regions will be entered and exited 
during a tree search. The advantage of using Pthreads instead is that the 
program compiles out of the box and hence a signifi cantly larger number of 
users are able to fully exploit the capabilities of their multicore machines. 
Another reason for using Pthreads is the nondeterminism in OpenMP-
based reduction operations; that is, the reduction operation conducted at the 
virtual root of the tree (see Equation 5.3) may yield different results when 
invoked repeatedly on exactly the same tree. Since this will generate, and 
has generated, extremely hard-to-detect numerical bugs we have decided to 
completely abandon OpenMP in favor of Pthreads to have full control over 
such issues. A Pthreads-based implementation also allows more easily to 
separate the address spaces of the threads such that it is easier to maintain 
an MPI [41] as well as Pthreads-based version of the code. Some additional 
software engineering issues regarding design choices for parallel program-
ming paradigms in the PLF are covered in [42] and [53].

5.3.2 General Fine-Grain Parallelization

The general fi ne-grain parallelization scheme for the PLF is outlined by the 
example of the Pthreads-based version of RAxML. An example for the overall 
parallelization strategy is outlined in Figure 5.3 for a full tree traversal. The 
basic underlying concept is based upon a clear separation of tasks between 
the master and worker threads/processes. The only thread that actually 
needs to “understand” tree topologies and conduct the heuristic tree search 
is the master thread. The worker threads essentially only allocate and oper-
ate on their private fraction of the probability vectors L

G
 and are used to per-

form the fl oating-point intensive likelihood computations.
The probability vectors are enumerated consistently across all workers 

and the master thread. Thereby, an operation or a series of operations on 
the probability vectors can be described and communicated as a sequence 
of operations on those vectors. We call such a data structure that contains 
the number and order of vectors as well as the respective branch lengths a 
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traversal descriptor. In the case of a full tree traversal such a traversal descrip-
tor will hence contain all numbers that correspond to inner probability vec-
tors and the order in which they are combined represents the tree structure. 
One important property of current search algorithms is that only a part 
of the tree will usually be traversed when a topological change has been 
applied to the tree. This type of traversal, which frequently entails only the 
recomputation of just a few probability vectors is called partial traversal. In 
addition to the tree traversals that refl ect Equation 5.1, other function types, 
specifi cally the computation of the likelihood score at the root (Equation 5.3) 
or the optimization of a specifi c branch length, also require reduction opera-
tions for computing the log likelihood score across sites or the 1st and 2nd 
derivative across sites, respectively.

For the sake of completeness we provide the traversal data type defi nition 
as used in RAxML below:

typedef struct
{
 int tipCase; /* tip case */
 int pNumber; /* ancestral vector number */
 int qNumber; /* left child number */
 int rNumber; /* right child number */
 double qz[NUM_BRANCHES]; /* branch length(s) for p <−> q */
 double rz[NUM_BRANCHES]; /* branch length(s) for p <−> r */
} traversalInfo;
typedef struct
{
  traversallnfo *ti; /* array of traversallnfo entries */ 
int count;     /* number of nodes to traverse */

} traversalData;
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FIGURE 5.3
Parallel fi ne-grain computation of the likelihood score on a given tree with given branch 
lengths. Probability vectors are enumerated consistently by w, x, y, z.
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The variable tipCase is used to determine if the ancestral vector has 
two children that are tips/leaves, one child that is a leaf, or two children 
that are also ancestral vectors. The respective branch lengths between nodes 
p ↔ q and p ↔ r are actually arrays of double values to accommodate par-
titioned models with a per-partition estimate of branch lengths (see Section 
5.3.3 for a more detailed discussion). Partial tree traversals, that is, relatively 
short traversalData arrays, with count typically ≤ 10 will dominate 
the communication between master and workers. An example for a paral-
lel partial tree traversal is provided in Figure 5.4. Note that the defi nition 
of  traversalInfo lacks an additional fi eld  operationType, that is, com-
putation of an ancestral vector, computation of the likelihood at the root, or 
branch length optimization. This fi eld is missing because the data structure 
has evolved over various redesign cycles, but a future RAxML version will 
contain a cleaner interface defi nition that will allow for a better separation of 
the PLF implementation from the search algorithm.

The master thread steers the tree search and orchestrates the optimization 
of the branch lengths and model parameters. During the model parameter 
optimization phase the tree needs to be fully traversed to optimize the rates in 
the Q matrix and the α shape parameter of the Г distribution. In this case the 
master thread generates a full tree traversal list that remains fi xed during the 
model parameter optimization process because the tree topology and the tra-
versal order will not be changed during model parameter optimization. When 
a model parameter (Q or α) has been changed, every worker thread can inde-
pendently update its fraction of the likelihood array entries for the full tree 
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FIGURE 5.4
Example for a parallel partial tree traversal. Not all probability vectors are  re-computed in this 
partial reevaluation of the tree. Probability vectors are enumerated consistently by w, x, y, z.
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traversals and the threads only need to be synchronized when the virtual root 
is reached and the likelihood score is computed (see Figure 5.3). Therefore, 
every thread can conduct a relatively large fraction of independent work per 
alignment column during the model parameter optimization phase.

In contrast to this, if we consider the branch length optimization process, it 
requires several Newton–Raphson iterations and therefore synchronizations 
coupled with reduction operations at every individual branch. The synchro-
nization-to-computation ratio for branch length optimization is thus signif-
icantly less favorable than for optimization of the model parameters (Q, α) 
and partial tree traversals. Another important issue is that distinct branches 
in the tree cannot be optimized simultaneously, since branch length altera-
tions are not independent from each other; that is, we need to repeatedly 
traverse the tree and optimize one branch at a time. In addition, a subset of 
branches will also need to be reoptimized after topological changes during 
the tree search. The considerations regarding branch length optimization 
are important for the load balance issues discussed in Section 5.3.3.

5.3.2.1 A Library for the PLF

The organization and clear separation of tasks between master and workers 
described earlier is a generally applicable concept that is not RAxML  specifi c. 
In the course of several code reorganizations, the calls to the likelihood func-
tion have become transparent; that is, the caller does not need to know if they 
will be executed sequentially or in parallel. The logical next step would thus 
be to develop a library that implements the PLF and that can use several par-
allel architectures in a way that is not visible to the actual tree search algo-
rithm. Ideally, the community would require a highly optimized BLAS-like 
(basic linear algebra subroutines) kernel for the PLF, which represents one of 
the most important functions in bioinformatics (Felsenstein’s seminal paper 
that introduces the likelihood function [1] for trees has been cited 3,741 times 
according to Google Scholar).

In Figure 5.5 we provide an abstract description of the architecture of such 
a library. On the basis of the prolegomena, one would mainly require a low 
latency interconnect to the hardware platform on which the actual computa-
tions are performed, to carry out the frequent reduction and synchronization 
operations. Bandwidth is not a major issue, since as mentioned before, tra-
versal descriptors will usually be short; that is, comprise only a few nodes on 
average. As mentioned before, for full tree traversal that is required for model 
parameter optimizations it suffi ces to broadcast the traversal order once at 
the start of a model parameter optimization phase and then reuse it for all 
successive iterations that optimize the Q and α parameters. As outlined in 
Figure 5.5 and implemented in RAxML the memory needed to hold the prob-
ability vectors should exclusively be allocated by the worker threads and be 
hidden behind the interface. Clearly, such a library is urgently required and 
the major challenge will consist of defi ning a generic and fl exible enough 
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interface. However, generality may lead to abandoning certain program-
ming tricks and optimizations in the PLF implementations that signifi cantly 
contribute to program effi ciency. An initial promising initiative to devise an 
application programming interface (API) for the PLF together with an initial 
implementation is available at http://code.google.com/p/beagle-lib/. The 
overall API design is similar to the implementation in RAxML and also con-
ceptually similar to the organization outlined in Figure 5.5. Ideally, the API 
should also be extended by maximum parsimony functions and by func-
tions for statistical alignment under ML [7] in the future.

5.3.2.2 Scalability Issues

While the aforementioned fi ne-grain parallelization approach is highly 
effi cient, and generic, that is, mostly independent of the actual search algo-
rithm, there are some limits to scalability depending on the shape of the 
input alignment (see Figure 5.1). Fine-grain parallelism scales well up to 
1,024 CPUs for large-scale phylogenomic analyses [51, 53] with m ⪢ 1,000 
on well-shaped alignments, but scalability for single-gene or few-gene 
analyses on badly shaped datasets with 1,000 ≤ m ≤ 10,000 is limited. There 
are signifi cantly less alignment and probability vector columns to com-
pute  in-between synchronization or reduction events per thread or pro-
cess, which means that the communication-to-computation ratio quickly 
becomes unfavorable.

The reason why this is an important problem on badly shaped alignments 
is that they typically contain thousands or tens of thousands of taxa [28]. 
In current collaborative analyses with biologists we are trying to analyze 
datasets with 38,000 and 56,000 taxa that comprise less than 10 genes. The 
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FIGURE 5.5
Combined software and hardware architecture for a PLF library.
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scalability of the fi ne-grain approach on such datasets is limited to 8 or 16 
CPUs on typical general-purpose multicore architectures such as the AMD 
Barcelona or the Intel Nehalem. Even when conducting tree analyses on such 
large datasets using the Pthreads version of RAxML on 16 cores, execution 
times for just a single tree search will typically range from a week to a month. 
This causes two problems: First, most HPC clusters do not allow for such 
extremely long execution times, and second, those analyses are susceptible to 
hardware failures and cluster unavailabilities for maintenance. While check-
pointing may provide a solution, ideally we would like to improve scalabil-
ity. For a single run, this can be achieved only by exploiting a distinct source 
of parallelism on top of the fi ne-grain parallelism; that is, via deployment of 
multigrain parallelism. The obvious candidate for a more coarse-grain paral-
lelization of a single search is the search algorithm itself. Hence, certain steps 
of the search algorithm would need to be parallelized. While the respective 
details are outside the scope of this chapter there are two main problems 
inherent to such an approach: First, in contrast to the fi ne-grain paralleliza-
tion of the PLF such a parallelization would be highly program specifi c; that 
is, not generally applicable, and second, current effi cient search algorithms 
as implemented in GARLI or RAxML exhibit a huge degree of sequential 
dependencies that will be hard to resolve. This will also represent a problem 
for the PLF library mentioned previously.

Nonetheless, provided the current data fl ood that produces large well-
shaped as well as badly shaped alignments, the community will have to 
address this challenging problem.

5.3.3 The Real World: Load Balance Issues

An issue that is often not addressed in papers on the parallelization of 
the PLF are the problems that arise for real-world software under the 
commonly used models and with the type of data biologists actually want 
to analyze. Typical HPC papers—some of our own papers included— 
often just show speedups and scalability for unpartitioned datasets of, for 
example, DNA or protein alignments and focus on pure proof-of-concept 
implementations.

The main load balance issue is caused by partitioned phylogenomic analy-
ses that may contain partitions consisting of different data types; that is, 
a large phylogenomic alignment may contain partitions of morphological 
or binary characters, of DNA characters, secondary structure characters, 
and protein characters. Evidently, the number of fl oating point operations 
required to compute the per-column log likelihood at a position c for, for 
example, a full-tree traversal, varies as a function of the number of states 
s (s = 2 for binary data, s = 4 for DNA data, s = 20 for protein data) and has 
a complexity of O(n · s2) (see Equation 5.1) where n is the number of taxa. 
The easiest way to handle this type of potential load imbalance is to dis-
tribute the data columns to threads/processes in a cyclic way, rather than 
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in a monolithic way as outlined in Figure 5.6. The major drawback of this 
approach in the current RAxML implementation is that every thread will 
have to recompute the probability transition matrix P(t) locally; that is, a 
large number of computations are replicated for every partition. To this end, 
if the partitions are relatively short and if a large number of threads are used, 
it may happen that a thread will have to compute the transition probability 
matrices P(t) i for all p partitions, i = 1 . . . p, while only having to compute one 
single per-site likelihood for every partition. In this case the computation of 
the P(t) i may actually dominate the computations. A solution for this worst-
case scenario may be to also parallelize the computation of the P(t) i, but this 
will increase the number of synchronization points in the code by a factor 
of about 2. Initial tests have indicated that the current strategy of computing 
all required P(t) i locally yields better performance on all real-world datasets 
we have tested so far.

A related load-balance issue in partitioned analyses is that of per- partition 
model parameter optimization. Typically, users will chose to infer ML model 
parameters, such as the GTR substitution matrix or the α parameter that 
determines the shape of the Γ distribution separately. One will have to infer 
the respective parameters Qi and αi separately using the aforementioned iter-
ative optimization procedures for every partition p. Moreover, one may also 
prefer to infer an individual set of 2n – 3 branch lengths for every partition 
such that there is a total of p · (2n – 3) branch lengths, rather than to conduct 
a joint branch length estimate across all partitions.

It is important to note that per-partition branch length estimates are the 
prerequisite for the techniques proposed in [42]. Those techniques can be 
used to signifi cantly accelerate the computation of the likelihood function 
and substantially reduce the memory footprint on “gappy” phylogenomic 
alignments. The reason for the gappyness in such alignments that typically 
ranges between 50% and 95% lies in the partial unavailability of sequence 
data for the taxa under study for specifi c genes; that is, sequences for a spe-
cifi c gene are not always available for every taxon in the dataset. While these 
techniques are outside the scope of this chapter, the load-balance problems 
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FIGURE 5.6
Monolithic versus cyclic distribution of alignment (and probability vector)  columns to 
threads.
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induced by partitioned analyses represent a general problem that will be 
addressed in more detail at this point.

A schematic representation of a gappy phylogenomic alignment with 
per-partition branch length and model parameter estimates is provided in 
Figure 5.7.

As mentioned earlier, one important rationale for using a per-partition 
branch length estimate is that a signifi cantly more effi cient strategy to com-
pute the likelihood score on gappy phylogenomic alignments can be applied 
[42]. The load-balance problem that arises in this context is described in more 
detail in [54]. If we now consider the case where we have to optimize the 
per-partition branch lengths of the branches for all partitions that connect 
a node p to a node q in the underlying tree topology, the problem emerges 
(see Figure 5.8). In order to implement this branch length optimization that 
is based on the iterative Newton–Raphson procedure we need to consider 
that the number of iterations required for the branch in every partition may 
vary. We may either chose to optimize the branch of one partition at a time 
or to concurrently start optimizing the branches for all partitions and keep 
track of the convergence condition for each single branch. While the latter 
method is more challenging and error prone to implement, it can signifi -
cantly improve performance in the fi ne-grain parallelization, because we 
can provide more work (more columns to work on simultaneously) to each 
thread and dramatically reduce the number of synchronization events. Let 

Partition 0 Partition 1 Partition 2

Missing data (data holes)

Separate estimate of
Q-Matrix
alpha-shape
branch lengths

Separate estimate of
Q-Matrix
alpha-shape
branch lengths

Separate estimate of
Q-Matrix
alpha-shape
branch lengths

Taxon 1

Taxon n

iterate iterate iterate

m alignment columns

Gene 0 Gene 1 Gene 3

FIGURE 5.7
Schematic outline of a partitioned analysis on a phylogenomic alignment with per-partition 
estimates of model parameters and branch lengths.
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us consider a simple example with p = 10 and assume that every partition 
has a length of 10 characters. For the sake of simplicity we can also assume 
that all p branches will require fi ve iterations of the Newton–Raphson pro-
cedure. If we have 10 threads (each thread holds one column of every par-
tition) and optimize the branches for one partition at a time, we will need 
to synchronize the threads 5 · 10 times, and for all of those 50 computations 
every thread will just have one column to work on. If we use the approach of 
simultaneous optimization of all branches there will only be fi ve synchroni-
zation events and between synchronization events, every thread will have 
10 columns to work on. While this is an extreme example, in [54] we show 
that the simultaneous optimization of branch lengths across partitions can 
yield up to eight-fold improvements in execution times on current multicore 
architectures.

Note that while Bayesian programs do not require to explicitly optimize 
branch lengths and model parameters via iterative optimization methods, 
since this is handled by the Markov Chain Monte Carlo (MCMC) proposal 
mechanism, the insights obtained in [54] also apply to Bayesian analyses. In 
the Bayesian case, simultaneous branch length change proposals across all 
partitions should be applied to increase parallel effi ciency.
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FIGURE 5.8
Outline of the application of the Newton–Raphson procedure for the  optimization of one 
branch in a phylogenomic analysis using per-partition branch length estimates.
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5.4 Adaptations to Emerging Parallel Architectures

By now, a plethora of papers has been published on orchestrating the PLF on 
emerging parallel architectures, which I will briefl y review in this  section. In 
all cases the fi ne-grain parallelism in the PLF is exploited, whereas in some 
implementations the more coarse-grain parallelism provided by multiple ML 
tree searches on distinct starting trees, Bootstrap replicates [55], or Markov–
Chains is used on top of the fi ne-grain parallelism. Since this coarse-grain 
type of parallelism at the level of independent tree searches is mostly straight-
forward to explore (in contrast to coarse-grain parallelism at the algorithmic 
level) I will mainly focus on exploiting fi ne-grain parallelism.

One key issue that the HPC community often fails to address is that of taking 
proof-of-concept implementations to production level; that is, it is shown on 
a small subset of the functionality of a widely used tool (some of the author’s 
own work included) that scalability can be achieved by applying a certain strat-
egy that takes into account specifi c characteristics of the target architecture. 
Unfortunately, many of these parallelizations are never taken to production level 
and are therefore of little or no use to the large biological user community.

There have been only few attempts [56–59] to devise explicit architectures 
for the PLF on FPGAs. In earlier days the main problem was the lack of support 
for fl oating-point arithmetics on FPGAs. This problem has been addressed by 
the introduction of digital signal processor (DSPs) on modern FPGAs that now 
allow for improved implementations of the PLF on FPGAs [58, 59]. In [59] we 
present a signifi cantly improved implementation of the original design that 
implements a vector-like processor architecture. This vector-like architecture 
comprises 10 basic cells that act in a similar way as the worker processes/
threads or synergistic processing elements (SPEs) on the Cell (see below) in the 
general-parallelization scheme albeit at a more fi ne-grain level. This improved 
architecture is also capable of carrying out partial tree traversals. The speedups 
of the dedicated PLF architecture compared to a high-end multicore machine 
are within the typical range (factor 5–10) for fl oating-point intensive computa-
tions on FPGAs. However, we have made a lot of simplifying assumptions that 
do not yield the current architecture practical or usable for any real-world phy-
logenetic inference, put aside the latency problems between CPUs and FPGAs 
that may nonetheless soon be resolved. The same observations apply to the 
work by Mak and Lam [56, 57] (see [58] for a more detailed discussion).

Thus, FPGAs may rather be viewed as prototyping devices than accelera-
tors. We believe that a prototyping device view will help us to devise and 
test architectures for the PLF. Current work focuses on the development of a 
more versatile and fully functional PLF architecture that will be able to han-
dle different data types (binary, DNA, Protein, etc.) and also accommodate 
the standard Γ model of rate heterogeneity.

Early work on general-purpose computing on GPUs (GPGPU) focused on 
exploiting the PLF using an, in the meantime deprecated, older version of 
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RAxML. The main focus of this early work on GPUs was on the exploration 
of the capabilities of GPUs in the pre-CUDA era using BrookGPU (http://
www-graphics.stanford.edu/projects/brookgpu/). We faced problems asso-
ciated with GPUs that still persist: the issue of using SP arithmetics and the 
data transfer bottleneck between CPU ↔ GPU. Recent work on GPUs dealt 
with porting the likelihood kernel of BEAST [23] to a NVIDIA GPU [60]. 
While this paper reports impressive speedups, mainly for 61-state Codon 
models, the actual performance comparison does not appear to be conducted 
in an entirely fair way with respect to the general-purpose CPU (a 3.2 GHz 
Intel Core 2 Extreme) used. It is not clear how much effort was invested to 
optimize the C implementation on the general-purpose CPU, nor if a com-
mercial compiler such as the Intel icc was used. It is also not entirely clear 
from the paper why the performance runs on the CPU were only conducted 
under DP, while the GPU offers DP and SP implementations. While we have 
found that the usage of SP leads to a performance degradation in some cases 
because of a 10-fold decrease in scaling events (see Section 5.2.3) this may not 
necessarily be the case for the implementation in BEAST. In addition, accu-
racy issues that may arise for input alignments with a larger number of taxa 
under SP are not explored because scalability is only assessed on a single 
phylogenomic dataset with 62 taxa. The CPU was not fully exploited, since 
only one core was used while the code could have been easily parallelized 
with OpenMP. Moreover, the code was apparently not vectorized with SSE3, 
a technique that can yield signifi cant additional speedups for the likelihood 
kernel [45]. Thus, the question remains how much better the multicore plat-
form would have performed if exploited to its full capabilities and if the same 
amount of time as for the GPU had also been invested into optimizing the C 
code for the CPU. While the speedups that are obtained are still very good 
for Codon models on GPUs, it remains an open question how much speedup 
a vectorized and multithreaded version of BLAS for computing Equation 5.1 
(this equation represents an element-wise multiplication of the results of two 
dense matrix-matrix multiplications) on Codon models would yield. Some 
initial tests with DNA models and BLAS have shown that the overhead for 
calling BLAS is too large and the memory footprint of the 4 × 4 DNA substi-
tution matrix is too small to achieve substantial speedups, but this may not 
be the case for the 61-state Codon transition matrices.

Our own assessment of GPUs, multicores, and the IBM Cell using MrBayes 
for DNA and protein models that is also implemented in SP shows far less 
spectacular results for GPUs [61]. Given the aforementioned problems with 
using SP on trees with many taxa, albeit this may just be a problem of the 
specifi c implementation in RAxML, a lot will depend on whether DP arith-
metics will become faster on GPUs. It may well be that GPUs will lose ground 
compared, for instance, to the Intel Larrabee because of the currently insuf-
fi cient DP performance.

Work on porting the PLF to the IBM Cell and the Sony Playstation III 
is described in the following papers [49, 62–64]. Here our efforts mainly 

10768_C005.indd   10810768_C005.indd   108 6/17/2010   7:49:21 PM6/17/2010   7:49:21 PM



Orchestrating the PLF on Emerging Parallel Architectures 109

focused on effi ciently scheduling multigrain parallelism on the Cell, by 
using a combination of a fi ne-grain and an extremely coarse-grain approach 
at the level of independent tree searches. In addition, we explored various 
Cell-specifi c optimization techniques for the PLF. The results in the afore-
mentioned papers were all based on older versions of the Cell where the per-
formance differences between SP and DP arithmetics were still signifi cantly 
larger than the current factor of two. The fi ne-grain parallelism in the PLF 
is exploited in the same way as described previously, with the sole differ-
ence that the probability vectors actually reside on the principal processing 
element (PPE) and only small portions (a couple of columns) of the prob-
ability vectors are shuffl ed back and forth between the PPE and the SPEs 
where the actual computations are conducted. Unfortunately, the work on 
the Cell mainly addressed HPC issues and we never devised a production-
level implementation of RAxML for this architecture. An interesting current 
development is that the RoadRunner supercomputer can be programmed 
entirely by using the message-passing paradigm; that is, every SPE of the 
Cell may act as an independent MPI process. This can facilitate the devel-
opment of a production-level Cell implementation by slightly modifying the 
fi ne-grain MPI-based parallelization of RAxML [51]. Nonetheless, the arith-
metic operations in the likelihood functions would still need to be manually 
vectorized and tuned to achieve optimal performance on the Cell. An issue 
that may limit usage of the Playstation III for real-world phylogenetic infer-
ence is that the PPE in the PS3 does not have enough main memory (256 MB). 
This may not prove to be suffi cient for the analysis of larger datasets that can 
nowadays easily exceed 1 GB of memory footprint. In addition, most biology 
labs would most probably not buy a signifi cantly more expensive Cell pro-
cessor and rather invest into a general-purpose multicore machine, because 
only a small subset of the applications typically used by evolutionary biolo-
gists has been ported to the Cell.

With respect to shared-memory nodes, shared-memory supercomputers, 
and general-purpose multicore systems many RAxML-specifi c papers deal 
with the usage of OpenMP [52], Pthreads [42, 54], and MPI [53] to exploit 
fi ne-grain parallelism in the PLF. We also compare performance of MPI, 
Pthreads, and OpenMP in [53] and fi nd that MPI clearly performs best 
across all platforms (SMPs, multicores, SGI ALTIX 4700 supercomputer), 
but shared-memory version of MPI may be hard to install for typical users 
of the code. A complete transition to MPI for fi ne-grain parallelism would 
however signifi cantly facilitate software maintenance and reduce com-
plexity. In [61] we also provide an OpenMP implementation for MrBayes. 
Because of the nondeterminism of the MCMC chains, the nondeterminism 
of the reduction operations in OpenMP is not as critical as for RAxML. For 
GARLI an OpenMP parallelization is also available, but no performance 
study has been published so far. Finally, IQPNNI has also been parallelized 
using OpenMP for SMP systems [65]. IQPNNI also represents an example 
for a relatively straightforward parallelization of the search algorithm, 
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which in contrast to RAxML and GARLI exhibits almost no sequential 
dependencies. The parallelization of the IQPNNI search algorithm is 
 summarized in [19].

Less work has been conducted on orchestrating the PLF function on 
massively parallel distributed memory architectures. Most of this work 
has focused on the IBM BlueGene/L [51, 66, 67] but we have also assessed 
scalability of fi ne-grain parallelism with MPI on an infi niband-connected 
cluster of 4-way Opteron SMPs [51, 67]. Owing to the favorable confi gura-
tion with relatively slow processors and a very fast dedicated network for 
collective operations, we have measured speedups of 890 on 1,024 nodes of 
the BlueGene/L. The PBPI [66] application is an analogous parallelization of 
a Bayesian inference algorithm on the BlueGene/L, but has remained in a 
proof-of-concept state. Both implementations (RAxML and PBPI) can also be 
executed in a multigrain mode where chains or independent tree searches 
can be run independently on subgroups of nodes.

5.5 Future Directions

Given the rapid development of computer architectures, it is hard to assess 
and predict what the best platform for executing the PLF may be. On the 
basis of our observations concerning loss of accuracy under SP for align-
ments with more than 1,000–2,000 taxa, the usage of GPUs may be critical if 
DP performance is not improved. The Larrabee architecture surely sounds 
promising, but a signifi cant amount of recoding and reorganization of the 
PLF will be required to fully exploit the 512-bit wide vector instructions. The 
usage of GPUs for scientifi c computing appears to be slightly overestimated 
at present.

Whether a dedicated computer architecture for the PLF, a real chip, will 
ever become a reality is questionable, because the market for such an archi-
tecture that would be mostly dominated by Academia is most probably too 
small. Hence, the interest in building computer architectures for the PLF is 
mainly academic and tries to address the question how the ideal architecture 
should look like.

Overall, a lot will depend on the development of input datasets; that is, 
if phylogenomic datasets start growing in the number of taxa, for example, 
phylogenetic analyses of 2,000 taxa with 100–1,000 genes will become com-
mon, which seems to be relatively probable, we will soon reach memory lim-
its and computational resource shortages. A recent phylogenomic analysis 
on a BG/L using the MPI-parallelized fi ne-grain version of RAxML already 
required 2.25 million CPU hours, while another recent collaborative phy-
logenomic analysis had a memory footprint of 89 GB. However, scalability 
is granted with the current parallelization approaches and supercomputers 
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are available that can handle datasets that are even one order of magnitude 
larger than the two aforementioned studies. Signifi cant computational 
savings can be achieved if tree searches and likelihood computations are 
conducted using the method proposed in [42]. However, the implementa-
tion of this method is algorithmically and technically challenging and for 
the time being RAxML is only able to optimize model parameters on a 
fi xed tree using this method. Moreover, this method will only be effi cient 
if phylogenomic alignments remain gappy; that is, more than 50% of the 
data are missing. Depending on the advances in molecular sequencing 
techniques the density of such large phylogenomic datasets may increase 
to a point where the method described in [42] will not exhibit any compu-
tational advantages any more compared to with the standard approach. 
However, it will still be relatively straightforward to handle well-shaped 
alignments computationally. In the worst case one will need to fi lter out 
some of the data, before the phylogenetic analysis to reduce future datasets 
to computable sizes. The development of such fi ltering criteria is defi nitely 
a challenge.

With respect to the PLF per se, more research is needed to understand 
and optimize the scaling procedures to avoid numerical underfl ow as 
well as to explore the accuracy limits of SP as a function of the number 
of taxa. Another issue that is directly linked with the likelihood function 
is that of constant increase in model complexity, that is, extensions of the 
likelihood model that have recently been proposed, for example, Codon 
models or mixture models [68]. These models require more fl oating point 
operations and more memory per alignment column and will therefore 
decrease the size of “computable” datasets again. Thus, there is a clear 
tradeoff between model accuracy (or complexity) and the size of comput-
able input datasets.

One of the key challenges will be to devise new algorithmic concepts and 
new parallelization strategies for badly shaped alignments. Work on badly 
shaped alignments is driven by the desire to infer comprehensive trees (see, 
e.g., [28, 69]), such as the phylogenetic tree of plants or the tree of bacteria, 
with the fi nal goal to infer the tree of life containing all living beings on 
earth. New methods to explore the rough likelihood surface and summa-
rize collections of ML trees that do not have signifi cantly different likelihood 
scores, as well as novel methods to infer support values, will be required. In 
addition, substantial algorithmic and HPC innovations will be required to 
improve scalability and execution times of phylogenetic analyses on many-
taxon trees.

On a slightly different note, the development and parallelization of pro-
grams that can conduct simultaneous alignment and tree inference—current 
approaches only scale to 20–100 taxa—poses additional challenges.

In the fi nal analysis, one of the keys to success of parallel computing in 
phyloinformatics will be to design scalable, easy-to-use, production-level 
codes in close collaboration with the user and HPC community.
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6
Parallel Bioinformatics Algorithms 
for CUDA-Enabled GPUs

Yongchao Liu, Bertil Schmidt, and Douglas Maskell

6.1 Introduction

Bioinformatics has evolved into a compute-intensive and data-intensive 
research area driven by advances in both computer hardware and software 
algorithms. Therefore, many important biological problems are facing chal-
lenges both in runtime and memory consumption because of the exponen-
tial growth of biological databases. Problem examples include sequence 
alignments and motif discovery.

Nowadays, incorporating multiple processor cores into a single silicon die 
has become a commonplace to improve computational performance by means 
of parallelism. As more and more cores are being incorporated into a single 
chip, the era of many-core processors is around the corner, which indicates 
that the future mainstream processors are parallel systems with their par-
allelism continuing to scale with Moore’s law. The emergence of many-core 
architectures, such as general-purpose graphics processor unit (GPGPU), 
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especially compute unifi ed device architecture (CUDA)-enabled GPUs [1, 2], 
provides the opportunity to signifi cantly reduce the runtime of many bio-
informatics algorithms on commonly available and inexpensive hardware 
with more powerful high-performance computing power, which are gen-
erally not provided by conventional general-purpose processors. However, 
while demonstrating great compute power, many-core GPUs impose many 
design constraints and challenges to achieve peak performance. These fac-
tors make many-core GPUs less fl exible. In general, they would not be able to 
outperform conventional general-purpose processors for certain application 
domains.

In this chapter, we describe several effective techniques to fully exploit 
the compute capability of many-core CUDA-enabled GPUs. These tech-
niques serve at two different scales: the system scale and the device scale. 
At the system scale, a hybrid computing framework is suggested to over-
lap the computation of the central processing unit (CPU) and GPU. At 
the device scale, two approaches, based on intertask and intratask paral-
lelization, respectively, are described to leverage the computational power 
of CUDA for different application conditions. In particular, we use three 
techniques to reduce the requirements for global memory bandwidth: coa-
lesced subject sequence arrangement pattern, coalesced global memory 
access pattern, and cell block division method. On the basis of these tech-
niques, we have parallelized three algorithms on CUDA-enabled GPUs for 
sequence alignments and motif discovery: CUDASW++, MSA-CUDA, and 
CUDA-MEME.

6.2 Techniques for Many-Core GPUs

6.2.1 Hybrid Computing Framework

CUDA-enabled GPUs are generally used as additional boards to a general-
purpose workstation or PC. To maximize computational performance, it is 
preferable to overlap the computation of the CPU and GPU to fully exploit 
the compute capability. This framework is most suitable for the cases in 
which the compute-intensive task assigned to GPU requires multiple passes 
to complete, and the computing results in each pass can be directly used as 
input for the following tasks running on the CPU. Hence, when each pass 
is fi nished on the GPU, the CPU can directly conduct the following tasks 
assigned to it with no necessity to wait for the whole completion of the task 
on the GPU. Therefore, by overlapping the computation of the CPU and GPU, 
the runtime is shortened. Figure 6.1 shows the basic structure of a hybrid 
computing framework of overlapping GPU–CPU computation. The frame-
work mainly consists of four components: a main thread invoking the CUDA 
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kernel(s), one or more auxiliary threads performing the following relevant 
tasks according to the input data, a data queue storing the input data for 
the auxiliary thread(s), and a message queue facilitating the communication 
between the threads.

6.2.2 Intertask and Intratask Parallelization

We have investigated two basic parallelization approaches to map a number 
of bioinformatics algorithms to CUDA programming model: intertask paral-
lelization and intratask parallelization.

Intertask parallelization:•  Each task is assigned to exactly one thread, 
and dimBlock tasks are performed in parallel by different threads in 
a thread block.
Intratask parallelization:•  Each task is assigned to one thread block, 
and dimBlock threads in the thread block cooperate to perform the 
task in parallel, exploiting the inherent parallel characteristic of a 
task.

Depending on different applications, the defi nition of task refers to different 
meanings. For instance, for sequence database search, a task refers to the 
computation of the optimal local alignment of a query sequence and a subject 
sequence, whereas for multiple sequence alignment, a task refers to the pair-
wise distance computation of a sequence pair. In general, our results have 
shown that intertask parallelization achieves better performance but occu-
pies more device memory than intratask parallelization. However, because 
intratask parallelization occupies signifi cantly less device memory, it is pos-
sible to deal with larger problem sizes. Sometimes, these two parallelization 
approaches are combined in order to meet difference problem sizes.

Data queue

Message queue

Main thread: multi-pass CUDA 
kernel(s) invocation model

Perform the relevant tasks

Get an input from data queue

Exit after completing all tasks 
or receiving the stop message

Auxiliary thread(s)

Invoke CUDA kernels to 
perform one pass of the task

Pack the computing results and 
send them to the data queue

Wait for the completion 
of the auxiliary thread(s)

FIGURE 6.1
Basic structure of the hybrid computing framework.
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6.2.3 Coalesced Subject Sequence Arrangement

This technique is particularly suitable for biological database search. Subject 
sequences are prestored in the device memory of GPUs, depending on the 
utilized parallelization (intertask or intratask) approach. Two correspond-
ing arrangement patterns for subject sequences in the database are therefore 
designed to achieve the coalesced access to global memory.

As a preprocessing step, subject sequences are presorted in the increasing 
order according to their lengths. Intertask parallelization arranges the sorted 
subject sequences in an array like a multilayer bookcase (see Figure 6.2 (a)). All 
symbols of a sequence are restricted to be stored in the same column from the 
top to bottom. All sequences are arranged sequentially in the increasing order 
of length from left to right and top to bottom in the array. Intratask paralleliza-
tion sequentially stores the sorted subject sequences in an array row by row 
from the top-left corner to the bottom-right corner (see Figure 6.2 (b)). All sym-
bols of a sequence are restricted to be stored in the same row from left to right. 
Using these arrangement patterns for both parallelization methods, access to 
the subject sequences can be coalesced for all threads in a half-warp.

6.2.4 Coalesced Global Memory Access

To gain maximum bandwidth for global memory access, all threads in a 
half-warp need to access the global memory in a coalesced pattern. A pre-
requisite for coalescing is that the words accessed by all threads in a half-
warp must lie in the same segment, where the segment size is subject to 
the device compute capability. The memory spaces, referred to by the same 
variable names (not referring to same addresses), for all threads in a half-
warp have to be allocated in the form of an array to keep them contiguous in 
address. In this memory array, consecutive memory slots must be allocated 
for consecutive threads in a thread block to achieve coalescing. Figure 6.2 
also presents two global memory allocation patterns of a basic type vector 

(a) For intertask parallelization (b) For intratask parallelization

MemSlot [0...N ]

M
em

Slot [0...N
]

Entity i

Entity j

Entity i 

Entity j 

Sequences

                                                                       

FIGURE 6.2
Coalesced arrangement pattern for database search and coalesced global memory allocation 
patterns for processing entities.
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variable of size N for M processing entities (i.e., threads or thread blocks), 
depending on the parallelization approach.

Intertask parallelization exploits the pattern shown in Figure 6.2 (a), where 
a memory slot is indexed from top to bottom. When accessing the MemSlot 
array using the same index for all threads in a half-warp, these simulta-
neous memory accesses are coalesced into one or two memory transactions 
depending on the compute capability of devices. Intratask parallelization 
exploits the pattern shown in Figure 6.2 (b), where a memory slot is indexed 
from left to right. It is able to obtain the coalesced accesses by using the com-
mon global memory access pattern; that is, successive threads access the suc-
cessive addresses in a memory slot.

6.2.5 Cell Block Division Method

In this chapter, we use the cell block division method to further reduce the num-
ber of access to global memory when performing the Smith–Waterman (SW) 
algorithm. The concepts derived from this method can also be used in many 
other cases to reduce the bandwidth requirements, but the specifi c implemen-
tations highly depend on the specifi c algorithms. The following description of 
this method is based on an SW-based sequence database search.

The alignment matrix is divided into cell blocks of size n × n (or n × 1). We 
defi ne qlen and slen to, respectively, denote the lengths of a query sequence 
and a subject sequence. For simplicity, assume that qlen and slen are multiples 
of n (if not, the sequence is padded with an appropriate number of dummy 
symbols). Without cell block division, the computation of one DP-matrix cell 
(including the computation of the corresponding values in the H, E, and F 
matrices) requires two global memory accesses (one load operation and one 
store operation for the intermediate results).

However, when using the cell block division method, the computation of n 
cells in one column (or row) in a cell block requires only one load operation 
and one store operation on the global memory instead of n load operations 
and n store operations.

Because one global memory access typically takes hundreds of clock 
cycles, the cell block division method leads to a signifi cant reduction of the 
total runtime owing to a reduction in the global memory accesses. However, 
the size of cell block is limited by the number of registers (or the amount of 
shared memory) available per thread.

6.3 SW Database Search

The CUDASW++ software suite [3] is designed for protein sequence database 
search using the SW algorithm running on many-core GPUs. In CUDASW++, 
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each subject sequence is aligned to the query sequence using the score-only 
SW algorithm with affi ne gap penalties (see Chapter 1).

CUDASW++ uses two stages: the fi rst stage exploits intertask paralleliza-
tion and the second exploits intratask parallelization. A subject sequence 
length threshold is introduced to separate these two stages. All subject 
sequences with length less than or equal to threshold are aligned to the query 
sequence in the fi rst stage. All alignments of subject sequences of length 
greater than threshold are carried out in the second stage (threshold = 3072 is 
used in CUDASW++). Furthermore, the techniques described in Section 6.2 
are used to optimize performance: coalesced subject sequence arrangement, 
coalesced global memory access, and cell block division method.

Constant memory is exploited to store the gap penalties, scoring matrix, 
and the query sequence. Before searching for a query sequence against the 
database, the query sequence is loaded into constant memory. The 64-KB 
memory capability of the constant memory makes it possible to accom-
modate much longer query sequences. CUDAWSW++ supports query 
sequences of length up to 59 K. As mentioned earlier, as long as all threads 
in a half-warp read the same address in constant memory, the access is 
as fast as reading from registers. Placing the query sequence in constant 
memory provides a signifi cant performance improvement as all threads 
in a warp on the common execution path read the same query sequence 
address. The scoring matrix is loaded into shared memory, as the perfor-
mance of constant memory degrades linearly if multiple addresses are 
requested by threads. This is because threads may frequently access dif-
ferent addresses in the scoring matrix. The integer functions max(x, y) and 
min(x, y) in the CUDA runtime library are used to map them to a single 
instruction on the device.

The performance of CUDASW++ is benchmarked by searching for six 
sequences of lengths from 464 to 5,478 against Swiss-Prot release 56.6. The 
tests of the single-GPU version are carried out on the GTX 280 graphics card 
installed on a PC with an AMD Opteron 248 2.2 GHz processor and 1 GB 
RAM, and the multi-GPU version on the GTX 295 graphics card installed 
in the same PC. Maximal performance is achieved for a thread block size of 
256 threads and a grid size equal to the number of streaming multiproces-
sors for both the single-GPU and multi-GPU versions. The scoring matrix 
BLOSUM45 is used with a gap penalty of 10–2k. For the single-GPU ver-
sion, it achieves a relatively constant performance for all query sequences, 
with a highest performance of 9.7 GCUPS (giga-cell updates per second). For 
the multi-GPU version, the performance increases as the lengths of query 
sequences become longer, because of the overhead incurred mainly by the 
database loading from host memory to GPU and the host threads schedul-
ing. It achieves a highest performance of 16.1 GCUPS.

We next compare the performance of CUDASW++ with other pub-
licly available implementations for protein database search: SWPS3 [4], 
SW-CUDA [5], and NCBI-BLAST [6] (version 2.2.19). All the following 
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tests are performed against Swiss-Prot release 56.6. SWPS3 for x86/SSE2 
is tested on a Linux workstation with two Intel Xeon 3.0 GHz dual-core 
processors by running four threads, and SWPS3 for Cell/BE is tested on 
a stand-alone PlayStation 3 (PS3). SWPS3 is a vectorized SW implementa-
tion with striped query profi le layout [7]. The scoring matrices BLOSUM50 
and BLOSUM62 are used for the tests. Figure 6.3 presents the performance 
comparison between CUDASW++ and the other three publicly available 
implementations.

CUDASW++ (available from http://cudasw.sourceforge.net/) is targeted 
for CUDA-enabled GPUs with compute capability 1.2 and higher and sup-
ports query sequences of length up to 59K, far longer than the maximum 
sequence length 35,213 in Swiss-Prot release 56.6.

6.4 Multiple Sequence Alignment

In this subsection, we describe how to parallelize the three stages of the 
ClustalW [8, 9] pipeline for multiple sequence alignment using CUDA. The 
three stages are described in more detail in Chapter 1. To develop a paral-
lel version, it is imperative to understand the associated time complexities. 
Given an input dataset S = {S1, . . . ,Sn} of n sequences with average length lave, 
the time complexities of the three stages are

Distance matrix computation (Stage 1): • O(n2l2
ave)

Guided Tree (Stage 2): • O(n3)
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FIGURE 6.3
Performance comparison between CUDASW++ and other publicly available implementations.
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Progressive alignment (Stage 3): • O(nl2
ave+ n2lave)

On the basis of these complexities, we can make the following observa-
tions about the runtime behavior of ClustalW:

Stage 1 generally occupies a large proportion of the total runtime.• 
Stage 1 generally has a longer runtime than Stage 3.• 
If • n > lave, Stage 2 has a longer runtime than Stage 3.
If • n > l2

ave, Stage 2 has a longer runtime than Stage 1.

As mentioned in Chapter 1, the distance matrix computation requires 
the actual optimal alignment path for each pair of input sequences, which 
can be found in linear space by computing a trace-back with a divide-and-
conquer approach. However, sequential implementation of the linear-space 
 trace-back algorithm uses recursion. Unfortunately, CUDA currently does 
not support recursion. Therefore, we have developed a new stack-based iter-
ative implementation. MSA-CUDA [10] uses this implementation for both 
pairwise alignments in Stage 1 and profi le–profi le/sequence alignments in 
Stage 3.

We have also investigated intertask and intratask parallelization for pair-
wise distance computation. Coalesced global memory access patterns are 
exploited for both parallelization approaches. The cell block division method 
is only exploited in the forward score-only pass using the SW algorithm for 
the intertask parallelization.

The comparison of time complexities of all stages indicates that the runtime 
of Stage 2 can dominate the overall runtime of ClustalW for large sequence 
datasets. Hence, it is important to speed up Stage 2 for large sequence data-
sets to get a good overall speedup. The basic algorithm of the neighbor-join-
ing (NJ) method is described in Chapter 1.

As mentioned in Chapter 1, NJ computes a phylogenetic tree by iteratively 
picking and joining two nodes, whose joining minimizes the sum of all 
branch lengths of the resulting new tree. A pair of nodes i and j is selected 
if their joining minimizes Si,j = (n – 2) × Di,j – (Ri + Rj), where n is the number 
of valid nodes (i.e., the remaining nodes), D is the distance matrix of valid 
nodes, Ri is the sum of all values in the ith row of D, and Rj is the sum of all 
values in the jth row of D. It is easily seen that for each pair of nodes i and j, 
the calculation of Si,j is independent from the other pairs; that is, there is no 
data dependency between the computations of any pair of nodes. Because 
the distance matrix is a symmetric square matrix, the data of the cells in 
the upper triangle (or lower triangle) suffi ces for NJ tree reconstruction. 
Therefore, a basic and straightforward method is to map the upper triangle 
of the distance matrix to a 2D grid of thread blocks and then group the cells 
in the upper triangle into many equally shaped cell blocks including several 
equally shaped small cell matrixes, so that all the cells can be tackled in a 
coherent way. One thread block in the grid is designed to logically corre-
spond to one cell block in the distance matrix and every thread in a thread 
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block is assigned to process one small cell matrix in the corresponding cell 
block. This parallelization scheme is illustrated in Figure 6.4.

However, if the entire distance matrix is loaded into GPU device memory 
without any modifi cation, half of the GPU memory space is wasted because 
of the symmetry of the distance matrix. To improve the GPU device mem-
ory utilization, a memory compaction approach can be applied. In this 
approach, the distance matrix is considered as a 2D coordinate space. 
Through coordinate mapping in the distance matrix, up to a half of the 
memory size is saved compared with the basic method. For n sequences, in 
the basic method, the size of the memory occupied by the distance matrix is 
(n + 1) × (n + 1) × 4 bytes (assuming single precision fl oating point is used), 
whereas in the compact memory method, the size is reduced to (n + 1) × 
(MidPoint + 1) × 4 bytes, where MidPoint is equal to (n + 1)/2 (see Figure 6.5 
for an example).

As can be seen from Figure 6.5, the compact method maps the bottom half 
of the upper triangle to the lower triangle of the top half. Considering the 
matrix as a 2D coordinate space on the Cartesian plane, where the origin is 
located on the left-top corner, the horizontal (x) coordinates increase from 
the left to the right and the vertical (y) coordinates increase from the top to 
bottom. The coordinate mapping rules are as follows:

For each cell (x,y) in the upper triangle of the distance matrix,

If • y ≤ MidPoint, the coordinate is not modifi ed.
If • y > MidPoint, the coordinate is mapped to (n + 1 − x, n + 1 − y).

Hence, a coordinate transformation is required for the cells whose 
y- coordinates are greater than MidPoint when accessing data in the distance 
matrix. After the coordinate transformation, the cells that are in the same 

(c) Per-thread cell matrix 

(b) Per-block cell block 

(a) Per-grid distance matrix

FIGURE 6.4
Basic and straightforward grid mapping method: (a) the distance matrix is mapped to a grid 
of thread blocks; (b) one thread block is assigned to process one cell block; (c) one thread in a 
thread block is assigned to process one cell matrix in the corresponding cell block.
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row in the original distance matrix are still in the same row in the mapped 
distance matrix.

At the initialization stage, the distance matrix (computed in Stage 1) is copied 
from host to GPU device memory. After a node pair has been selected, the val-
ues of relevant cells in the distance matrix have to be updated for the successive 
iteration. If the whole matrix is entirely reloaded, the time overhead would be 
fairly high because of the relatively narrow memory bandwidth between the 
host and the GPU. To signifi cantly reduce the amount of data transferred, only 
the changed valid cells are updated. In this way, only the data values of one 
column and one row in the distance matrix need to be transferred from host to 
GPU every iteration, which makes the data transfer overhead negligible.

Shared memory is used to store the temporary results of each thread block. 
Each thread in one thread block compares and selects the node pair (imin, jmin), 
whose joining into a new node gives the smallest branch length among the node 
pairs allocated to it, and then stores the selected node pair and its value Simin,jmin 
into the storage space in the shared memory. Texture memory is exploited to 
store the distance matrix and the row and column sums of all valid nodes.

After reconstructing the NJ tree, the NJ tree is rerooted to calculate the 
weights of sequences and to traverse the rooted tree to identify the align-
ment steps for Stage 3. The unrooted NJ tree is rerooted using a “mid-point” 
method [11]. The root is placed at the position where the means of branch 
lengths on either side of the root are identical.

Using the conventional sequential C code, all tree nodes can be stored in a 
vector and the relationship between nodes is maintained through pointers. 
To parallelize the rerooting using CUDA, the tree nodes must be transferred 
from host memory to GPU device memory while still maintaining the tree 
structure. However, pointers will be invalidated while transferring due to the 
changes of memory address spaces. In this case, we substitute vector indices 
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FIGURE 6.5
Examples of the distance matrices in both algorithms: (a) the original distance matrix used in 
the basic algorithm; (b) the new compact memory distance matrix in the improved algorithm.
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for pointers to maintain the relationship between nodes, where each node 
object stores the indexes of itself, its parent, and its left and right children.

For the CUDA implementation of rerooting the NJ tree, one thread block 
corresponds to one node that is selected as the reference, and is assigned to 
compute the difference value of the branch length means of leaf nodes on the 
left and on the right of this node. Every thread in a thread block is assigned 
to perform the computation on a separate subset of leaf nodes. For each leaf 
node in a subset, the corresponding thread identifi es on which side of the 
selected node this leaf node lies, and then computes the distance between 
this leaf node and the selected node. Shared memory is exploited by each 
thread to store the results for the corresponding subset of leaf nodes. Texture 
memory is used to store the tree nodes.

Stage 3 aligns larger and larger groups of sequences using pairwise align-
ment following the branching order of the rooted guided tree from the leaves 
up to the root. Every leaf node of the guided tree corresponds to a sequence 
and each internal node corresponds to an alignment produced from the 
aligned sequences in the left subtree and in the right subtree. The alignment 
corresponding to an internal node can be launched if and only if the align-
ments corresponding to the roots of its left and right subtrees have been 
performed. Obviously, the alignments at the same level of the guided tree 
can be performed in parallel but even alignments that are not at the same 
level could also be parallelized. For example in Figure 6.6, all alignments 
corresponding to internal nodes with the same patterns can be performed 
in parallel.

Initially, the rooted guided tree is depth-fi rst traversed in post order to 
number all the internal nodes and build the dependency relationship with 
their left and right subtrees. All internal tree nodes are stored in a vector in 
traversal-order. For all tree nodes, three auxiliary vectors are used to record 

S1

S2 S4

S81

62

5

S94

S10
3

S3 S7

7
S5

8

S6 S11

9

10
Root

Numbered 
internal nodes

FIGURE 6.6
Example of a rooted guided tree produced using the NJ method.
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the indices of their left children, their right children, and a fl ag indicating 
whether the corresponding alignment has been performed. For a leaf node, 
the indices of its left and right children are set to 0. For an internal node, if 
one child is a leaf, then the index of this child is also set to 0. The dummy 
subtree numbered as 0 is always defi ned aligned because it corresponds to 
an input sequence for an alignment. Figure 6.7 presents the three initial aux-
iliary vectors for the rooted guided tree shown in Figure 6.6.

In our CUDA implementation, the progressive alignment is conducted itera-
tively in a multipass way. For each pass, fi rstly, all undone alignments that are 
able to be performed in this pass are identifi ed by checking the fl ag words of 
their left and right children stored in the fl ag-vector. If both of its left and right 
children have been aligned, this alignment is added to the ready alignment 
list managing all the alignments to be performed in this pass; otherwise, this 
alignment has to wait until both of its children have been aligned. After the 
completion of the ready alignment list, the pairs of profi les corresponding 
to those alignments are constructed. Second, the pairwise alignments of all 
pairs of profi les are performed on the GPU in parallel. Third, gaps are added 
to the sequences corresponding to each pair of profi les by tracing back its 
optimal alignment. Finally, all the alignments performed in this pass will set 
their fl ag words in the fl ag vector to indicate that they are aligned.

As illustrated in Figure 6.6, the guided tree is seldom well balanced and 
the numbers of alignments that can be performed in one pass decreases as 
the alignments move up to the root of the tree. Therefore, MSA-CUDA uses 
the following parallelization strategy. When the number of alignments 
to be performed in one pass is relatively large, the intertask parallelism 
method is utilized, and when it is relatively small, the intratask parallel-
ism method is superior. Thus, a combination of intertask and intratask 
 parallelism is used to compute all the alignments to be performed in one 
pass. A threshold determines the branches of the program fl ow. If the total 
number of alignments or the remaining number of alignments after one 
or more passes is still more than a threshold, the intertask parallelization 

Aligned flags

Left child

Right child

NIL 0 0 0 3 4 5 2 7 0 8

NIL 0 1 0 0 0 0 6 0 0 9

1 0 0 0 0 0 0 0 0 0 0

0 1 Indices of numbered internal nodes 10

FIGURE 6.7
Three initial auxiliary vectors storing the dependency relationship with their left and right 
subtrees and the aligned fl ags.

10768_C006.indd   12810768_C006.indd   128 6/17/2010   7:50:10 PM6/17/2010   7:50:10 PM



Parallel Bioinformatics Algorithms for CUDA-Enabled GPUs 129

method is used, and when the total number of alignments or the remain-
ing number of alignments is less than the threshold, the intratask paral-
lelization method is used to compute those remaining alignments.

The tests of MSA-CUDA are carried out on the GTX 280 graphics card 
installed in the PC with an AMD processor. The sequential ClustalW (ver-
sion 2.0.9) program is profi led on a desktop PC with a Pentium 4 3.0 GHz pro-
cessor running the Linux OS. Three protein sequence datasets are used to 
evaluate the performance of MSA-CUDA. The datasets consist of sequences 
selected from the Human immunodefi ciency virus dataset downloaded from 
NCBI [12], as given below:

A• : 1,000 sequences of average length 858;
B• : 4,000 sequences of average length 247;
C• : 8,000 sequences of average length 73.

Figure 6.8 shows the speedups of MSA-CUDA compared with sequential 
ClustalW. The graph clearly shows that the intertask parallelization outper-
forms the intratask parallelization for all datasets. Thus, if there are suffi cient 
tasks and available large device memory capacity on the GPU, MSA-CUDA 
chooses intertask parallelization for Stage 1. Dataset A achieves higher 
speedups than datasets B and C in Stage 1 because of the larger amount of 
computation performed.

Speedups for the NJ tree reconstruction substage generally increase with 
the number of input sequences, but grow more slowly for the larger datasets. 
Consequently, dataset C achieves the highest speedup in this stage.
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Speedups for Stage 3 are relatively low and vary largely, because

 1. Building of the profi les of each alignment is performed sequentially 
on the CPU, which reduces the speedups achieved in the parallel-
ized parts.

 2. The speedup heavily depends on the topology of the guided tree, 
which infl uences the number of alignments that can be processed in 
parallel.

 3. The lengths of the profi les of an alignment also have impact on per-
formance. Generally, larger datasets and longer sequences mean 
better performances.

6.5 Motif Discovery

MEME (Multiple expectation maximization [EM] for Motif Elicitation) is 
an established and popular tool for motif discovery in DNA and protein 
sequences [13, 14]. MEME relies on an EM approach to fi nd, which is time 
consuming for large datasets. Therefore, we have developed CUDA-MEME, 
a parallelization of motif discovery with MEME using CUDA.

Input is a set of related DNA or protein sequences S = {S0, S1, . . . ,Sn−1} and 
a motif width W. The motif fi nding problem is to fi nd a string of length 
W (a so-called motif) that occurs a certain number of times in the input 
dataset. Figure 6.9(a) shows an example with the motif ATCCG occurring 
exactly once in four input DNA sequences. Depending on the distribution 
of occurrences in the input sequences there are three different motif search 
methods:

Exactly one occurrence per sequence (• OOPS)
Zero-or-one occurrence per sequence (• ZOOPS)
Any number of occurrences• 

In this chapter we only focus on OOPS and ZOOPS.
Of course, the occurrences of the motifs in the sequences are in general not 

exact, but approximate; that is, a certain number of mismatches are allowed 
(see Figure 6.9(b)). Therefore, MEME uses a statistical motif model. A motif is 
represented as a letter frequency matrix Ψ; that is, for a motif width W and 
an alphabet Σ = {x0, x1, . . . ,xA−1} with A letters, Ψ is of size A × (W + 1). The 
matrix value Ψi,j is defi ned as

Probability of • xi appearing at position j − 1 in the motif for all 0 ≤ i ≤ 
A − 1 and 1 ≤ j ≤ W
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Probability of • xi appearing outside the motif for all 0 ≤ i ≤ A − 1 and 
j = 0

Figure 6.10 shows an example of a letter frequency matrix for the example 
shown in Figure 6.9(b).

The EM algorithm [15] in MEME is carried out from an initial starting point 
model Ψ(0). It then runs for a fi xed number of iterations or until convergence 
to fi nd a model Ψ(q) with maximal posterior probability. During the search 
for a given motif width, MEME performs a multistart search, where it returns 
a number of initial models. The multistart search of a given motif width W 
consists of two stages:

Starting point search stage• : Iterates over all initial models derived from 
the actual W-length substrings occurring in the input sequence data-
set. Firstly, the log-likelihood ratio of each possible initial model is 
computed. Second, a P-value is calculated, which represents the 
probability of a random string, generated from the background let-
ter frequencies, having the same score or higher. Initial models with 
the highest-statistical signifi cance are selected.
EM• : An EM algorithm is executed for a fi xed number of iterations 
or until convergence from each of the highest-scoring initial models 
and then the best motif model is chosen.

CACA GCCTA TTG
GCCTA CTCTTAA
GTTTGGG GCCTA

A GCCTA TCGCGC

(a) (b)

CACA GCCTT TTG
GCGAA CTCTTAA
GTTTGGG CTCTA

A GACTC TCGCGC

FIGURE 6.9
(a) The motif ATCCG occurring exactly once in every input sequence; (b) the motif ATCCG 
occurring once in every input sequence with up to two mismatches.

543210
00.052.000.052.005.061.0A

52.005.057.000.052.042.0C

57.000.052.000.000.042.0G

00.052.000.057.052.036.0T

FIGURE 6.10
A letter frequency matrix for the motif ATCCG occurring approximately in Figure 6.9(b). Note 
that column zero models the background.
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Profi ling of MEME shows the starting points search as the runtime bottle-
neck. It typically takes more than 98% of the overall runtime. Therefore, we 
focus on parallelizing the starting point search stage, which is explained in 
more detail in the following text.

Given the input sequences S = {S0, S1, . . . , Sn−1} from Σ, and the motif width W. 
Li denotes the length of sequence Si, Si,j denotes the substring of length W 
starting at position j in sequence Si, and Si(j) denotes the jth letter in Si, for all 
0 ≤ i ≤ n−1 and 0 ≤ j ≤ Li – W. The starting point search algorithm performs an 
independent computation from each W-length substring Si,j to determine a 
set of initial models. It consists of three steps:

Step 1:•  Compute the probability score P(Si,j, Sk,l ) against each sub-
string Sk,l, which is the probability that a motif starts at position l in 
Sk as well as at position j in Si.
Step 2:•  Identify a substring Sk,maxk with the global maximum score for 
each sequence Sk as a possible starting point.
Step 3:•  Sort the highest-scoring substrings in the decreasing order 
of score, and align them to identify the initial models for the given 
motif width by computing their statistical signifi cance.

The probability score P(Si,j, Sk,l) is defi ned by Equation 6.1, where sbt denotes 
the letter frequency matrix of size A × A.

W

i j k l i k
w

P S S sbt S j w S l w
1

, ,
0

( , ) [ ( )][ ( )]
−

=

= + +∑
 

(6.1)

Computing the probability score between each pair of substrings Si,j and 
Sk,l directly using Equation 6.1 results in redundant calculations. To reduce 
this redundancy, Equation 6.2 can be used instead. Using Equation 6.2, the 
scores {P(Si,j, Sk,l)} of Si, for 1 ≤ j ≤ Li – W and 1 ≤ l ≤ Lk – W, in the jth iteration can 
be computed using the probability scores {P(Si,j-1, Sk,l-1)} computed in the  (j–1) th 
iteration. Only P(Si,j, Sk,0) needs to be computed individually using Equation 
6.1. The number of operations for each P-computation is therefore reduced 
from O(W) to O(1).

− −= + + − + −
− − −

i j k l i j k l i k

i k

P S S P S S sbt S j W S l W
sbt S j S l

, , , 1 , 1( , ) ( , ) [ ( 1)][ ( 1)]
[ ( 1)][ ( 1)]

  
(6.2)

On the basis of the hybrid computing framework described in Section 6.2, 
we have parallelized the starting point search using CUDA. It consists of 
four components: main thread, auxiliary thread, task queue, and message 
queue. The main thread invokes the CUDA kernel(s), and the auxiliary thread 
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conducts the alignment of top substrings and identifi es the initial models. 
The task queue stores the sorting and alignment tasks to be processed, and 
the message queue facilitates the communication between the two threads.

The starting point search parallelization takes advantage of the fact that for 
a given W-length substring Si,j (0 ≤ i ≤ n −1 and 0 ≤ j ≤ Li − W), the computation 
of scores {P(Si,j, Sk,l)} is independent of each other for any sequence Sk (0 ≤ k ≤ n 
−1 and 0 ≤ l ≤ Lk −W). We have again used the general concept of intertask and 
intratask parallelization, which has been introduced in Section 6.2.2, to compute 
the scores for a given width W as part of the hybrid computing framework:

Intertask parallelization:•  Each thread block is assigned to compute the 
scores of all W-length substrings in one sequence Si against another 
sequence Sk, and all threads in a thread block cooperate to complete 
the computation. In this case, the task assignment can be arranged 
into a square matrix of size n × n, where Si and Sk are indexed from left 
to right horizontally and from top to bottom vertically, respectively. 
Cell (i,j) represents the task of computing the scores of all W-length 
substrings in Si against Sk. The total number of thread blocks is n2 
and the tasks are assigned to all thread blocks sequentially along the 
matrix from left to right and then from top to bottom.
Intratask parallelization:•  Working in the same way as the sequential 
algorithm. For one substring Si,j, the scores against all the sequences 
are computed by p thread blocks, where for each sequence Sk, the set 
of all the W-length substrings {Sk.l} is roughly equally divided and 
distributed to p thread blocks.

In most cases intertask parallelization achieves higher performance than 
intratask parallelization, except for datasets with a few long sequences. As 
observed in Equation 6.2, the score computation for the substring Si,j depends on 
the scores for the substring Si,j-1. The scores of the substring Si,j (corresponding 
to the jth iteration of sequence Si) against all substrings {Sk,l} in Sk are stored in a 
score vector [P(Si,j, Sk,l)] in global memory. Both methods exploit two score vectors 
[P(Si,j-1, Sk,l)] and [P(Si,j, Sk,l)] to store the scores for the (j − 1)th and jth iterations of Si, 
using a simple cyclic vector swapping method. In this method, the score vector 
[P(Si,j-1, Sk,l)] serves as input and [P(Si,j, Sk,l)] as output for the jth iteration of Si. For 
the (j + 1)th iteration, the score vectors [P(Si,j-1, Sk,l)] and [P(Si,j, Sk,l)] are swapped.

As mentioned above, during the starting point search from a given sub-
string Si,j only one globally highest-scoring substring Sk,maxk for each sequence 
Sk is selected. In this case, both parallelization approaches are designed to 
determine the highest-scoring substrings while computing the scores. 
Owing to the different design details, these two methods exploit differ-
ent determination methods, respectively. For each invocation of the CUDA 
kernel(s), intratask parallelization performs the computation of probability 
scores {P(Si,j, Sk,l)} for one substring Si,j against all the sequences and stores 
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all the scores for the next invocation. During the score computation, each 
thread block selects the highest-scoring substring Sk,maxk from the set of sub-
strings {Sk,l} assigned to it for each sequence Sk and then outputs them when 
exiting. After the CUDA kernel(s) return(s), the highest-scoring substrings 
{Sk,maxk}for all the sequences {Sk} are determined by simply comparing the 
outputted highest-scoring substrings of each thread block. After complet-
ing each pass, the substring Si,j and its corresponding highest-scoring sub-
strings are packed as a task and added to the task queue. Because intertask 
parallelization works in a multipass way and is based on a task assignment 
matrix, it does not guarantee that all the highest-scoring substrings {Sk,maxk} 
for a substring Si,j against all the sequences{Sk} are computed in one pass. In 
this case, an unprocessed starting point (USP) buffer is exploited to store all 
the unprocessed highest-scoring substrings for a set of substrings {Si,j}. After 
completing one pass, sequence-level parallelization combines the returned 
highest-scoring substrings in this pass into the USP buffer and then performs 
an analysis procedure to check whether all the highest- scoring substrings 
for each substring Si,j of Si against all the sequences have been computed. 
Once having determined all the highest-scoring substrings {Sk,maxk} for all the 
sequences {Sk} with respect to Si, it removes those highest-scoring substrings 
with respect to Si from the USP buffer, packs them as a task, and then adds 
this task to the task queue. It iteratively performs the above analysis proce-
dure until no task is available to be added to the task queue, and then returns 
to invoke the CUDA kernel(s) to perform the remaining computation.

On the right side of the hybrid computing framework, the auxiliary thread 
always waits until either the task queue or the message queue is not empty. 
When the task queue is not empty, the auxiliary thread retrieves a task from 
the task queue, sorts those highest-scoring substrings in order of decreas-
ing score and then aligns different number of top substrings to identify the 
initial models. Before retrieving a task from the task queue, the auxiliary 
thread checks the message queue to see whether there is a message from the 
main thread to itself. If yes, the auxiliary thread performs the correspond-
ing operations, and otherwise continues accessing the task queue.

CUDA-MEME is benchmarked on the GTX 280 graphics card installed in 
the desktop PC with an AMD processor and 2 GB RAM running the Linux 
OS. The sequential MEME (version 3.5.4) is also profi led on the same com-
puter. For all the tests, the minimum and maximum motif widths are set to 
6 and 50, respectively, and other parameters use the default values. Input 
datasets containing a varying number of DNA sequences are used to evalu-
ate the performance of CUDA-MEME:

The mini-drosoph dataset (with 4 sequences of an average length of • 
124 824)
Three datasets of human promoter regions consisting of 100, 200, • 
and 400 sequences of lengths 5,000 bps each (called HS_100, HS_200 
and HS_400, respectively).
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On the basis of the hybrid computing framework, the main thread and the 
auxiliary thread run concurrently on the host. The tests exploit intertask paral-
lelization for the three human promoter regions datasets and intratask paral-
lelization for the mini-drosoph dataset. The choices of grid size and thread 
block size are considering that the CUDA kernel occupies only a small quantity 
of device resources and that the maximum number of active threads per SM 
is 1,024. For intratask parallelization, a grid consisting of thread blocks whose 
number is equal to or less than the number computed by multiplying the num-
ber of SMs by (1,024/dimBlock) is bound to the kernel and launched, where the 
number of threads in a thread block dimBlock is set to 64. For substring-level 
parallelization and the parallel alignment, each thread block is comprised of 
256 threads. Figure 6.11 shows the speedups of CUDA-MEME using the OOPS 
and ZOOPS models for all the datasets. CUDA-MEME is available for down-
load at http://sites.google.com/site/yongchaosoftware/Home/cuda-meme.

6.6 Conclusion

In this chapter, we have described several techniques for algorithm design on 
CUDA-enabled GPUs. These techniques serve at two levels: the system level 
and the device level. At the system level, a hybrid computing framework is 
suggested to fully exploit the computational power of the system by overlap-
ping the computation of GPU and CPU. At the device scale, we have suggested 
intertask and intratask parallelization approaches from the macroscopic view 
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to leverage the power of the CUDA-enabled GPUs for different application 
conditions, and three techniques from the microscopic view to ameliorate the 
performance by reducing the bandwidth requirements of global memory. On 
the basis of these techniques, three parallel algorithms, running on many-core 
CUDA-enabled GPUs, for sequence alignments and motif discovery have been 
presented: CUDASW++, MSA-CUDA, and CUDA-MEME.

Our results on GPU show that it is possible to improve the performance of 
bioinformatics algorithms by making full use of the compute characteristics 
of the underlying commodity hardware. The very rapid growth of both bio-
logical databases and available transcription data demands even more pow-
erful high-performance sequence alignments and motif discovery solutions 
in the near future. Hence, our results are especially encouraging because 
GPU performance grows faster than Moore’s law as it applies to CPUs.
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7.1 Introduction

One of the great challenges of the Human Genome Project is the DNA 
sequencing problem, which is of the great importance due to the fact that it 
will be of great help in exploring the human biology. With the knowledge 
of DNA, one can prevent viruses attacking human health, disorders, and 
diseases. However, previous standard methods of sequencing have been 
labor intensive, ineffi cient, and expensive; for example, the total sequencing 
output was only about 200 million base pairs (bps) in the year 1998.

To improve the throughput of sequencing machines signifi cantly, several 
so-called second-generation DNA sequencing technologies have recently 
been introduced [1–3]. Examples of such sequencers are products from 454 
Life Sciences/Roche, Solexa/Illumina, and Applied Biosiciences/SOLiD. 
The mas sive throughput of these sequencers can be illustrated using the 
Illumina Genome Analyzer IIx (IGA-IIx) as an example. The IGA-IIx can 
currently generate an output of up to 25 billion bps within a single run. 
This output is expected to increase to around 100 billion bps by 2010. 
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Although their throughput is drastically higher, there is a signifi cant dif-
ference between the reads produced by second-generation sequencers and 
traditional (Sanger) sequencers: the length of produced reads is signifi -
cantly shorter. For example, the length of reads produced by the IGA-IIx is 
between 35 and 100 bps while read length of a traditional Sanger sequenc-
ers is typically between 500 and 1,000 bps. Therefore, the output produced 
by second-generation sequencers is also referred to as high-throughput 
short-read (HTSR) data.

Established methods and tools for DNA fragment assembly (e.g., Arachne [4]) 
have been designed and optimized for Sanger shotgun sequencing; that is, 
they assume read lengths of around 500–1,000 bps and coverage of 6- to 10-fold. 
Consequently, they are generally applicable to process HTSR because of

Scalability (i.e., the ability to process the much larger amount of • 
reads) and
Much shorter read length• 

Therefore, several de novo assemblers for HTSR data have been recently 
introduced. They can be divided into two categories: overlap graph-based 
approaches and de Bruijn graph-based approaches. Edena [5] and Taipan [6] 
use an overlap graph, while Euler-SR [7, 8], Velvet [9], ALLPATHS [10], and 
ABYSS [11] are examples of de Bruijn graph approaches.

HTSR graph-based assembly approaches generally use an exact overlap 
of length k to generate a link in the graph and are therefore highly sensi-
tive to sequencing errors. Hence, correcting as many base-pair errors as 
possible in the input read data before graph construction can signifi cantly 
improve both assembly quality and runtime. To demonstrate the useful-
ness of error correction as a preprocessing step, we have generated three 
datasets of 0.6 million random reads each with read length of 70 from 
the genome sequence of Saccharomyces cerevisiae chromosome V using a 
 per-base error rate of 1%, 2%, and 3%, respectively. We have then executed 
the SHREC error correction algorithm [12] on each dataset. Afterward we 
compared the assembly results produced by Edena for the original data-
sets and the error-corrected datasets in terms of N50-values. The results 
shown in Figure 7.1 clearly indicate that error correction can greatly 
improve assembly results.

Unfortunately, error correction, as a preprocessing step, is highly time con-
suming. The profi ling results in Table 7.1 show that the error correction step 
in Euler-SR can take up to 72% of the overall runtime in the whole assembly 
process. It can also be seen that the percentage goes up with increasing error 
rates. This means the time spent in the error correction surges up as more 
errors need to be corrected.

In this chapter, we demonstrate how the compute unifi ed device architec-
ture (CUDA) programming model can be used to accelerate error correction 
for HTSR data on CUDA-compatible graphic processor units (GPUs). Our 
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parallel error correction algorithm is based on the so-called spectral align-
ment problem (SAP). To take advantage of the CUDA memory hierarchy we 
employ a Bloom fi lter data structure to implement hashing of k-mers. We test 
the performance of our implementation in terms of sensitivity, specifi city, and 
accuracy using several read datasets. Furthermore, speedups are presented 
in comparison to the sequential SAP implementation of Euler-SR [7, 8].

7.2 Spectral Alignment Approach to Error Correction

Sequencing errors can produce erroneous excessive computing, for example, 
in the Euler-SR algorithm; the number of erroneous edges is several times 
larger than the number of real edges. Error correction is therefore an impor-
tant preprocessing step for many de novo assemblers. The approach to error 

TABLE 7.1

Runtime of Error Correction for Euler-SR with 
Simulated Read Dataset*

Error Rate (%)   (s) Percentage (%)

1 1,527 52
2 2,506 63
3 3,324 72

Note: *Generated from Saccharomyces cerevisiae chromosome 
V with an error rate range between 1% and 3%.

0
5000

10000
15000
20000
25000
30000
35000
40000
45000
50000

1% error-
rate 

2% error-
rate

3% error-
rate

N
50

w/o error correction

w/ error correction

FIGURE 7.1
Comparison of N50-values produced by Edena for the three datasets with and without prior 
error correction.
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correction used in this chapter is based on the SAP [13, 14], which can be 
described as follows:

Given are a set of k reads R = {r1, . . . ,rk} over the alphabet {A, C, G, T} where each 
read is of length L and a tuple-length l with l < L. SAP considers every l-mer of 
each read (i.e., every substring of length l) and compares them to the spectrum 
T(G). The spectrum T(G) consists of all l-mers of the reference genome G, where 
the reads originate from. If a read is error free, all its l-mers will have a cor-
responding exact match in T(G). If a read has a single error (mutation) at posi-
tion j, the corresponding min{l, j, L−j} overlapping l-mers have (in most cases) 
a lower number of corresponding exact matches T(G). However, by mutating 
position j back to the correct base pair, all l-mers have a corresponding match. 
This is the basic idea of SAP, which is illustrated in Figure 7.2.

We use the following terminology for the defi nition of the SAP. An l-mer 
of a read is called solid if it has an exact match in a given l-mer spectrum 
T and weak otherwise. A read R is called a T-string if all its l-mers have an 
exact match in the spectrum T. SAP can now be defi ned as follows:

Defi nition (SAP): Given a read ri and an l-mer spectrum T, fi nd a T-string 
ri* in the set of all T-strings that minimizes the distance function d(ri, ri*).

Depending on the error model of the utilized sequencing technology the dis-
tance function d() can be either edit distance (suitable for 454 Life Sciences/
Roche) or hamming distance (suitable for Solexa/Illumina). We focus on 
Illumina technology, and therefore, the latter approach is chosen in this work.

In a de novo assembly project the reference genome G is generally not 
known beforehand. Therefore, the spectrum T(G) of all correct (or trusted) 
l-mers needs to be approximated from the available read data. This is usu-
ally done by introducing the additional parameter m (multiplicity). The ideal 
spectrum T(G) is then replaced by the approximated spectrum T(R,m), where 
T(R,m) consists of all l-mers that occur at least m times in R. It should be men-
tioned that the use of an approximate spectrum is not always ideal, because

 1. Some l-tuples that are in T(G) might not necessarily be in T(R,m) 
because of low coverage.

 2. Some l-tuples that are in T(R,m) might not necessarily be in T(G) 
because of the same error occurring several times.

T T G T C A G C G T ARead:

L = 11

l = 4 error

l-mer spectrum = {…, TCAA, CAAC, AACG, ACGT, …}

FIGURE 7.2
Changing the single error at position 6 in the given read from G to A results in l corresponding 
matches in the spectrum.
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These cases can be minimized by an optimal choice of the parameters 
m and l. This choice depends on the average number of reads covering an 
l-mer of the sequenced genome.

7.3 Parallel Error Correction with CUDA

7.3.1 Bloom Filter Data Structure and Spectrum Computation

A very frequent operation in SAP-based error correction is the spectrum mem-
bership test; that is, testing whether s∈T for an l-mer s and a given spectrum 
T. This test has to be done for a large number of l-mers and a fi xed spectrum 
and can be effi ciently performed by hashing. An effi cient way to store a fre-
quently accessed hash table in CUDA is to use the read-only texture memory. 
We have found that the fastest and most space-effi cient way to implement 
this membership test with CUDA is to use probabilistic hashing based on the 
space-effi cient Bloom fi lter data structure. Another interesting application of 
the Bloom fi lter data structure in bioinformatics is the word matching stage in 
basic local alignment search tool deoxyribonucleic acid (BLASTN) on an fi eld-
programmable gate array (FPGA) (see Chapter 8 for more details).

A Bloom fi lter represents a set of given keys in a bit-vector [15]. Insertion 
and querying of keys are supported using several independent hash func-
tions. Bloom fi lters gain their space effi ciency by allowing a false-positive 
answer to membership queries. Space savings often outweigh this draw-
back in applications where a small false-positive rate can be tolerated, par-
ticularly when space resources are at a premium. Both criteria are met for 
the CUDA error correction algorithm (and also for BLASTN word  matching 
in Chapter 8). In the following section we briefl y review defi nition, pro-
gramming, querying, and false-positive probability (FPP) of Bloom fi lters.

A Bloom fi lter is defi ned by a bit-vector of length b, denoted as BF[1..b]. A 
family of k hash functions hi: K → A, 1 ≤ i ≤ k, is associated to the Bloom fi lter, 
where K is the key space and A = {1, . . . ,b} is the address space. K is the set of 
all l-mers over the alphaber {A, C, G, T} in this paper.

For a given set I of n keys, I = {x1, . . . ,xn}, I ⊆ K, the Bloom fi lter is pro-
grammed as follows. The bit-vector is initialized with zeros; that is, BF[i] 
:= 0 for all 1 ≤ i ≤ b. For each key xj ∈ I, the k hash values hi(xj), 1 ≤ i ≤ k, are 
computed. Subsequently, the bit-vector bits addressed by these k values are 
set to one; that is, BF[hi(xj)] := 1 for all 1 ≤ i ≤ k. Note that, if one of these values 
addressed a bit that is already set to one, that bit is not changed.

For a given key x ∈ K, the Bloom fi lter is queried for membership in I in 
a similar way. The k hash values hi(x), 1 ≤ i ≤ k, are computed. If at least one 
of the k bits BF[hi(x)], 1 ≤ i ≤ k, is zero, then x ∉ I. Otherwise, x is said to be a 
member of I with a certain probability. If all k bits are found to be one but x 
∉ I, x is said to be a false positive (see Figure 7.3).
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The presence of false positives arises from the fact that the k bits in the 
bit-vector can be set to one by any of the n keys. Note that a Bloom fi lter can 
produce false-positive but never false-negative answers to queries. The FPP 
of a Bloom fi lter is given by Equation 7.1.

 

k kkn kn
mFPP e

m
1

1 1 1
−    = − − ≈ −           

(7.1)

Obviously, FPP decreases as the bit-vector size m increases, and increases 
as the number of inserted keys n increases. It can be shown that for a given m 
and n, the optimal number of hash functions kopt is given by (m/n) ⋅ ln(2). The 
corresponding FPP is then approximately 0.6158m/n.

Hence, in the optimally confi gured Bloom fi lter, the false-positive rate 
decreases exponentially with the size of the bit-vector. Furthermore, to main-
tain a fi xed FPP, the bit-vector size needs to scale linearly with the inserted 
key set. In our Bloom fi lter implementation using one-dimensional linear 
texture memory we have chosen k = 8 and m = 64 ⋅ n, which leads to FPP = 
3.63e–08.

Before correcting errors with the SAP approach, the spectrum T(R,m) con-
sisting of the set of all l–mers that have a multiplicity of at least m needs to be 
computed in a preprocessing step. The spectrum is represented by the Bloom 
fi lter B(T(R,m)), which is subsequently transferred to the CUDA texture mem-
ory to be used for parallel error correction. The computation of B(T(R,m)) is 
done sequentially on the host central processing unit (CPU). Our implemen-
tation uses m Bloom fi lters, B1, . . . ,Bm, to represent the multiplicity m. For each 
l-mer, the algorithm queries the Bloom fi lters successively in descending 

T G T C A C G T A

l-mer s

0 1 0 0 0 11 1 1

h3(s)

h2(s)
h1(s)

FIGURE 7.3
Bloom fi lter data structure for querying the spectrum T for membership of the l-mer s.
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order. Once a positive query is found for some k, Bk+1 is programmed for the 
given l-mer and the algorithm continues with the next l-mer.

7.3.2 Parallel Error Correction Using CUDA

The parallel CUDA algorithm for error correction with SAP uses the following 
idea. An error (i.e., mutation) at position j in read ri creates min{l, j, L−j} erroneous 
l-mers. Therefore, the correction of ri at position j can be associated to the trans-
formation of min{l, j, L−j} weak l-mers into solid ones. The parallel SAP error 
correction searches for such corrections using a voting procedure as follows.

SAP voting procedure: Given an l-mer spectrum T and a read ri, let ri
j 

denote the jth l-mer of ri; that is, ri[j . . . j + l], the substring of length l starting 
at position j of ri. Firstly, all weak l-mers of ri are identifi ed; that is, all 0 ≤ j ≤ 
L−( j + 1) with ri

j ∉ T. Every nucleotide position of each weak l-mer ri
j is then 

mutated to check whether the mutated l-mer is solid; that is, the l-mers t[k,c] 
= ri[j . . . j + k−1] ⋅ c ⋅ ri[j + k + 1 . . . j + l] (“⋅” denotes string concatenation) for all 
0 ≤ k ≤ l−1 and c ∈ {A, C, G, T}\{ri[j + k]} are created and tested for spectrum 
membership. If t[k,c] ∈ T, the corresponding counter in the voting matrix, V(ri)
[j + k][c], is incremented by one. V(ri)[][] is of size L × 4, where V(ri)[pos][char] 
represents the read ri with the nucleotide at position pos mutated to char, 
denoted as ri[pos][char]. The counter value V(ri)[pos][char] represents the num-
ber of l-mers that are weak in ri but are solid in ri[pos][char]. A large value in 
the voting matrix is therefore an indicator for an error at the corresponding 
read position. For each read ri that is not a T-string, the maximum position 
[pmax][cmax] in V(ri)[][] is determined. The read ri[pmax][cmax] is then created. If 
ri[pmax][cmax] is a T-string, then ri is considered to be corrected by ri[pmax][cmax]. 
Otherwise, ri is trimmed or discarded. Figure 7.4 outlines an example for the 
read and spectrum used in Figure 7.2.

The outlined voting procedure only considers a single mutation error; that 
is, ∆ = 1. To consider several errors (i.e., ∆ ≥ 2) within the same read, the same 
approach can be used where up to ∆ mutations are considered with each 
l-mer.

CUDA parallelization: The parallelization approach of the voting proce-
dure with CUDA exploits the fact that V(ri)[][] can be computed indepen-
dently for each read ri  ∈ R. Hence, we use a CUDA kernel to represent the 
sequential processing necessary for the voting of an individual read ri. The 
kernel is then invoked using a thread for each read ri ∈ R. The time complex-
ity of the kernel is determined by ∆ (∆ ≥ 1), the number of corrections within 
a weak l-mer.

Our CUDA kernel for correcting exactly ∆ mutations consists of two phases. 
The fi rst phase is the ∆-mutations voting algorithm. It identifi es all l-tuples 
of the given read that are not in the spectrum (i.e., the Bloom fi lter). All pos-
sible ∆-point mutations of these l-tuples are then queried for membership in 
the spectrum. If successful, corresponding counters in the voting matrix are 
incremented.
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After the voting matrix is computed by each thread for a given read, errors 
can be fi xed based on high values in the voting matrix. In certain cases; for 
example, when ∆ + 1 errors are close to each other, the ∆-mutation voting 
algorithm cannot correct the errors. However, it is still possible to identify 
the read as erroneous and to trim it at certain positions or discard it. This is 
done using a fi xing/trimming/discarding procedure, which is the second 
phase of our CUDA kernel.

The time complexity of the kernel is dominated by the fi rst phase. The 
operation that determines the runtime of the ∆-mutation voting algorithm is 
the Bloom fi lter membership test. The overall amount of membership queries 
by a single thread is (L − l) ⋅ p ⋅ O(l∆), where p is the number of l-tuples of the 
read that do not belong to the spectrum.

Our CUDA algorithm for correcting up to ∆ mutations uses a fi ltration 
approach to reduce the amount of reads that are corrected with a large ∆ 
value. In the fi rst step, ∆-mutation voting and ∆-mutation fi xing/trimming/
discarding is performed on the GPU only for ∆ = 1. In the next step, the 
CUDA kernel for ∆ = 2 is executed only for the set of reads that have been 
trimmed or discarded during the ∆ = 1 computation. This approach can then 
be continued for larger values of ∆.

The per-thread memory requirement for storing the voting matrix V(ri)[][] 
can be reduced to l × 4 bytes using cyclic indexing. The per-thread memory 
amount required for storing voting matrix and read is therefore reduced to 
4 × l + L bytes. Therefore, shared memory could be used to store this data. 
However, this would limit the number of threads per block to 128 (already 

T T G T C A G C G T ARead ri:

L = 11

l = 4 Error at position pos

l-mer spectrum = {…, TCAA, CAAC, AACG, ACGT, …}

0 0 0 0 0 0 4 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0

A
C
G
T

0 1 2 3 4 5 6 7 8 9 10Voting 
matrix
V(ri)[][]:

T T G T C A A C G T ACorrected read ri[6][A]:

FIGURE 7.4
The single error at position pos = 6 in the read ri results in a high value in the  corresponding 
position in the associated voting matrix V(ri)[6][A].
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for relatively small values of l and L, such as L = 35 and l = 20). Further-
more, it would negatively affect the maximum number of thread blocks 
per multiprocessor (MTBPM). In general, there is a trade-off between par-
titioned-based spatial-merge (PBSM) usage and MTBPM: increased PBSM 
usage decreases MTBPM. Lower MTBPM results in a lower warp occu-
pancy and effi ciency. The CUDA occupancy calculator tool recommends 
a usage of less than 4 KB PBSM for our implementation. Therefore, we 
have decided not to store the voting matrix in PBSM but in local memory. 
Furthermore, if the number of reads exceeds the total number of threads 
used in the kernel our implementation allows processing several reads per 
thread.

7.3.3 Execution Example

Figure 7.5 illustrates all steps of our CUDA error correction (CUDA-EC) 
implementation for ∆ = 1 and ∆ = 2 using a fl ow chart.

Start

Count spectrum

Allocate memory and copy
data (CPU to GPU)

Execute kernel ∆ = 1 

Copy results (GPU to CPU)

Fix one error
only? Execute kernel ∆ = 2 No

Write results to file

End

Copy results (GPU to CPU)

Yes

FIGURE 7.5
CUDA error correction algorithm fl ow chart.
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CUDA-EC fi rst performs the precomputation on the CPU host. The pre-
computed spectrum and the reads are then transferred to device and the 
CUDA kernel is executed. The individual steps are as follows:

 1. Precomputation of spectrum list: Using the input parameters l and m, a 
spectrum list is compiled with all l-mers occurring at least m times 
in the read dataset.

 2. Hashing the spectrum list into Bloom fi lter: Before transferring the spec-
trum to the GPU, all l-mers in the spectrum list are hashed into 
Bloom fi lter. We then bind the Bloom fi lter to the texture memory on 
the GPU. Each item in the spectrum list will be added to the Bloom 
fi lter using the hash functions given below.

//Step 1: get hash value
hash  = hash_function_list[j](tempTuple,TUPLE_SIZE) % 
(table_size * char_size);
//Step 2: add to the bloom filter
hash_table[hash / char_size] |= bit_mask[hash % char_size];

The size of the Bloom fi lter is dependent on the number of hashed 
items. As discussed in Section 7.3.1, we use k = 8 and m = 64 ⋅ n, with 
FPP = 3.63e–08. Assume the total number of l-mers in the spectrum is 
N, then the Bloom fi lter requires 8N bytes in total. As the Bloom fi lter is 
stored as a read-only 1D char array, we can fi t the Bloom fi lter to GPU 
texture memory for fast fetch.

 3. Bind the Bloom fi lter to 1D texture on the GPU:

   // allocate data on device
   unsigned char *dev_hash;
   cudaMalloc( (void**)&dev_hash, table_size );
   // copy memory to device
    cudaMemcpy( dev_hash, hash_table, table_size, 

cudaMemcpyHostToDevice );
   // bind texture
   cudaBindTexture(0, tex, dev_hash );

 4. Allocate memory on the GPU and transfer the reads from CPU to GPU: Reads 
are allocated in 1D character array and copied to device memory.

 5. Parallel error correction on GPU: By applying each-thread-one-read 
policy, the CUDA threads are mapped to the read data using thread 
indices. With each thread processing one read, there will be no non-
coalesced global memory accesses. Each thread may also be used to 
fi x several reads depending on the number of reads. The results are 
stored in the output reads array with fl ags to differentiate between 
fi xed and discarded reads.
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 6. Transfer from GPU to CPU and write results to fi les: The reads are trans-
ferred from GPU to CPU and are written to two separate output fi les, 
one for fi xed and one for discarded reads.

The command line to run the error correction application program is as 
follows:

/cuda-ec -f {inputfilename} -t {tuplesize} -o {fixed-filename} 
–d {discarded-filename} -r {read_length}[-maxTrim {maximum_
trim}] [-minVotes {minimum votes}] [-minMult {multiplicity}] 
[-search {num_error_to_fix]]

The required parameters are defi ned as follows:

-f {inputfi lename}: path and name of the read input fi le in FASTA • 
format
-t {tuplesize}: length of a tuple (or•  l-mer)
-o {fi xed-fi lename}: name of output fi xed fi le• 
-d {discarded-fi lename}: name of output discarded fi le• 
-r {read_length}: length of the input reads• 

The optional parameters are defi ned as follows:

-maxTrim: maximum number of trimmed character allowed at the • 
beginning and at the end of a read (default 20)
-minVotes: minimal number of votes required for error correction • 
(default 2)
-minMult: multiplicity (default 6)• 
-search: number of error to be fi xed in each read (default ∆ = 1)• 

7.4 Performance Evaluation

We have evaluated the performance of our CUDA-EC approach for datasets 
with varying coverage, error rate, and read length using simulated Illumina-
style datasets as well as two real Illumina datasets. The simulated datasets 
have been produced by generating random reads with a given error rate 
from a reference genome sequence. To test scalability, we have selected ref-
erence genomes of various lengths (ranging from 0.58 Mbp to 4.71 Mbp). 
Three datasets have been created for each reference genome sequence using 
per-base error rates of 1%, 2%, and 3%, respectively. The features of the simu-
lated input datasets are summarized as follows in the format IDs: Reference 
genome (GenBank ID), Genome length, Coverage, read length, number of 
reads. (Note that the ID Ai indicates a per-base error rate of i%.)
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SA1, SA2, SA3: S.cer 5 (NC_001137), 0.58 M, 70×, 35, 1.1 M• 
SB1, SB2, SB3: S. cer7 (NC_001139), 1.1 M, 70×, 35, 2.2 M• 
SC1, SC2, SC3: H.inf (NC_007146), 1.9 M, 70×, 35, 3.8 M• 
SD1, SD2, SD3: E.col (NC_000913), 4.7 M, 70×, 35, 9.4 M• 

The real datasets consist of 3.5 M unambiguous reads (i.e., they do not 
contain any nondetermined nucleotide) of length 35 each and have been 
downloaded from http://www.genomic.ch/edena.php and of 8.2 M unam-
biguous reads of length 36 downloaded from http://sharcgs.molgen.mpg.
de/download.shtml. The former has been obtained experimentally by 
Hernandez et al. [5] using the Illumina Genome Analyzer for sequencing 
the Staphylococcus aureus strain MW2 (H. Aci). The latter has been tested 
by Dohm et al. [16] for sequencing Helicobacter acinonychis. We have esti-
mated the error rate of the two real dataset as 1.0% and 1.6%, respectively, 
by aligning each read to the reference genome using RMAP [17]. The real 
datasets are summarized in the format IDs: Reference genome (GenBank 
ID), Genome length, Coverage, read length, number of reads, estimated 
per-base error rate.

RA: S. aureus (NC_003923.1), 2.8 M, 43×, 35, 3.5 M, 1%• 
RB: Helicobacter (NC_008229), 1.6 M, 190×, 8.2 M, 1.6%• 

To evaluate the time effi ciency of CUDA-EC, we have measured the run-
time of these datasets on an NVIDIA GeForce GTX 280 with CUDA version 
2.0. The card is connected to an AMD Opteron dual-core 2.2 GHz CPU with 
2 GB RAM running Linux Fedora 8 by the PCIe 2.0 bus. The performance 
of CUDA-EC is compared with the single-threaded C++ code running on 
the same CPU from the SAP error correction implementation of in Euler-SR 
(available at http://euler-assembler.ucsd.edu). The code is a serial imple-
mentation of the  ∆-mutation error correction algorithm. However, different 
from our parallel method, it stores the spectrum in a sorted vector and then 
calls the standard template library (STL) function “std::lower_bound() 
for membership queries. Runtime comparisons between the sequential and 
the CUDA implementation for all datasets have been performed using the 
default parameters l = 20 and m = 6. The CUDA timings include precom-
putation time on the CPU, CUDA kernel time, and CPU–GPU data transfer 
time. CUDA kernels are executed using 256 thread-blocks and 256 threads 
per block. The Euler-SR code is compiled using GNU GCC 4.1.2 with the 
full optimization (-O3) enabled. Figures 7.6 and 7.7 show the speedup for 
the simulated datasets for ∆ = 1 and ∆ = 2, respectively.

Speedups are shown for the parallel part only (i.e., the voting proce-
dure running on the GPU) and for the complete application (i.e., par-
allel voting plus sequential precomputation of the Bloom filter on the 
CPU). Figure 7.8 shows the corresponding speedups for the two real 
datasets.
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The speedups indicate the following trends

 1. The speedup increases for higher error rates.
 2. The speedup increases for ∆ = 2.

Trend 1 can be explained as follows. The voting algorithm tests each l-mer 
ri

j for spectrum membership and therefore contains a corresponding data-
dependent conditional branch (if ri

j ∉ T then) that is executed for each l-tuple 
of the given read. This leads to ineffi ciencies in the CUDA implementa-
tion due to the single-instruction multiple-thread (SIMT) execution model. 
Threads for which this statement is true execute another O(l) membership 
queries. Threads for which this statement is false need to wait for these 
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FIGURE 7.6
Speedups for the simulated datasets using ∆ = 1 ((parallel) is the speedup for the parallelized 
part only; while (total) is the speedup for the complete application).
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Speedups for the simulated datasets using ∆ = 2.
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threads within the same warp to fi nish these tests. The number of error-free 
reads is generally decreasing for higher error rates. Thus, the number of idle 
threads per warp is decreasing for higher error rates, which in turn improves 
the effi ciency of the CUDA implementation.

Trend 2 is due to of the fi ltration approach used in the parallel error cor-
rection algorithm. The double-mutation voting algorithm is only applied to 
the subset of reads that contain at least two errors (i.e., all reads that have 
not been be fi xed by the single-mutation voting algorithm). Therefore, the 
data-dependent conditional branch is true in most threads within a warp, 
resulting in a higher-parallel effi ciency compared to ∆ = 1.

We have further analyzed the accuracy of our CUDA implementation in 
terms of

Identifi cation• ; that is, identifying reads as erroneous or error free
Correction• ; that is, correcting reads that have been identifi ed as 
erroneous

The identifi cation of erroneous reads can be defi ned as a binary classifi cation 
test. The corresponding defi nitions of true positive (TP), false positive (FP), 
true negative (TN), and false negative (FN) are as follows.

TP• : erroneous read that is fi xed, trimmed, or discarded by CUDA-EC
FP• : error-free read that is fi xed, trimmed, or discarded by CUDA-EC
TN• : error-free read that is kept unchanged by CUDA-EC
FN• : erroneous read that is kept unchanged by CUDA-EC

Sensitivity and specifi city measures are then defi ned as: sensitivity = TP/
(TP + FN); specifi city = TN/(TN + FP).
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FIGURE 7.8
Speedups for the real datasets.

10768_C007.indd   15210768_C007.indd   152 6/17/2010   7:51:16 PM6/17/2010   7:51:16 PM



CUDA Error Correction Method for HTSR Data 153

Figure 7.9 shows the specifi city and sensitivity measures for selected data-
sets. It can be seen that the algorithm identifi es erroneous reads with very 
high accuracy. We have further analyzed the reads that have been classifi ed 
as TP. The amount of corrected/trimmed reads relative to the number of 
discarded reads is shown Figure 7.10.

Figure 7.10 shows that in 1-error and 2-error corrections, the  percentage 
of corrected/trimmed reads decreases compared to the discarded reads for 
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FIGURE 7.9
Performance of the read identifi cation classifi cation test measured in sensitivity and specifi city 
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higher error rates. This can be explained by the larger number of erroneous 
reads with more than one error for higher error rates. These reads cannot 
be corrected with the single-mutation voting algorithm, and will therefore 
be either trimmed or discarded. For 2-error corrections, it can be seen that 
the percentage of corrected reads increases and the trimmed and discarded 
reads decrease for higher error rates compared with 1-error correction.

A further observation is that the percentage of corrected/trimmed reads is 
lower for the real dataset. The likely reason for this is that errors in real reads 
are not as evenly distributed as in our simulated reads. It has been reported 
[18] that error rates in Illumina reads range from 0.3% at the beginning of a 
reads to 3.8% at the end of reads.

7.5 Conclusion and Future Work

The emergence of new HTSR sequencing technologies establishes the need 
for new tools and algorithms that can process massive amounts of short reads 
in reasonable time. In this chapter we have addressed this challenge by writ-
ing scalable CUDA error correction software for modern many-core archi-
tectures, which is an important but time-consuming preprocessing step for 
many de novo assembly tools. To derive an effi cient CUDA implementation 
we have used a space-effi cient Bloom fi lter for hashing to take advantage of 
the CUDA memory structure. Our performance evaluation on a commodity 
GPU shows speedups around one order of magnitude for various datasets 
at high-correction accuracy. Our CUDA-EC implementation is available at 
http://cuda-ec.sourceforge.net.

A weakness of the described error correction method is that the l-mer 
spectrum of the reference genome T(G) is only approximated by T(R,m); that 
is, the set of all l-mers with multiplicity ≥m in the input read dataset. Our 
future work includes the incorporation of base-call quality scores to the 
spectrum construction to improve this approximation. The speedup of the 
current CUDA implementation is reduced by the sequential precomputation 
of the Bloom fi lter on the CPU. Therefore, another part of our future work is 
to investigate more effi cient methods for the sequential preprocessing stage. 
Furthermore, it would be interesting to compare the SAP-based error correc-
tion approach to other approaches such as the recently introduced SHREC 
method [12], which uses a suffi x tree of all input reads to identify and correct 
sequencing errors.
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Biological sequence comparison studies the relationship between DNA or 
protein sequences. A pairwise alignment algorithm matches fragments in a 
sequence of unknown function, termed the query, to similar fragments in a 
reference sequence from a large database. Biologically relevant matches may 
represent genes, structural domains, regulatory elements, or other sequence 
features that provide clues to the biochemical function and structure of the 
query. Biosequence databases, such as GenBank from the U.S. National Center 
for Biological Information (NCBI), provide an annotated list of reference 
sequences that form the basis for comparative analysis. High-throughput com-
parison is widely used to annotate functional elements in newly sequenced 
genomes, to assemble sequence reads against a reference genome, to compare 
related genomes, or to analyze sequence reads from microbial communities.

The best match between two sequences, as determined by some score met-
ric, can be computed using the Smith–Waterman algorithm [1], which uses 
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dynamic programming to effi ciently examine an exponential alignment 
space. Even so, its computational cost, which is proportional to the product 
of the lengths of the two sequences, is prohibitively expensive for comparing 
two genomes or a query to a large database. To address this problem the bio-
logical community has developed heuristic methods that produce satisfactory 
alignments, though not necessarily the best as found by Smith–Waterman, at 
a fraction of the computational expense. One such heuristic, seeded alignment, 
implemented in the Basic Local Alignment Search Tool (BLAST) family of 
algorithms [2, 3] is a sequence fi ltering technique that limits Smith–Waterman 
comparison to subsets of the database that are highly likely to be similar to 
the query. BLAST fi rst identifi es pairs of short, fi xed-length substrings in 
the query and reference sequences known as seeds. Progressively expensive 
computations fi lter these seeds and their corresponding reference sequences 
so that full Smith–Waterman comparison is done on only a small fraction 
of the database. Unlike the classical Smith–Waterman algorithm, BLAST is 
capable of identifying many alignments between two sequences, which may 
represent distinct sequence features. Owing to its speed advantage, BLAST 
has been widely adopted by the biological community as a replacement for 
the Smith–Waterman algorithm.

While BLAST is roughly two orders of magnitude faster than Smith–
Waterman, it too is subject to ever-increasing computational demands driven 
by low-cost sequencing and the emerging data-intensive fi eld of meta-
genomics. New technologies can sequence larger genomes at a cost order 
of magnitude lower than the technology used during the Human Genome 
Project a decade ago. Publicly available databases have seen an exponen-
tial growth over the last decade as a large number of organisms have been 
sequenced and new genes have been identifi ed. Figure 8.1 shows the growth 
of the GenBank Non-Redundant DNA database [4], increasing at the rate of 
1 billion bases per month. The National Human Genome Research Institute 
envisions an era of affordable individual human genome sequencing for less 
than $1,000 by 2014, potentially enabling the sequencing and analysis of any 
person’s genome.

Metagenomics is an emerging fi eld that studies the genetic diversity of a 
complex mixture of microbial species in an ecosystem through large-scale 
sequencing. The generated DNA reads are analyzed by comparing them 
against reference databases using sequence analysis tools such as BLAST. 
Already, several times as many genes have been generated from metagenomic 
samples in a few years as from complete genomes in a decade of sequencing. 
Comparative metagenomics studies the infl uence of environmental factors 
on microbial communities by comparing samples from different environ-
ments. The bottleneck in all these analyses is the BLAST computation. As 
sequencing costs drop further, the metagenomics approach can be applied to 
study any microbial community on earth.

Given this situation, most large-scale projects use a cluster of commodity 
workstations for high-throughput sequence comparison [5–7]. In a cluster, 
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the workload is distributed among nodes that perform largely independent 
computations, together producing a linear speedup. As an example, the 
BLAST web server made available by NCBI for processing query sequences 
from the community used a Linux cluster of around 200 CPUs in 2004. On 
a typical weekday in 2004 the cluster processed 1.4 × 105 query sequences, 
and NCBI projected doubling the number of nodes to keep up with demand 
[8]. While clusters are widely used, they have important limitations. They 
require a considerable initial investment, are expensive to maintain, occupy 
large amounts of fl oor space, have signifi cant power requirements, and need 
effective cooling solutions.

Special-purpose architectures on graphic processor units (GPUs) and fi eld-
 programmable gate arrays (FPGAs) address some of these limitations. These 
technologies are well suited for data-intensive algorithms that operate on 
large volumes of data, and have ample fi ne-grained parallelism. FPGAs have 
programmable logic, interconnects, and specialized arithmetic units on-
chip, that can be used to build high-computational density architectures spe-
cialized to an application. In addition, FPGAs have customizable, massively 
parallel on chip memory elements that can be used as an effi cient “cache.” 
Many data-intensive applications have seen orders of magnitude better per-
formance on FPGAs than on general-purpose microprocessors; for these 
applications FPGAs consume less energy and cost less than an equivalent 
workstation cluster.

A large body of existing work accelerates the Smith–Waterman compu-
tation on FPGAs [9, 10]. Unfortunately, these accelerators are not suitable 
for large-scale sequence comparison because they are not performance 
competitive with heuristic tools. For example, Smith–Waterman acceler-
ated 100-fold is about as fast as a software implementation of BLAST on a 
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FIGURE 8.1
Growth of the GenBank Non-Redundant DNA database over the last decade.
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modern workstation. In fact, Smith–Waterman is just one of many stages 
in a modern heuristic pipeline; seed generation, the stage that identifi es 
word matches between the query and a reference sequence is the bottle-
neck in the BLAST computation. Seeded alignment is more challenging 
to accelerate because, unlike Smith–Waterman, the various stages are not 
fully data parallel; therefore, we must rely on pipeline parallelism and 
novel hardware-friendly memory data structures to achieve an apprecia-
ble speedup.

In this chapter we will describe an FPGA accelerator for sequence com-
parison that exploits the characteristics of the streaming model. A stream 
program operates on a large data stream of items using a chain of self-
contained computation stages. Each stage reads a data item; performs a 
predictable, fi nite set of operations on it; and sends the item to the next 
stage in sequence, or alternatively discards it. Because there is no reuse of 
data items in a stage, and the chain of stages usually does not have feed-
back or other interactions, stream programs can achieve high throughput 
on GPUs and FPGAs. In addition, stream programs exhibit abundant data, 
task, and pipeline parallelism that can be effi ciently exploited on FPGAs. 
Data parallelism (commonly found in loops) refers to the execution of the 
same set of instructions on distinct data items with either no dependencies 
or those that are statically defi ned. Task parallelism refers to a multiplic-
ity of independent tasks that do not exchange data and can be mapped to 
independent processing units. Finally, pipeline parallelism is available in 
a linear chain of stages that execute simultaneously. The BLAST streaming 
architecture we will describe is organized as a pipeline of linear stages 
that operates on a stream of database sequences. Each stage acts as a fi lter, 
passing only reference sequences that match the query on to the next stage 
in the pipeline.

An often ignored, yet critical task, is the validation of a sequence com-
parison accelerator, that is, comparing the quality of its output against 
BLAST. Biologists have come to accept the results of BLAST as a de facto 
standard (even over Smith–Waterman) and have little reason to trust 
an accelerator that deviates from the original algorithm. Preserving the 
behavior of each stage while making it more hardware friendly is a recur-
ring theme in this chapter. We validate the results of the implementa-
tion on large-scale, realistic biological datasets to build confi dence in our 
accelerator.

The rest of this chapter is organized as follows: Section 8.1 introduces 
two versions of the BLAST algorithm: one for pairwise (DNA) comparison 
(BLASTN) and another for comparing protein sequences (BLASTP). We 
describe specialized hardware architectures for each version in Section 8.2 
that capitalize on their unique properties. We validate the speedup of the 
accelerator and quality of its results in Section 8.3. We conclude in Section 
8.4 with general principles that can be applied to design accelerators for 
seeded pipelines of other sequence analysis tools.
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8.1 The BLAST Algorithm

An alignment is a side-by-side comparison of pairs of sequence charac-
ters, referred to as nucleotides in a DNA sequence; amino acids in a pro-
tein sequence; or, collectively, residues. Figure 8.2 shows an example of an 
alignment between two protein sequences. A good alignment maximizes 
the number of pairs of identical or biologically similar residues while keep-
ing dissimilar pairs and unaligned residues called gaps to a minimum. The 
score of an alignment is computed by adding the individual score of paired 
residues, found in a table 8, and the penalty of introducing gaps.

BLAST compares a query sequence Q to every reference sequence D in a 
database, identifying one or more statistically signifi cant alignments. The 
BLAST computation is divided into three stages: seed generation, ungapped 
extension, and gapped extension (see Figure 8.3). The key observation 
exploited by the BLAST heuristic is that strong alignments between a query 
and a reference sequence are likely to contain pairs of consecutive residues 

    Query: CVRAERAMQEEFYLELKEGLLEPLAVTERL----AIIS
           | |    +| | ++|  || +||   |    +|||
Reference: CSR--ELIQHELDQVVEE--LEKIAVVNLLRHRRSIIS

FIGURE 8.2
An alignment between a query and a reference protein. Pairs of biologically similar and identi-
cal residues are marked by pluses and vertical lines, respectively. Two word matches, or seeds, 
of length 3 are highlighted in the alignment.
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FIGURE 8.3
The BLAST heuristic is a three stage pipeline that fi lters reference sequences using progres-
sively more expensive computations. Seeded alignment is illustrated using four dot-plots, with 
the query and reference sequence positions on the X- and Y-axes, respectively. Features are 
marked along antidiagonals. Stage 1 identifi es word matches and two-hits, stage 2 high-scor-
ing ungapped alignments, and stage 3 gapped alignments.
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in each sequence that are highly similar. The seed-generation stage identifi es 
these word matches, or seeds, and focuses the search around them. Figure 8.2 
highlights two seeds, though only the one on the right is an identical word 
match. Seed generation is split into two substages with a two-hit unit that is 
used only for protein comparison. Ungapped extension extends a seed by 
aligning residues surrounding the word match without introducing gaps, 
producing a high-scoring segment pair (HSP). HSPs whose alignment score 
exceeds a threshold are passed on to the next stage. Finally, gapped exten-
sion applies the full Smith–Waterman algorithm to extract the highest scor-
ing alignment centered on a seed. The BLAST stages employ progressively 
more expensive computations, but each stage also discards close to 90% of 
its input. In what follows, when we refer to an HSP or a gapped alignment, 
we are referring to the seed contained in the HSP or alignment.

From the family of BLAST programs we will focus on accelerating 
BLASTN and BLASTP, used, respectively, for nucleotide-to-nucleotide and 
 protein-to-protein sequence comparison. BLASTN and BLASTP are similar 
in many aspects, but differ in the way seeds are identifi ed in the fi rst stage. 
We will now describe the BLAST algorithm in detail, with special attention 
given to the differences between the two.

8.1.1 Seed Generation

Seed generation produces tuples (q, d) that represent a word match at position 
q in the query and d in the reference sequence. Word matches may undergo 
further processing, as in the case of BLASTP, after which they are passed as 
seed matches to the ungapped extension stage.

In the case of BLASTN, a seed is simply an exact word match of length w 
between the query and the reference sequence. The typical word length is 
11, a good compromise between speed and quality of results. Requiring an 
exact match is appropriate for DNA sequences, for which mismatched resi-
due pairs hold relatively little information about sequence similarity. Many 
amino acids in proteins, however, share similar chemical properties and so 
have a high likelihood of being substituted by each other. BLASTP therefore 
uses inexact matching that generates seeds in a two-step process: word match-
ing (Stage 1a) and two-hit (Stage 1b). Word matching in BLASTP fi nds pairs 
of words of fi xed length, usually 3, in the two sequences that are similar 
according to a biologically meaningful score table δ. Word pairs that satisfy 
the condition 11

( [ ], [ ])
ω δ
=

+ + ≥∑ ai
Q q i D d i T  are classifi ed as matches. Here T1a 

is a neighborhood threshold score selected by the user. The default threshold 
value is 11.

When a short word length is used, word matching generates a large num-
ber of matches purely by chance that have no relation to biologically mean-
ingful alignments. A two-hit stage is therefore employed to fi lter this stream 
by exploiting the observation that a high-scoring ungapped alignment is 
likely to contain multiple word matches in close proximity. A seed match in 
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BLASTP occurs only when two word matches (q1, d1) and (q2, d2) are found 
such that (a) they are on the same ungapped alignment represented by a so-
called diagonal d1 − q1 = d2 − q2, and (b) they lie within a user-defi ned window 
of Y residues, that is, w ≤ d1 − d2 < Y. The word match (q2, d2) is designated as 
the seed in BLASTP. Though word matching in BLASTN also generates false 
positives, the two-hit fi lter is less effective, and so is not used.

For effi cient computation, the word-matching stage uses a lookup table 
containing a precomputed neighborhood of the query sequence. The neigh-
borhood is a list of all possible database words that match query words, 
along with their positions q in the query. In the case of exact matching there 
are  Q − w + 1 database words that match the query. In BLASTP, all possible 
database words are fi rst compared with every query word, and pairs that 
score at least T1a become part of the neighborhood. The neighborhood of a 
query word is shown in Figure 8.4.

8.1.2 Ungapped Extension

Ungapped extension investigates query and reference sequence pairs that con-
tain seed matches. Residues in the two sequences on either side of a seed match 
are aligned, permitting matches and substitutions. As gaps are disallowed, 
this stage is less expensive than full Smith–Waterman. Aligning a residue pair 
contributes a score, which may be negative, and is determined by the table δ, 
to a running total. The highest-scoring forward and backward extension from 
the seed match constitutes its HSP. Note that this HSP threads through the 
seed match and contains it. We can therefore have multiple, possibly overlap-
ping HSPs in the same query-reference pair associated with distinct seeds. If 
the score of an HSP is above a user-defi ned threshold, it is passed along to the 
next stage (more precisely, the location of its seed is passed on).

To guarantee fi nding the highest-scoring subsequence pair, residue pairs 
must be scored till the end of the sequences, which is computationally 
expensive. BLAST therefore terminates extension early using an X-drop 
mechanism that fi nds a high-scoring substring pair, though not neces-
sarily the highest. The X-drop approach notes the score of the best HSP 
after each residue pair extension. Extension is terminated early if the score 
of the HSP containing the current pair of residues falls X below that of 
the highest-scoring HSP. The X-drop procedure is able to reduce useless 

...MNN MNS MNT MNV MST...

M N T I H L R C L F R M N P L V W

FIGURE 8.4
Part of the neighborhood of the fi rst word MNT of a protein computed using inexact matching. 
The neighborhood of a DNA word is simply the word itself.

10768_C008.indd   16310768_C008.indd   163 6/17/2010   7:52:02 PM6/17/2010   7:52:02 PM



164 Bioinformatics: High Performance Parallel Computer Architectures

computations on the majority of seed matches that lie on poorly scoring 
ungapped alignments.

8.1.3 Gapped Extension

This stage uses the Smith–Waterman recurrence to compute the highest-
scoring gapped alignment that passes through a seed. BLAST’s imple-
mentation includes minor variations from the classical Smith–Waterman 
algorithm. BLAST performs gapped forward and backward extension from 
the fi rst pair of residues in the input HSP’s seed. The recurrence is modi-
fi ed to ensure that the alignment always threads through this pair. Here 
too, an X-drop procedure is employed for early termination. If a gapped 
alignment scores above a threshold value, it is reported to the user. We 
refer the interested reader to Chapter 4 for details on the Smith–Waterman 
recurrence.

8.1.4 Execution Profile of the BLAST Algorithm

Before building a specialized architecture for a stream program, it is impor-
tant to study its execution profi le and data-consumption characteristics. We 
used the GNU profi ler to generate runtime statistics of BLAST on typical 
nucleotide and protein datasets. Table 8.1 shows these results. In BLASTN 
more than 80% of the application runtime is spent in seed generation, so 
its corresponding hardware architecture is critical for an improved appli-
cation performance. Seed generation dominates despite requiring an order 
of magnitude less time to process an input than in later stages. This can be 
attributed to the large disparity in the input data volume—seed generation 
processes the entire database, while the extension stages operate on a small 
fi ltered subset. In fact, the fi lter is so effective that gapped extension, com-
putationally the most involved stage in the pipeline, is active less than 1% of 
the runtime. Protein search, in contrast, spends signifi cant time in all three 
stages.

Application disk input/output (I/O) and postprocessing are less expensive 
than the stages in the BLAST pipeline. We must be careful, however, and not 
completely ignore them. If the BLAST pipeline is accelerated enough, I/O or 
postprocessing, may become the bottleneck. The accelerator platform must 
support high-throughput data transfer from disk to FPGA, and the software 
functions may need to be executed on a small multicore system to keep up.

Next, we study the fi ltering characteristics of the stages. We denote the 
match rate in word matching, ungapped, and gapped extension respectively 
as the number of seeds, HSPs, and alignments crossing a stage’s threshold 
score per database residue. Every stage, with the exception of two, discards 
more than 95% of its input. Gapped extension in BLASTN accepts 14% of its 
input, but as the fi nal stage in the pipeline, it has no bearing on the compu-
tational expense.
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Word matching in BLASTP is a net expander of data, generating on aver-
age over three matches to the query per residue of the database. In contrast, 
most database words do not match the query in BLASTN. We exploit these 
observations to design both an effi cient fi ltering data structure for BLASTN 
and a high-throughput table lookup architecture for BLASTP. The two-hit 
stage, though a simple computation, must be capable of accepting multiple 
word matches per unit time if it is to keep up with its input rate.

8.2 A Streaming Hardware Architecture for BLAST

We now describe the architecture of Mercury BLAST, our FPGA implemen-
tation of the BLAST algorithm on the high-speed stream processing Mercury 
platform [11]. A Mercury BLAST search compares a set of queries against 
a database of reference sequences. Initially, user-programmable parameters 
are sent to the FPGA, after which the fi rst query is loaded on-chip. Reference 
sequences of the database separated by a special character are streamed in 
a single pass from the disk through the hardware. Each stage of the BLAST 
pipeline runs in parallel, with suffi cient buffering to smooth bursty matches 
likely to occur in biological sequence comparison. The results of the fi nal 
FPGA stage are delivered to a host CPU for postprocessing. This procedure 
is repeated for every query sequence in the set.

The BLASTN deployment has seed generation and ungapped extension 
running in hardware; gapped extension remains in software and can easily 
keep up with its workload. In contrast, all stages of BLASTP are deployed in 
hardware. We use an ungapped extension design that is similar in both cases; 
seed generation, however, has major differences. Next we give a high-level 
overview of the various hardware architectures. Implementation details and 

TABLE 8.1

Execution Profi le of BLAST

Word 
Matching Two-Hit

Ungapped 
Extension

Gapped 
Extension

BLASTN % time 83.89% — 15.88% 0.22%
Match Rate 0.0205 — 0.0000619 0.141

BLASTP % time 30.96% 19.29% 15.85% 33.60%
Match Rate 3.873× 0.043 0.003 0.031

Source:  Jacob, A. et al., ACM Transactions on Reconfi gurable Technology and Systems, 1(2):1–44, 
2008. With permission. © 2008 ACM, Inc.

Note:    The match rate of word matching and two-hit is specifi ed as seeds per database residue. 
For ungapped and gapped extension the match rate units are HSPs and alignments per 
database residue, respectively.
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the process of selecting appropriate parameter values can be found in the 
referenced papers [12–15].

8.2.1 Seed Generation

As mentioned in Section 8.1.1, every word in the database is looked up in 
the neighborhood table to retrieve matching query positions. Due to its size, 
this table must be stored in memory external to the FPGA device. External 
memory has relatively low bandwidth into the FPGA, so the lookup oper-
ation becomes a bottleneck and an impediment to any meaningful accel-
eration of the BLAST application. Fortunately, we can exploit the unique 
characteristics of nucleotide and protein comparisons to alleviate this prob-
lem. In the former, we use a Bloom fi lter, an on-chip, highly parallel, set 
membership testing data structure to effi ciently discard a majority of data-
base words that do not match the query. Thereafter, a low memory band-
width lookup stage is suffi cient for words that pass the prefi lter. Because the 
longer word lengths used in BLASTN would require a prohibitively large 
direct lookup table, we instead use a space-effi cient hash table in our mem-
ory lookup stage.

In protein search, every database word is highly likely to match the query, 
making set membership testing redundant—external memory references 
are inevitable. To support high-throughput word matching in BLASTP we 
must replicate the lookup table computation using as many external memory 
devices as possible; we can attain a reasonable speedup using two. The short 
word length used in BLASTP allows the use of a direct lookup table to store 
the query neighborhood.

8.2.1.1 Nucleotide Seed Generation Architecture

A Bloom fi lter [16] is a highly parallel, space-effi cient data structure invented by 
Burton Bloom that tests for an exact match to any element in a set. Originally 
used for spell checking, recently it has found use in network packet process-
ing, content summarization, and database caching. The fi lter is ideal for a hard-
ware implementation because it uses simple arithmetic operations and can be 
deeply pipelined for a high-throughput architecture. We employ Bloom fi lters 
as a specialized “cache” to effi ciently determine if a database word matches 
some word in the query (although it cannot give the location of the match).

A Bloom fi lter consists of k hash functions that in our implementation 
probe their corresponding memory bit-vectors. Each hash function is a 
 many-to-one linear transformation from the larger nucleotide word space to 
a smaller memory address space. A Bloom fi lter has two operating modes: 
program and test. In the initial state the bit-vectors are cleared. When pro-
gramming, a query word is hashed to generate k addresses that indicate the 
locations in the corresponding bit-vectors to be set. This is repeated for every 
word in the query. A database word matches the query in a test operation if 
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the bit locations computed by the hash functions are all set. The operation of 
a Bloom fi lter is shown in Figure 8.5.

A Bloom fi lter may produce false positives but never produces false negatives. 
The false positive rate is given by /(1 )−= − Nk m kf e , where N is the number of 
query words programmed, k is the number of hash functions, and m is the size 
of each bit-vector. A high false-positive rate will result in a poor  prefi lter, over-
whelming the subsequent lookup stage. To restrict the false-positive rate to a 
low value, we empirically selected m = 32, 768 and k = 6 for a query size of 17 
kbases (34 kbases when the query is reverse complemented). Each bit-vector is 
stored in two dual-ported memories on our FPGA and is shared between two 
independent test operations. A single Bloom fi lter uses only 96 Kbits of stor-
age, an order of magnitude less than that required for the entire neighborhood 
table. We can therefore replicate the fi lter setup to support sixteen parallel test 
operations on-chip. The key to our successful acceleration of BLASTN lies in 
reducing the subsequent lookup rate to about one in sixteen database words, 
enabling us to process over 109 database residues per second.

The hash lookup stage retrieves query positions that match a database word. 
As a large fraction of possible 11 residue database words do not match the 
query, we can reduce the storage requirement for the query neighborhood by 
using a hash table instead of a direct lookup table. We have two important 

1 1

k k

Query
word

k hash
functions

k m-bit
memories

Set

Reference
word

k hash
functions

k m-bit
memories

Test

1: possible match
0: not a match

1 1

k k

FIGURE 8.5
The Bloom fi lter acts as a specialized cache to discard reference words that do not match query 
words. (Adapted from Jacob, A. and Gokhale, M., HPRCTA'07: Proceedings of the 1st International 
Workshop on High-Performance Reconfi gurable Computing Technology and Applications, New York, 
2007, pp. 31–37. With permission. © 2007 ACM, Inc.)
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considerations for the hash lookup architecture. First, the number of external 
memory probes for each database word must be reduced so that, on average, 
one database word can be processed every clock cycle. Second, the hashing 
functions must be computable using limited on-chip resources. We use a 
near-perfect hashing scheme, that is, one with almost no collisions, that is a 
variant of Tarjan and Yao’s displacement hashing [17].

The hash table is organized into primary and collision tables. Each query 
word s is mapped into the primary table at the address.

   h s A s B s1( ) ( ) [ ( )]τ= ⊕   

In the case of a collision, it is mapped to

     h2(s) = C(s)   

in the collision table. The symbol ⊕  represents the XOR operation. We 
choose hardware friendly H3 hash functions [18], which are essentially 
linear transformations over the fi eld of integers modulo 2, for A, B, and C. 
These functions are unique for every query sequence: A and B are selected 
so that the pair [A(s), B(s)] is distinct for every query word s. Our near-per-
fect hashing scheme attempts to resolve collisions using a small displace-
ment table τ of integers, which is also unique for every query sequence. 
When two query words s1 and s2 have A(s1) = A(s2) but B(s1) ≠ B(s2), we try to 
choose distinct values for τ[B(s1)] and τ[B(s2)] so that h1(s1) ≠ h1(s2). This tech-
nique is able to resolve most collisions using 8 Kbits of on-chip storage; 
nevertheless, on occasion we must still probe the collision table. Finally, 
a duplicate table is used to store excess matching query words. In an 1 MB 
SRAM we are able to store the neighborhood of query sequences ranging 
in size up to 17 kbases (34 kbases reverse complemented).

8.2.1.2 Protein Seed Generation

An important decision we made after studying the fi ltering characteristics of 
BLASTP was to increase the word length and neighborhood threshold from 
3 and 11, respectively, to 4 and 13. As a consequence, the number of expected 
matches to a database word is halved to two, greatly reducing the work-
load for downstream stages. To validate this parameter change we tested 
BLASTP with the new parameters, comparing the GenBank Non-Redundant 
protein database (2,321,957 sequences; 787,608,532 residues) against the entire 
Escherichia coli k12 proteome (4,242 sequences; 1,351,322 residues). With a 
word length of 4, more than 99.60% of the gapped alignments reported with 
the shorter word length were still located.

Seed generation for protein comparison uses a straightforward direct lookup 
table architecture to retrieve matching query positions. For our chosen word 
size w = 4, the table is too large to fi t in on-chip memory, so we use external 
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SRAM. The memory is organized into a primary lookup table with 20w 
entries, one for every possible database word (the alphabet is 20 amino acids). 
Matching query positions are stored in compressed form in each 32-bit entry 
of the table. Excess positions are appended in a duplicate table. Our imple-
mentation supports a maximum protein sequence length of 2,048.

To implement the two-hit fi lter, we use an array, which stores the database 
position of the most recently encountered word match, on its diagonal. On 
arrival of a new word match (q1, d1), its corresponding diagonal d−q in the array 
is referenced to see if it is a two-hit. As we are streaming the database over 
a query of maximum length 2,048, we need a sliding window of only 4,096 
diagonals for the active computation; these are stored in eight  on-chip memo-
ries on our FPGA. Our two-hit architecture is a three-stage pipeline (with data 
forwarding to eliminate hazards) able to process one word match per clock.

Recall that seed generation is expected to emit two word matches per 
database position, but the two-hit design can process only one of them at a 
time. To avoid a bottleneck in the two-hit stage we must replicate it. A naive 
method is to replicate the two-hit block, with each block having a copy of the 
entire diagonal array. Keeping all arrays coherent, however, requires a mul-
ticycle sequential update operation, which seriously degrades throughput. 
Rather than replicate, we partition the diagonals across b two-hit units so 
that a word match (q, d) is processed by two-hit unit j if d − q ≡ j − 1 (mod b). 
As a two-hit computation depends only on its diagonal, each two-hit unit 
now operates independently, and maintaining coherency is not an issue. 
Furthermore, word matches in biological sequences tend to be clustered 
within a band of diagonals; the modulo scheme naturally distributes these 
matches more evenly among the two-hit units.

Finally, we increase the throughput of seed generation by using a number 
h of parallel lookup stages that access independent external memories. The 
complete architecture is illustrated in Figure 8.6. An important component is 
the switching architecture to route matches from one of the h lookup stages 
to a number b of two-hit units. Each lookup stage uses a switching network 

 1

 h

1 1
1

bh b

Table
lookup Switch 1 Switch 2 Two

hit

Database Seeds

FIGURE 8.6
Seed generation logic, showing routing of word matches. (From Jacob, A. et al., ACM Transactions 
on Reconfi gurable Technology and Systems, 1(2):1–44, 2008. With permission. © 2008 ACM Inc.)
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(Switch 1) to route its word matches to one of the b two-hit input queues. A 
two-hit stage then receives its input from one of h queues, one from every 
lookup stage, using a second switching network (Switch 2). The switching 
network allows us to implement a high-throughput, load-balanced seed gen-
eration architecture by varying b and h. In our implementation we use h = 2 
lookup stages and b = 4 two-hit units.

An unintended consequence of using multiple lookup stages concerns the 
order of word matches entering the two-hit and the subsequent stages. As 
the time to process a database word varies with the number of matches to 
the query, the independently operating lookup stages may lose synchro-
nization and generate matches that are out of order with respect to their 
database positions. The downstream stages expect in-order word matches 
to guarantee performance, and in the case of two-hit, to maintain correct-
ness. To alleviate this problem we limit the maximum number of matching 
query positions per database word to at most 15 (this has negligible effect 
on sensitivity). Additionally, we augment the two-hit heuristic to handle 
out-of-orderness as follows: if a word match is at most Y database residues 
before the most recently seen match on the diagonal, discard it, as it is likely 
a part of a cluster of matches; else, it is likely part of a distinct HSP, so accept 
it. Using this additional check, we are able to reduce the negative effect on 
sensitivity.

8.2.2 Ungapped Extension

As described in Section 8.1.2, ungapped extension as implemented in soft-
ware uses the X-drop heuristic, where extension proceeds indefi nitely until 
the running score falls X below a previous high. The length of an extension 
is data dependent—in the extreme case it proceeds till the end of the query 
or reference sequence. For the ungapped extension loop, we desire a fully 
unrolled, pipelined architecture that is able to accept a seed match every clock. 
To fully unroll the loop we must know a priori the length of every extension. 
We therefore decided to only inspect a fi xed window of L residues in the two 
sequences that is centered on a seed. Furthermore, unlike in software, exten-
sion proceeds in one pass from the start to the end of the window.

Selecting L and the threshold T2 presents an interesting tradeoff. On the one 
hand, increasing L produces a better fi lter as the stage is able to distinguish 
statistically signifi cant HSPs from random noise. We can increase T2 in tandem 
to reduce the workload of the downstream stage without a loss in sensitivity. 
Unfortunately, increasing the size of the window also increases the resource 
requirements. To fi nd suitable values for these parameters, we compared 
sequences from the E. coli proteome against the GenBank Non-Redundant pro-
tein database. We found that the X-drop heuristic terminates 95% of unsuccess-
ful seed extensions, which are mostly noise, within a 60 residue window. We 
settled on the parameter values L = 64 and T2 = 16, which minimize resource 
requirements while maximizing the fi ltering rate of this stage. In a small 
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fraction of cases the window is too small to determine the score of the best HSP 
of a seed, that is, the best HSP extends beyond the window boundaries; we sim-
ply pass these inputs along to the next stage to avoid a loss in sensitivity.

An overview of the architecture for this stage is shown in Figure 8.7. We 
store the entire query on-chip, but a circular buffer is used for the database 
stream. Care must be taken to ensure that the circular buffer always main-
tains the window of database residues required by every input seed, includ-
ing those that are still in the pipeline of seed generation. A locally connected 
array with L

2
 processing elements implements the dynamic programming 

recurrence  shown in Algorithm 1.

Algorithm 1 Ungapped extension loop

 1: Γ0 ← γ0 ← 0
 2: for i ← 1, L do  ▷ Iterate across window [QW, DW]
 3: if i < SEEDstart then  ▷ Extend HSP by one residue pair
 4:   ▷  If HSP’s score is negative force to zero and 

start new HSP at i + 1
 5:    γi ← max {γi-1 + δ ( [ ] [ ])QW i DW i, , 0}
 6:  else
 7:   γi ← γi-1 + δ ( [ ] [ ])QW i DW i,    ▷  HSP cannot restart once 

the seed is reached
 8:  end if
 9:
10: if i > SEEDend then
11:   Γi ← max{Γi-1,γi}
12:  else
13:    Γi ← 0  ▷  Record score of best HSP that crosses the 

seed (i > SEEDend)
14:  end if
15: end for

Each processor implements two steps of the recurrence and uses saturation 
arithmetic to reduce resource requirements. The score of every residue pair 
in the window, δ(QW[i], DW[i]), is precomputed and pipelined to its corre-
sponding processor i

2 . The processor i
2  computes the score of the best HSP γi 

Scoring array

Seeds

Query

db
circular
buffer

Score
table

1 2 3 L/2 Threshold
comparator

HSPs
qw

dw

FIGURE 8.7
Overview of the architecture of stage 2. (From Jacob, A. et al., ACM Transactions on Reconfi gurable 
Technology and Systems, 1(2):1–44, 2008. With permission. © 2008 ACM, Inc.)
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terminating at position i. If the HSP terminating at i has a negative score, the 
computation restarts the HSP at i + 1. The processor also tracks Γi, the score 
of the best HSP terminating at or before i. The pipeline registers shown in the 
fi gure are used to keep the δ values in lock-step with the scores computed 
in the processors. We use two new constraints, shown in Lines 7 and 13 of 
Algorithm 1, to force an HSP to contain its seed. This ensures that a “weak” 
ungapped alignment will not be masked by a “stronger” one when both lie on 
the same diagonal (but are associated with distinct seeds). The array outputs 
ΓL, the score of the best HSP in the entire window, which is compared to the 
threshold score.

8.2.3 Gapped Extension

Owing to the excellent fi ltering properties of the fi rst two stages in the BLAST 
pipeline, most query-reference sequence pairs have already been eliminated, 
so much so that we can use a software implementation of this stage for 
BLASTN without introducing a bottleneck. While we must still accelerate 
this stage in BLASTP, we have at our disposal hundreds of clock cycles per 
input. Consequently we do not fully unroll the computational loop of this 
stage, unlike ungapped extension.

At its core, gapped extension in software implements the familiar Smith–
Waterman computation but with a speed optimization that restricts activ-
ity to an irregular pattern of cells around the seed; an example is shown in 
Figure 8.8a. To design a hardware-friendly architecture, we choose to restrict 
the Smith–Waterman computation to a band of fi xed-size antidiagonals cen-
tered on the seed, that is, sets of cells (i, j) that have the same value of i + j. 
Figure 8.8b illustrates an example of the rectangular band of antidiagonals 
with length λ and width ω. The regular activity pattern reduces the com-
plexity of control circuitry while still providing signifi cant time savings over 
full Smith–Waterman. Similar to ungapped extension, we have a tradeoff 
between area, throughput, and the fi ltering capacity when fi xing the band 
geometry. A larger band improves the discriminating power of this stage; 
the size of the parallel array, however, grows with ω, and lengthening λ 
decreases the throughput. Using empirical measurements we balance this 
tradeoff using parameter values ω = 65 and λ = 1,601.

The design of the banded Smith–Waterman array is similar to standard 
implementations and will not be expounded here; instead we will high-
light the unique properties of our design. In a standard implementation, 
the size of the array is equal to the length of the query and computation 
proceeds vertically, consuming a single database residue every clock cycle 
(see Figure 8.8). In contrast, we use an array of ω processing elements that 
simultaneously computes all cells on the same antidiagonal using a stair-
step computation pattern that proceeds diagonally along the length of the 
band. This pattern requires shifting in of ω + λ/2 query and database resi-
dues, one of each every two clock cycles—the former in even and the latter 
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in odd cycles. The best gapped alignment computed must contain the input 
seed; that is, the gapped alignment must start before the antidiagonal at the 
center of the seed and terminate after it. We enforce the former constraint 
by not resetting the score of negatively scoring alignments to zero, as does 
the standard Smith–Waterman recurrence, after the center of the seed is 
crossed. To enforce the latter constraint we record only the score of gapped 
alignments that cross the seed. As a speed optimization, extension is ter-
minated early if we observe only negative scores in all cells of two consecu-
tive antidiagonals. The worst-case latency for gapped extension of a seed 

1 2 3 MReference

Reference

Query

ω

λ

(a)
(b)

1
2

Query
Refe

ren
ce

ω

FIGURE 8.8
Example of gapped extension in (a) NCBI and (b) hardware-accelerated BLASTP, with cells 
computed by each method shaded. The query and reference sequence positions are along the x- 
and y-axes respectively. Computation is centered on a seed match shown in white. The canoni-
cal Smith–Waterman array shown at the top uses M processors, where M is the length of the 
query, and streams in a residue of the database every clock. The banded array shown below 
uses ω processors, where ω is the width of the band, and has a stair-step computation pattern 
that streams both query and reference sequence residues through it. (From Jacob, A. et al., ACM 
Transactions on Reconfi gurable Technology and Systems, 1(2):1–44, 2008. With permission. © 2008 
ACM, Inc.)
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is 5 + ω + λ clocks, but early termination contributes to a latency  savings 
 averaging 56%.

8.3 Results

We have coded the BLAST hardware accelerator in VHDL and implemented 
it on the Mercury system. This is a prototyping platform that provides 
 high-throughput data transfer from disk to reconfi gurable logic at more than  
800 MB/sec. Our system uses two dual-core 2.4 GHz AMD Opteron proces-
sors with 16 GB of memory running 64-bit Linux (CentOS 4). Two Xilinx 
Virtex-II 6000–6 FPGAs, each with three synchronous 1 MB SRAM modules, 
are connected via the PCI-X bus to the host.

We integrated the BLAST FPGA accelerator with NCBI BLAST version 2.2.9. 
The software initializes the hardware stages with the search parameters, 
loads a query and its associated memory tables, and streams the database 
through the FPGA in a single pass. Output from the hardware is collected 
and processed by the unmodifi ed, ungapped, and gapped extension stages 
in software. These pre- and postprocessing activities run concurrently in 
different threads of execution. The tight integration of our hardware accel-
erator with the original NCBI codebase preserves the user interface, includ-
ing command-line options and I/O formats, allowing Mercury BLAST 
to be used as a drop-in replacement in existing bioinformatics analysis 
pipelines.

Hardware BLASTN can support a DNA query of length up to 17 kbases 
(34 kbases including both the sequence and its reverse complement) while 
hardware BLASTP supports proteins up to 2,048 residues long; very large 
sequences must be split into smaller overlapping chunks. The software per-
forms a query packing optimization to effi ciently process small queries. 
Here, smaller sequences are packed using a bin-packing approximation algo-
rithm into a single composite query over which the search is executed. This 
reduces the number of passes of the database stream through the hardware, 
signifi cantly decreasing the overall search time.

We compared hardware BLAST to the software, using large comparisons 
that are typical of genome annotation. In addition to the speedup, we report 
the quality of the accelerator output, given by the sensitivity of the hard-
ware, measured as the fraction of software baseline’s alignments detected 
by hardware BLAST. For this test, alignments from the same query-reference 
sequence pair that overlap more than 50% of their bounding rectangles are 
considered to be the same. All sequences in our experiments were fi ltered for 
low-complexity regions, and BLAST was run with default parameters, except 
for a lower E-value threshold of 10−5, which is reasonable for  large-scale 
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comparison. Runtimes reported exclude time spent formatting the output 
for printing.

8.3.1 BLASTP

Owing to its high resource requirements, hardware BLASTP uses both of the 
Virtex-II FPGAs on the prototyping system: seed generation and ungapped 
extension runs on the fi rst, and gapped extension runs on the second. The 
three stages were synthesized to run at 110 MHz, 85 MHz, and 90 MHz, 
respectively. They occupy 63% of the slices and 77% of the on-chip block 
RAM memories on the fi rst FPGA and 33% of the slices and 48% of the block 
RAMs on the second. Most of the block RAM memories in the design are 
used to hold the score table for the extension stages. All three stages, how-
ever, fi t on a single newer generation FPGA device.

The baseline system we used to run NCBI BLASTP is an eight-node com-
pute cluster, with each node having two 2.4 GHz AMD Opteron processors 
and 4 GB of memory. The runtime of the baseline system is the total of the 
individual execution times on each node, which gives the single core per-
formance. We used a recent version of NCBI BLASTP (2.2.17) for speed com-
parisons, which is more than twice as fast as the version we have integrated 
with hardware BLAST. For sensitivity measurements we compared against 
the version integrated with our accelerator.

To evaluate the performance of our accelerator, we ran the following 
two experiments, typically performed on proteins predicted from a newly 
sequenced genome.

 1. E. coli K12 proteome (1.35 Mresidues) versus GenBank Non-
Redundant (NR) protein database (1.39 Gresidues);

 2.  B. thetaiotaomicron proteome (1.85 Mresidues) versus GenBank NR.

Table 8.2 shows hardware-accelerated BLASTP executing more than an 
order of magnitude faster than the baseline system. Moreover, in both exper-
iments our hardware had a sensitivity more than 99.40%.

TABLE 8.2

Execution Time of Hardware-Accelerated BLASTP Compared to the 
Baseline System

Experiment Baseline Time Hardware Time Speedup

E. coli vs. NR 28.7 h 1.9 h 15.11×

B. theta vs. NR 40.5 h 2.7 h 15.29×

 Source:  Jacob, A. et al., ACM Transactions on Reconfi gurable Technology and 
Systems, 1(2):1–44, 2008. With permission. © 2008 ACM, Inc.
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8.3.2 BLASTN

A single Virtex-II FPGA is suffi cient to implement the BLASTN design. The 
seed generation and ungapped extension stages operate at clock frequen-
cies of 140 MHz and 60 MHz, respectively, while occupying 40% of the 
FPGA slices and 93% of the on-chip block RAM memories. Scalability of the 
BLASTN implementation is limited by the memories available to implement 
the Bloom fi lter stage.

For comparison we ran the baseline experiments using the newer, enhanced 
version of NCBI BLAST on a single core of a 3.0 GHz Pentium D CPU with 
1.5 GB of RAM. Note that this CPU is more powerful than the AMD Opteron 
used in the previous section. Furthermore, we are comparing the more pow-
erful CPU to the older Virtex-II FPGA, which is two generations behind the 
currently available state of the art.

We performed two experiments that used the following datasets:

 1. 3,975 randomly sampled human cDNA sequences (9 Mbases after 
removing known repeats and Ns) from release 21 of the NCBI RefSeq 
cDNA library, against all other vertebrate cDNAs (586 Mbases after 
removing known repeats and Ns).

 2. Human chromosome 22 (hg18, 21 MBases after removing known 
repeats and Ns) against the entire mouse genome (mm8, 1.5 Gbases 
after removing known repeats and Ns).

Table 8.3 shows the speedup of the hardware accelerator, which ranges 
from 5× to more than an order of magnitude over the software baseline. The 
hardware is able to fi nd 98.6% and 99.0% of the alignments, respectively, for 
the two experiments.

The order-of-magnitude speedup of the hardware design and its valida-
tion on large-scale DNA and protein comparisons gives us confi dence in its 
use as a replacement for a small workstation cluster running NCBI BLAST. 
We expect the design to scale on newer generations of FPGA devices with 
an increased number and storage capacity of off-chip memories used for the 
lookup table. This will allow the packing of more sequences into a composite 

TABLE 8.3

Execution Time of Hardware Accelerated BLASTN Compared to the 
Baseline System

Experiment Baseline Time Hardware Time Speedup

Human cDNA vs. 
RefSeq

101 min 20 min 5.05x

Human Chr22 vs. 
Mouse

218 min 19 min 11.47x
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query, reducing the number of passes of the database stream through the 
hardware, thus decreasing overall execution time.

8.4 Conclusions

Many alternate FPGA designs that accelerate the BLAST computation have 
been published. Unfortunately, most accelerate one or only a few of the stages 
in the pipeline, which is insuffi cient to appreciably speedup the entire appli-
cation. An alternate design for seed generation is to store the lookup table 
on-chip. The low capacity of on-chip memories, however, limit this design 
to short queries or word lengths that generate small neighborhoods. Using 
a shorter word length, however, increases the workload for downstream 
stages. A second option is to compute a word match to the query online 
without using a precomputed neighborhood. This approach exposes more 
parallelism and scales better with newer generation FPGA devices. It is use-
ful if large external memories are unavailable on the accelerator platform. 
Nevertheless, both these designs will require a large fraction of reconfi g-
urable logic on modern FPGAs, limiting the acceleration of ungapped and 
gapped extension on the same device.

We believe the streaming paradigm is well suited for sequence analysis 
applications because they use self-contained integer arithmetic operations 
with simple control structures, operate on a localized portion of the input, 
show little data reuse, and have no feedback between stages. In the case of 
BLAST, we were able to exploit pipeline parallelism by streaming in refer-
ence sequences over a linear chain of stages running concurrently on an 
FPGA and a microprocessor core. It is important to study the profi le of the 
stream program and consider the implications of design choices of a stage on 
the entire pipeline’s throughput. For example, using a word length of four 
in BLASTP’s seed generation module greatly reduces the workload for two-
hit and ungapped extension; fully unrolling the loop in ungapped exten-
sion allows this stage to keep up with input seeds; and a multicycle latency 
gapped extension stage that conserves resources is suffi cient to keep up with 
its input rate. Hardware-accelerated BLASTP has its bottleneck in the seed 
generation stage, as does BLASTN, though the latter is currently limited by 
input system bandwidth.

An important goal we have stressed throughout our design process is 
the maintenance of the quality of results as compared to the de facto stan-
dard implementation. This is especially necessary when accelerating well-
accepted heuristics; replacing them by more hardware-friendly ones is 
diffi cult to justify to the user community. Any deviation from these heuris-
tics, for example, using more favorable parameter values, requires measure-
ment of the output quality on substantial size datasets. In keeping with this 
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goal, we have for the most part stuck to a faithful duplication of the original 
BLAST algorithm.

The principles we have illustrated and the architecture presented in 
this chapter extend to other seeded sequence comparison tools. Biological 
sequences can be organized into families that have a similar function or 
structure. An alignment of sequences in the family reveals patterns of con-
servation or divergence and contains more useful information for a search 
than any one of its members in isolation. A sequence family is represented 
by an ordered list of columns of its alignment, termed a position-specifi c scor-
ing matrix (PSSM). Each column in a PSSM describes the distribution of resi-
dues at one position in the alignment. For example, a PSSM for a family of 
proteins may show that 50% have residue R in their fi rst column, 30% have 
residue Q, and so forth. Search tools such as PSI-BLAST [3] and IMPALA [19] 
can compare families represented by PSSMs to sequences and help identify 
additional members of a family. PhyloNet [20] compares PSSMs to each other 
to discover similarity between families.

The design of hardware BLASTP extends to comparison using a PSSM. 
The main difference is in the scoring function δ, which will now operate on 
a residue and a PSSM column or on pairs of PSSM columns. The neighbor-
hood in the seed generation stage is redefi ned as all ω length sequence words 
that score at least T when compared to some ω contiguous columns in the 
PSSM. When both the query and database consist of PSSMs, as in PhyloNet, 
vector quantization is used to map residue distributions in each column to a 
small number of characters. This will result in a search similar to pairwise 
sequence comparison, but with a larger alphabet than that of proteins. In 
both these cases the neighborhood is computed offl ine so the seed genera-
tion design will remain unchanged. Ungapped and gapped extension will 
have to be modifi ed to use the new scoring procedure.

A hidden-Markov model (HMM) is a generalization of a PSSM that more 
accurately describes an alignment of members in a family. The power in this 
representation lies in its probabilistic representation and formal treatment. 
Analogous to Smith–Waterman for pairwise comparison, the Viterbi algo-
rithm uses dynamic programming to compare an HMM and a sequence, 
generating a probability that the sequence is a member of the family. A 
recent heuristic, HMMERHEAD [21], employs a multistage fi lter to accelerate 
search with Viterbi. Neighborhood generation for the fi rst stage is similar 
to that described for PSSMs. The second stage directly applies ungapped 
extension to seeds and is likely to require replication to keep up with its high 
workload. We can use the modulo input distribution scheme similar to that 
of the two-hit stage in BLASTP. A third stage in HMMERHEAD then uses 
two-hit on seeds that pass ungapped extension. The defi nition of a two hit is 
modifi ed to include pairs of seeds that are within a window of Y residues in 
the database and within Z diagonals of each other. Owing to the upstream 
ungapped extension stage, it may be possible to use a two-hit design that 
does not require replication.
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Acceleration of BLAST is challenging because the heuristic already has a 
time complexity that is linear in the size of the database and the software 
implementation is memory bound. We have used the streaming paradigm 
with a specialized hardware design to expose and exploit parallelism and 
a large number of distributed on-chip memories as a “cache” to improve 
memory performance. Our implementation accelerates the entire BLAST 
pipeline, which is important, as application runtime is distributed among 
all the stages. We have integrated our FPGA-microprocessor accelerator with 
the existing NCBI BLAST codebase. End-to-end performance measurements 
show that DNA and protein BLAST comparisons achieve a 5–15× speedup 
over the software on a modern workstation. Furthermore, close to 99% of the 
software alignments were also detected by the hardware. We are in the pro-
cess of increasing the length of the composite query four-fold using higher 
capacity external memories and current-generation FPGAs, thus requiring 
one-fourth as many passes of the database and producing an additional 4× 
speedup.
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9.1 Introduction

Despite the increasing diversity of genomic data now available through 
many different biotechnologies, DNA or protein sequences remain one of the 
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main materials for bioinformatics studies. The basic treatment performed on 
these data is often a comparison process for detecting any kind of similari-
ties. Traditionally, given a single request, the scan of large databases aims to 
report all related sequences. On the other hand, more specifi c applications, 
such as genome annotation, for instance, have a large set of sequences (pro-
teome) to compare with a complete genome. In both cases, the heart of the 
algorithms, from a computational point of view, is the same: detection of 
similarities between strings of characters.

For almost two decades, the sizes of the genomic banks have steadily 
increased, nearly doubling every 18 months. From 1999 to 2009, for example, 
the size of UniProtKB/TrEMBL database [1] has been multiplied by 43 (release 
July 11, 1999, 199,794 entries). Today it contains 8,594,382 sequence entries com-
prising 2,774,832,018 amino acids (release 40.4, June 16, 2009). Practically, dur-
ing the last 10 years, TrEMB has grown by a factor 1.9 every 18 months. From 
the DNA size, the situation is similar. In 1999, GenBank [2] (release 111, April 
1999) contained 2.56 billions of nucleotides. Today, Genbank (release 171, April 
2009) contains 103 billions of nucleotides. Its size has been multiplied by 40.

Furthermore, recent progresses in biotechnologies, and specifi cally fast 
improvements of sequencing machines, have revolutionized the genomic 
research fi eld [3]. The equivalent (in raw data) of the human genome can 
now be generated in a single day. Billions of nucleotides spread in millions of 
very short fragments (25–70 nucleotides) are thus available, allowing a large 
spectrum of new large-scale applications to be set up: genome resequenc-
ing, metagenomic analysis, molecular bar coding, and so on. Bioinformatics 
treatments related to these new types of data often deals, in their earlier 
steps, with intensive sequence comparison.

Hence, together, exponential growth of the databases and next-generation 
sequencing (NGS) technology make the processing of this avalanche of data 
a more and more challenging task. This is also currently strengthened by 
the relative stagnation of the microprocessor clock frequencies that cannot 
help any longer, as it was the case for more than 20 years, to compensate the 
exponential growth of the genomic data. Today, to keep things on track, the 
use of parallelism is essential.

As a main task in bioinformatics, the parallelization of genomic sequence 
comparison algorithms has been widely investigated. When large volumes of 
data need to be processed, a straightforward way is to split data into smaller 
packets and to dispatch the computation on independent processing units. 
This parallelization scheme fi ts well with platforms of cluster and is com-
monly implemented in most bioinformatics research centers. Main advan-
tages of this approach are (1) an effi cient parallelization: each node works 
independently and does not require intensive communication with other 
nodes; (2) good scalability: computation may be deployed on large clusters or 
targets grid environments.

Nonetheless, other alternatives exist for parallelizing this basic bioinformat-
ics treatment. They rely on internal potential parallelism of the algorithms. 
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As opposed to cluster or grid implementations, where each processing unit 
works independently on different data, comparison of two sequences—or 
a group of sequences—is shared between different processing units tightly 
interconnected. This fi ne-grained implementation targets specifi c hardware 
platforms such as reconfi gurable accelerators (fi eld-programmable gate array 
[FPGA]) or graphical processing units (GPU). Their great advantages, com-
pared to cluster machines, are their lower cost and their high performance. 
Standard computers enhanced, for example, with two recent GPU boards or 
one  medium-level FPGA board can then be 10–20 times faster.

These two schemes of parallelization (cluster/grid vs. GPU/FPGA), how-
ever, are not antagonists and can be combined to provide optimal use of 
computer resources. A few nodes of a general purpose cluster can be advan-
tageously equipped with such accelerators. When intensive comparisons are 
required, the system automatically assigns these nodes to these specifi c pro-
cesses, freeing the rest of the machines for other tasks.

The class of genomic sequence comparison algorithms implemented on 
these accelerators is mainly related to dynamic programming methods. Two 
main reasons can be emphasized: (1) algorithms are very time consuming, 
yielding a real need for speeding them up; (2) computations are very regular 
and fi t well with highly parallel hardware structures. Description of such 
parallelization techniques can be found in [4].

Another class of algorithms, designed with a powerful heuristic based 
on the use of seeds to limit the search space, allows the computation to be 
drastically reduced, compared to dynamic programming algorithms. Two 
famous software, widely adopted by the scientifi c community, are FASTA 
[5] and basic local alignment search tool (BLAST) [6–7]. Unfortunately, very 
few attempts to parallelize them onto hardware accelerators have been done 
[8–13]. Again, two reasons can be proposed: (1) these algorithms are very 
fast, and the pressure to speed them up is lower; (2) computations are not 
regular and are much better suited to sequential processors than to paral-
lel machines. With the NGS data surge, the fi rst reason will rapidly become 
obsolete and fast solutions are now needed to parallelize these softwares at 
any levels, from transistor to grid! The second reason may represent a serious 
bottleneck for parallelization: algorithms have been designed for sequential 
machines and cannot be directly mapped to parallel hardware. They need 
to be redesigned, at a fi ne-grained level, to benefi t from current technologies 
such as GPU or FPGA.

This chapter presents a parallel seed-based algorithm for comparing pro-
tein banks, and its instantiation into two technologies: GPU boards and 
reconfi gurable accelerators. The algorithm has been thought to express the 
maximum of parallelism and to be easily speeded up by specifi c hardware 
platforms. As opposed to BLAST or FASTA, it does not aim to scan data-
bases. It takes as input two banks and performs an all-by-all sequence com-
parison. Speedup from 10 (GPU) to 30 (FPGA) is measured compared to the 
latest optimized NCBI BLAST version.
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The chapter is organized as follows: Section 9.2 presents the principle of the 
parallel seed algorithm, called parallel local alignment search tool (PLAST). 
Section 9.3 details implementations on GPU and FPGA. Section 9.4 compares 
performances of both technologies. Section 9.5 concludes the chapter.

9.2 Principles of the Algorithm

9.2.1 Overview

For detecting similarities, PLAST assumes that two protein sequences shar-
ing suffi cient similarities include, at least, one common word of W residues. 
From these specifi c words, larger similarities can be computed by extending 
the search on their left and right hand sides. These words are called seeds 
because they are the starting point of the alignment procedure.

To anchor two sequences with common seeds, the two banks are fi rst 
indexed into two separate index-tables having exactly the same structure. 
The number of entries represents the number of all possible seeds (20W). 
Content of one specifi c entry memorizes all the positions where the associ-
ated seed appears in the bank. As an example, suppose a bank composed of 
the two following sequences, s1 and s2:

s1 = AGGTGCTAGCTCT  s2 = TCTGCATCTGCAT

The content of the entry associated to the seed TGC will be (s1,4); (s2,3); 
(s2,9) because the word TGC appears in position 4 in sequence s1 and in posi-
tions 3 and 9 in sequence s2.

Taking the same entry of the two index-tables immediately gives the posi-
tions where the sequences have a common word (a hit) and, thus, potential 
local similarity. The next step is then to extend the similarity search in the 
hit neighborhood. This is done within two distinct phases: the fi rst phase 
performs a simple extension by considering only substitution errors (ungap 
extension). A score is calculated regarding the number of matches and mis-
matches in the immediate neighborhood. If the score exceeds a threshold 
value, then the second phase is activated. This phase is more complex and 
considers insertion and deletion errors (gap extension). Again, a score is com-
puted. If it exceeds a threshold value, the alignment is reported as a signifi -
cant one.

Practically, the PLAST algorithm can be described as follows:

Algorithm 1 PLAST principle
 0: GapAlignList = Ø
 1: IndexTable1 = index_bank(Bank1)
 2: IndexTable2 = index_bank(Bank2)
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 3: for all possible seed sk
 4:   AAStringList1 = make_string(IndexTable1[sk])
 5:   AAStringList2 = make_string(IndexTable2[sk])
 6:   for all s1 in AAStringList1
 7:     for all s2 in AAStringList2
 8:       UngapAlign = ungap_extension(s1,s2)
 9:       if UngapAlign.score > T1 and UngapAlign not in
      GapAlignList
10:         then GapAlign = gap_extension(UngapAlign)
11:              if GapAlign.score > T2
12:                 then GapAlignList.add_and_sort(GapAlign)

Lines 1 and 2 build the two bank indexes. Line 3 iterates on all possible seeds. 
Then, for each seed, two lists of short amino acid strings are constructed 
(lines 4, 5). These strings are made from the left and right neighborhoods of 
the seeds, and have a fi xed length. Pairwise extensions of all elements of the 
two lists are performed (lines 6, 7, 8). If the ungap alignment resulting from 
the ungap extension procedure has a score greater than a threshold value 
(T1) and if it is not included in an alignment already computed (line 9), then 
the gap procedure is launched. If the score of this new alignment exceeds 
a new threshold value (T2) then it is added and sorted in the fi nal list of 
alignments.

The test checking if an ungap alignment is included in the fi nal list of 
alignments (line 9) is essential: usually, signifi cant alignments contain sev-
eral anchoring sites from where fi nal alignments can be generated. This test 
avoids the duplication (and the computation) of gap alignments. To speedup 
the inclusion search (line 9) the fi nal list of alignments is sorted by their 
diagonal number (line 12).

Actually, this algorithm has great potentiality for parallelism because the 
3 for all nested loops are independent. Basically, each seed extension can 
be performed concurrently. A fi rst medium-grained parallelism, oriented to 
multicore architecture, is thus to consider a multithreading programming 
model for the outer for all loop (line 3). N Threads can thus be associated 
to N different seed extensions. The parallel multithreaded version of the 
algorithm is the following:

Algorithm 2 Parallel scheme
Main Thread
0: GapAlignList = Ø
1: IndexTable1 = index_bank(bank1)
2: IndexTable2 = index_bank(bank2)
3: create N extension threads
4: SK = 0
5: wait until SK >= MAX_SK
Extension Thread
1: while (SK<MAX_SK)
2:   sk = SK++
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3:    AAStringList1 = make_string(IndexTable1[sk])
4:    AAStringList2 = make_string(IndexTable2[sk])
5:   for all s1 in AAStringList1
6:     for all s2 in AAStringList2
7:       UngapAlign = ungap_extension(s1,s2)
8:        if UngapAlign.score > T1 and UngapAlign not in 

GapAlignList
9:           then GapAlign = gap_extension(UngapAlign)
10:              if GapAlign.score > T2
11:                then GapAlignList.add_and_sort(GapAlign)

The main thread constructs 2 index tables before creating N threads ded-
icated to the computation of the alignments. It sets a share variable SK to 
0 (line 4) representing the fi rst seed and wait until all the seeds have been 
processed. The extension threads increment the variable SK and compute 
the alignments associated to this specifi c seed. The instruction sk = SK++ is 
an atomic operation to avoid two threads from getting the same SK value.

A second level of parallelism is brought by the two inner for all loops 
(lines 5 and 6). If i is the number of elements of IndesxList1 and j the num-
ber of elements of IndexList2, then there are systematically i × j ungap 
independent extensions to compute. To exploit the regularity of the computa-
tion, the lines 5–11 can be decomposed as follows:

5: for all s1 in AAStringList1
6:   for all s2 in AAStringList2
7:     UngapAlign = ungap_extension(s1,s2)
8:     if UngapAlign.score > T1
9:      then UngapAlignList.add(UngapAlign)
10: for all x in UngapAlignList
11:   if x not in GapAlignList
12:    then GapAlign = gap_extension(UngapAlign)
13:         if GapAlign.score > T2
14:           then GapAlignList.add_and_sort(GapAlign)

The computation is split into two distinct parts: lines 5 to 9 compute ungap 
extensions and store the successful ungap alignments into the ungap align-
ment list. This list is then scanned for the gap extension procedure (line 10 
to 14). For large databases, it appears that most of the computation time is 
spent in the fi rst part. Hence, the computation performed by these 2 nested 
loops (lines 5 to 9) can be deported on specifi c hardware that is able to sup-
port a very high parallelization of this task.

9.2.2 Bank Indexing

The bank indexing process consists of modifying raw genomic data struc-
tures (sequence of characters) into more complex structures favoring the fast 
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location of hits between sequences. The protein indexing scheme is based on 
the concept of subset seeds [14–15]. A subset seed is a word of W characters 
over an extended alphabet: the extra characters represent a specifi c set of 
amino acids. Below, a subset seed of size 4 is presented:

character 1: A,C,D,E,F,G,H,I,K,L,M,N,P,Q,R,S,T,V,W,Y• 
character 2: c={C,F,Y,W,M,L,I,V}, g={G,P,A,T,S,N,H,Q,E,D,R,K}• 
character 3: A,C,f={F,Y,E}, G, i={I,V}, m={M,L}, n={N,H}, P, q={Q,E,D}, • 
r={R,K}, t={T,S}
character 4: A,C,D,E,F,G,H,I,K,L,M,N,P,Q,R,S,T,V,W,Y• 

As an example, the subset seed AcGL represents the words ACGL, AFGL, 
AYGL, AWGL, AMGL, ALGL, AIGL, and AVGL in the amino acid alphabet. 
Compared to the BLAST algorithm that requires two neighboring seeds of 
three amino acids to start the computation of an alignment, we use only one 
subset seed of four characters. The great advantage is that the computation 
is highly simplifi ed by eliminating data dependencies and making it much 
more suitable for parallelism. An extension immediately starts when two 
identical subset seeds are found in two different protein sequences, avoid-
ing extra computation for managing a couple of seeds. In [16], it is shown 
that this subset seed structure and the BLAST approach have comparable 
sensitivity.

The principle of the bank indexing with subset seed is illustrated in Figure 9.1. 
Each entry of an index table points to a list of subset seed positions. Each word 
of four amino acids in the bank needs to be translated into its equivalent subset 
seed. For example, the words AYIL, AMVL, and AVVL, respectively, at posi-
tions 0, 12, and 20 are translated into the subset seed word AciL. The entry 
AciL points to a list of integers where such words occur in the bank. Actually, 

A c A A

W g t W

A c i L 0, 12, 20

A Y I L M T A S D P G L A M V L H P N S A V V L N S

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Index array  

FIGURE 9.1
Principle of the indexing with subset seeds.
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for memory optimization purpose, the positions are encoded in a relative way: 
only the difference between two consecutive positions is reported, leading to a 
16-bit encoding. For comparing a protein bank and a DNA bank, the DNA bank 
is translated into its six reading frames and then indexed in the same way.

The advantage of this index structure is that it immediately provides all 
the hits between two protein sequences. Coming back to Algorithm 1, line 3, 
it can be seen that building the two index lists is straightforward.

9.2.3 Ungap Extension

The ungap extension procedure aims to rapidly check if a hit can give raise 
to a signifi cant alignment. Thus, starting from the hit, left and right investi-
gations are done to measure the similarity of the close neighborhood. In our 
approach, the neighborhood is fi xed to a predefi ned length of L1 amino acids 
in both directions, and the score of an ungap alignment is only computed on 
this restricted area as follows:

Algorithm 3 ungap extension
1: ungap_extension(s1,s2)
2:   score = 0
3:   max_score = 0
4:   for x = 1 to L1+W
5:     score = score + SUB(s1[x],s2[x])
6:     max_score = max(score,max_score)
 7    score = max_score
 8:   for x = L1+W+1 to 2*L1+W
 9:     score = score + SUB(s1[x],s2[x])
10:     max_score = max(score,max_score)
11:   return score

The ungap extension procedure takes as input two strings of amino acids. 
Their sizes are equal to 2*L1 + W with L1 the length of the neighborhood and 
W the length of the seed. The fi rst W characters represent the seed, the L1 
following ones represent the right neighborhood, and the last L1 characters 
represent the left neighborhood. Hence, lines 4 to 6 compute the right exten-
sion (including the seed) and lines 8 to 10 compute the left extension. After 
various tests, L1 has been set to 22 (1) for practical implementation issues and 
(2) because it provides satisfactory results, but the size of the neighborhood 
could be set to any other values.

This computation is very regular (no if statement) and, consequently, well 
suited for an implementation on highly parallel hardware.

9.2.4 Gap Extension

The gap extension procedure increases the search space by allowing gaps to 
be included in the fi nal alignment. It is launched only if the previous step 
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detects enough similarity near the hits. Algorithms for computing align-
ments with gaps are based on dynamic programming techniques, which are 
time-consuming procedures. And, as shown in [17], in some cases, this step 
may represent up to 30% of the total computation time. Parallelizing this 
procedure is thus sometimes interesting to minimize the overall computa-
tion time.

Again, with the objective of making the computation as regular as possible, 
this step is split into two phases. The fi rst phase, called small gap extension, 
restricts the search both on a close-hit neighborhood and on a specifi c number 
of allowed gaps. A dynamic programming algorithm is run, starting from both 
sides of the hit, but on a limited number of diagonals, as shown Figure 9.2.

L2 is the length of the neighborhood and λ the size of the banded diago-
nals. The search space is represented by the shadow polygon. If the score of 
the restricted gap alignment exceeds a threshold value (T3), then a full gap 
extension (second phase) is computed using the standard NCBI-BLAST pro-
cedure, leading to similar results with this software.

The main reason to break this step into two phases is that the fi rst step 
exhibits high potential parallelism. As a matter of fact, the small gap exten-
sion can be done concurrently on many different sequences of size W + 2*L2 
because each computation requires identical search space.

Again, this phase can be computed in a parallel way.

9.2.5 Generic Hardware Implementation

The implementation of PLAST combines the multithreaded level approach 
with the fi ne-grained FPGA or GPU parallelization. The extension thread of 

L2

2*l

FIGURE 9.2
Search space for the fi rst phase of the gap extension procedure.
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Algorithm 2 is modifi ed as shown below, the main thread staying the same. 
For a given seed, two lists of amino acid strings are built from the index 
tables (lines 3 and 4). These two lists are processed by the UNGAP function, 
which sent back a list of ungap alignments exceeding a threshold value T1 
(line 5). The UNGAP function can be parallelized using two different tech-
nologies: FPGA accelerator or GPU.

Elements of the list that are not included in the list of fi nal alignments 
are put on a temporary list (lines 6–8). Actually, this list contains couples 
of sequences of size W + 2*L2 ready for the next step. When the size of this 
list overcomes its capacity, the fi rst phase of the gap extension is activated. 
All the ungap alignments inside the temporary list are processed by the 
SMALL_GAP function. Again, this function can be parallelized on specifi c 
hardware taking as input a large set of sequences and sending back a list of 
alignments having a score greater than a threshold value T3. These align-
ments are then extended using the standard NCBI BLAST procedure.

Algorithm 4 Multithreaded and fine-grained parallelism
Extension thread
 0: TmpList = Ø
 1: while (SK<MAX_SK)
 2:   sk = SK++
 3:   AAStringList1 = make_string(IndexTable1[sk])
 4:   AAStringList2 = make_string(IndexTable2[sk])
 5:    UngapAlignList = UNGAP (AAStringList1,AAStringList2,T1)
 6:   for all UngapAlign in UngapAlignList
 7:     if UngapAlign not in GapAlignList
 8:      then add UngapAlign in TmpList
 9:           if size(TmpList) >= N
10:              then SmallGapAlignList = SMALL_GAP (TmpList,T3)
11:                   for SmallGapAlign in SmallGapAlignList
12:                    GapAlign = NCBI_BLAST_ALIGN (SmallGapAlign)
13:                   if GapAlign.score > T2
14:                      then GapAlignList.add_and_sort(GapAlign)
13:                 TmpList = Ø

This generic hardware implementation allows the PLAST software to adapt 
itself regarding the available parallel resources.

9.3 Parallelization

Whatever the target technology, the UNGAP function takes as input two 
lists of short amino acid strings and detects the couple of sequences 
having an ungap alignment score above a threshold value. An all-by-all 
pairwise comparison is done between all sequences of the two lists, as 
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explained earlier. This function has been parallelized both on GPU and 
FPGA platforms.

The SMALL _GAP function acts as a preprocessing step for computing small 
gap alignments. It takes as input a list of pairs of sequences and computes a 
score including gap errors. The search space is however limited by the length 
of the sequences and by the number of allowed gaps. Parallelization of this 
function has been done only on GPU.

9.3.1 UNGAP Parallelization on GPU

The parallelization of the UNGAP function on GPUs is an adaptation of the 
matrix multiplication algorithm proposed in the CUDA documentation 
[18]. Matrices of numbers are simply replaced by blocks of strings of amino 
acids. More precisely, for each function call, there are two lists of amino acid 
sequences to process: List1 and List2. Suppose that block B1[N1, L] and block 
B2[N2, L] correspond, respectively, to List1 and List2, with L the length of the 
amino acid sequences and N1 (N2) the number of sequences in List 1 (List2). 
The result of the computation is a third block C[N1, N2] which stores the scores 
of all the computation between block B1 and block B2. In other words, C[i][j] 
hold the score of the ith sequence of List1 and the jth sequence of List2.

The overall treatment is done by partitioning the computation into blocks 
of threads computing only a subblock of C, called Csub. Each thread within the 
block processes one element of Csub dimensioned as a 16 × 16 square matrix. 
This size has been chosen to optimize the memory accesses, allowing the GPU 
internal fast memory to store 2 × 16 amino acid sequences that can simultane-
ously be shared by 256 threads. Figure 9.3 gives the CUDA kernel code opti-
mized for sequence of length equal to 48 amino acids (BLOCK_SIZE = 16).

Each score is computed by fi rst loading the two corresponding 16 × 16 
subblocks from global memory to shared memory with one thread load-
ing one element of each block and by having each thread getting one sub-
stitution cost. Each thread accumulates this cost to the current score and 
performs a maximum operation. When it is done, the result is written to 
the global memory. By doing the computation in such a way, the shared 
memory is highly solicited, saving a lot of global memory bandwidth as 
blocks B1 and B2 are read from global memory only three times. For a max-
imal effi ciency, the substitution matrix is stored in the texture memory.

Practically, the UNGAP function consist in sending to the GPU board two 
lists of amino acid sequences and getting back an N1xN2 matrix of scores. A 
sequential postprocessing is however required to extract signifi cant scores.

9.3.2 UNGAP Parallelization on FPGA

The reconfi gurable architecture implementing the computation of the 
UNGAP procedure is a linear array of processing elements (PEs) dedicated 
to the calculation of a score between two amino acid sequences. If P is the 
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UNGAP _ kernel(char* C, char* B1, char* B2, int N1, int N2) 
{ 
  int bx = blockIdx.x;                  // block index 
  int by = blockIdx.y; 
 
  int tx = threadIdx.x;                 // thread index 
  int ty = threadIdx.y; 
 
  int Begin1 = N1 * BLOCK_SIZE * by;    // B1 index 
  Begin1 += N1 * ty + tx; 
 
  int Step1 = BLOCK_SIZE;               // B1 iteration step 
 
  int Begin2 = __mul24(BLOCK_SIZE,bx);  // B2 index 
  Begin2 += N2 * ty + tx; 
  int Step2 = __mul24(BLOCK_SIZE,N2);   // B2 iteration step 
 
  int Csub = 0;                         //  initialize results 

block 
  int CsubMaxi = 0;  
 
  __shared__ int SB1[BLOCK_SIZE][BLOCK_SIZE]; //  to store sub-

block of B1 
  __shared__ int SB2[BLOCK_SIZE][BLOCK_SIZE]; //  to store sub-

block of B2 
 
  for (int j=0; j<3; j++) 
    { 
      SB1(ty, tx) = B1[Begin1 + j*Step1];     //  load the 

matrices from 
      SB2(ty, tx) = B2[Begin2 + j*Step2];     //  device to 

shared memory 
 
      __syncthreads();                  //  make sure the 

blocks are loaded 
   
      for (int k=0; k<BLOCK_SIZE; k++)  // score computation 
        { 
          Csub = Csub + texfetch(matrix, SB1(ty, k), SB2(k, tx)); 
          if(Csub>CsubMaxi) CsubMaxi = Csub; 
        }  
      __syncthreads();  
     } 
 
  int c = Step2 * by + Begin2;         //  write the block to 

global memory, 
  C[c] = CsubMaxi;                     //  each thread writes 

one element 
} 

FIGURE 9.3
CUDA code for the UNGAP function.
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number of PEs, then P scores can be computed simultaneously between one 
sequence and P sequences. Figure 9.4 depicts the architecture principle of 
the accelerator. More details can be found in [19]. It works as follows: if N2 
is the number of sequences of List2, then N2/P iterations are required. One 
iteration loads P sequences into P different PEs in a systolic way. Then all 
sequences of List1 are broadcasted to all PEs, character by character, every 
clock cycle. Each time a PE receives a new amino acid, it updates its score. 
P scores are then available after L cycles (L is the length of the amino acid 
string). The scores are sent to a result management module that selects the 
PEs having scores greater than a predefi ned threshold value (T1). These 
scores are pushed through a fi rst-in-fi rst-out (FIFO) to the output channel.

For effi ciency purpose, the array has been split into subarrays of fi xed size 
that can be pipelined together. The advantages of this structure are twofold: 
(1) the architecture can be adapted to many FPGA platforms according to the 
available reconfi gurable resources; (2) the performance of the system only 
depends of the number of PEs; the frequency remains identical whatever the 
number of subarrays (Figure 9.4).

Compared to the GPU approaches, the host does not need to extract the high-
est scores. This is done online by the result management module. Instead, the 
host receives a couple of integers indicating which pair of amino acid sequence 
has generated a signifi cant score. This mechanism contributes to signifi cantly 
decrease the need for a high-data bandwidth as small amount of information 
needs to be transferred from the FPGA accelerator to the host memory.

9.3.3 SMALL GAP Parallelization on GPU

The parallelization of the SMALL _GAP function on GPU is straightforward. 
The host downloads the GPU memory with couples of strings of identical 
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FIGURE 9.4
Principle of the FPGA architecture.
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size (2*L2 + W). Then, a thread is devoted to the computation of one score 
between couples of strings. Each thread performs a dynamic programming 
treatment using a banded Smith–Waterman algorithm. All the scores are 
sent back to the host, which needs to postprocess these data before trigger-
ing, if necessary, a full gap extension.

9.4 Comparison of the GPU/FPGA Technologies

The aim of this section is to evaluate the different approaches on a com-
mon base and to discuss the advantages and the drawbacks for each of them 
having in mind the minimization of the execution time. Here, the sensitiv-
ity aspect will not be discussed. A detailed study showing that PLAST and 
BLAST have an equivalent sensitivity can be found in [16]. Briefl y, both algo-
rithms use the same family of heuristics. They slightly differ on the seed 
choice and, consequently, do not generate exactly the same list of alignments. 
A few percentages of alignments are found by BLAST and not by PLAST. 
Inversely, a few are found by PLAST and not by BLAST. The difference is 
mainly expressed by alignments of weak similarity and represents less than 
2% for an e-value of 10–3.

The reference is the execution time of the BLAST software running on a 
multithreaded mode. It should allow the readers (1) to measure the contribu-
tions of the various technologies over a conventional but highly optimized 
implementation and (2) to appreciate the difference of performances between 
GPU and FPGA technologies. Two hardware platforms are considered: a 
GPU platform and a FPGA platform.

9.4.1 GPU Platform

The GPU platform is a Dell Server, 2.6 GHz Xeon Core 2 Quad processor with 
8 GB of RAM running Linux Fedora 7. It is equipped with two NVIDIA Tesla 
C870 boards interconnected through peripheral component interconnect (PCI) 
express buses. Each board houses 1.5 GB of GDDR3 memory and a graphic 
chip including 128 multithreaded processors. The programming language is 
CUDA. The UNGAP and SMALL_GAP functions are run on the GPU boards.

9.4.2 FPGA Platform

The FPGA platform is a SGI ALTIX 350 machine composed of an Intel 
Itanium2 Core2 (1.6 GHz) with 4 GB of RAM, running SUSE Linux, and 
equipped with a RASC-100 accelerator (reconfi gurable application-specifi c 
computing). This device is interconnected to the host system through a 
NUMAlink bus and is made of two Xilinx Virtex-4 FPGA components. The 
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programming language is VHDL. Only the UNGAP function is run on the 
FPGA board. The SMALL_GAP function is processed by the host.

9.4.3 Software and Dataset

Like BLAST, PLAST is declined into several programs targeting various 
 datasets. Here, the comparison between TBLASTN/TPLASTN is only pre-
sented. Reasons are as follows:

Sequence comparison performed by this program is time consum-• 
ing because of the translation of the DNA bank into its six reading 
frames, and consequently very well suited for demonstrating the 
effi cient contributions of GPU or FPGA accelerators.
The gap extension step in these two programs represents generally • 
a minor percentage of the execution time. As an FPGA implementa-
tion does not exist for the SMALL_GAP function, the FPGA approach 
will not be too disadvantaged.

The GPU and FPGA version of TPLASTN are, respectively, referenced as 
GPU-TPLASTN (GPU) and RCC-TPLASTN (reconfi gurable computing).

The dataset is composed as follows:

The human chromosome 1 (220 × 10• 6 bp): hchr1
Four protein banks randomly constructed from the GenBank Non-• 
Redundant protein database:

P1K : 1,000 protein sequences (0.336 × 10• 6 aa)
P3K : 3,000 protein sequences (1.025 × 10• 6 aa)
P10K : 10,000 protein sequences (3.433 × 10• 6 aa)
P30K : 30,000 protein sequences (10.335 × 10• 6 aa)

The BLAST (release 2.2.18) options have been set as follows:

blastall –p tblastn –d hchr1 –i pxxK –o rxxK –m 8 –a 2 –e 0.001

The –m 8 option provides a tabulated output synthesizing the features of 
the alignments. The –a 2 option runs BLAST in a multithreaded mode (two 
threads). The –e 0.001 option sets the e-value to 10–3.

9.4.4 Comparison of the Execution Times

Tables 9.1 and 9.2 report the execution times of the NCBI TBLASTN, GPU-
TPLASTN, and RCC-TPLASTN

Note that the NCBI TBLASTN execution time is different for the two plat-
forms. However, this time serves as a reference to compare the speedup with 
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accelerators (GPU or FPGA). To be fair, for each experiment, NCBI TBLASTN, 
GPU-TPLASTN, and RCC-TPLASTN have been run in a multithreaded mode 
with two threads. In the GPU mode, each thread drives a NVIDIA Tesla C870 
board and progresses independently as explained in Section 9.2. Similarly, in 
the RCC mode, each thread controls a separate FPGA Virtex-4 device.

Globally, it can be seen that performances increase with the size of the 
data, whatever the technology or the platform used. A plateau is, however, 
reached for huge computations (a few hours). This can be explained by the 
fact that, in that case, the UNGAP and SMALL_GAP functions represent a 
very high percentage of the total execution time, which is effi ciently paral-
lelized on the accelerators. On the other hand, when the volume of data is 
low, the ratio between the sequential part and the parallel part increases 
and, following the Amdahl’s law, limits the potential speedup.

9.4.5 GPU Implementation

Adding two NVIDIA C870 Tesla boards provides a speedup factor of 10 for 
intensive protein sequence comparison compared to the NCBI BLAST mul-
tithreaded version. Each board integrates a GPU chip (G80) housing 128 pro-
grammable processing units. A question is: can we do better? A fi rst answer 
is to take the following generation of graphic boards to test the scalability 

TABLE 9.1

Execution Time (in Seconds) of NCBI TBLASTN and GPU-
TPLASTN on the GPU Platform (2 × C870 TESLA NVIDIA 
Boards—128 PEs per Chip)

NCBI TBLASTN
(2 threads)

GPU-TPLASTN
(2 boards) Speedup

P1K  754  140  5.38
P3K  2,172  258  8.41
P10K  7,436  744  9.99
P30K 21,951 2165 10.13

TABLE 9.2

Execution Time (in Seconds) of NCBI TBLASTN and RCC-TPLASTN on 
the FPGA Platform (SGI RASC-100–2 × Xilinx Virtex 4–192 PEs per Chip)

NCBI TBLASTN
(2 threads)

RCC-TPLASTN
(2 FPGA) Speedup

P1K  1,162  363  3.20
P3K  3,441  398  8.64
P10K 11,733  643  18.29
P30K 37,088 1323 28.03
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of this approach. Experimentations with the NVIDIA GTX-280 board (T10 
chip - 240 processing units) are reported Table 9.3.

In this experiment, the multithreaded mode is disabled for only highlight-
ing the difference of performance between two successive generations of 
graphic boards. Several comments can be made as follows:

The threads overhead is negligible. The speedup with two threads • 
and two boards (Table 9.1) is very close to the speedup with one 
thread and one board (Table 9.3, column 7).
Moving to the next board generation provides an immediate increas-• 
ing of performance (columns 7 and 8) without any modifi cation of 
the CUDA code.
The • UNGAP function represents an important percentage of the total 
execution time. Thus, there are still some rooms for further speedup 
improvements. In the P30K confi guration, the theoretical maximum 
speedup compared with the NCBI TBLASTN software is about 40 
(col2/(col5–col6)). This value is estimated as the NCBI BLASTN exe-
cution time divided by the sequential part of GPU-TPLASTN.

9.4.6 FPGA Implementation

Table 9.2 reports the results for 2 × 192-PE arrays implemented on both FPGA 
devices. This is the maximum of PEs we were able to fi t inside the FPGA 
device. However, we experiment the performances on various array sizes, as 
shown in Table 9.4.

Again, the multithreaded mode is disabled to only measure the contribu-
tion of the FPGA accelerator. It can be seen that the number of PEs is inversely 
proportional to the execution time of the UNGAP function. For example, if the 
UNGAP speedup is measured relatively to 64 PEs, we get a linear speedup, as 
shown in Table 9.5.

Larger arrays are thus still possible to decrease signifi cantly the overall 
execution time. The SGI RASC-100 accelerator houses Virtex-4 Xilinx compo-
nents of 200 K logic cells with 336 × 18 Kb RAM Blocks (Virtex-4 LX 200). With 
the next generation of Xilinx components, a faster 384 PE array could be eas-
ily implemented in a single FPGA (Virtex6: XC6VLX550T) and would at least 
provide a speedup ranging from 5 to 6 compared to a 100 MHz 64 PE array. In 
that case, the overall speedup would be somewhere between 45 and 50.

9.5 Conclusion

PLAST is a parallel software for intensive protein comparison. Unlike BLAST, 
it does not target the scan of genomic databases. It has been designed for 
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TABLE 9.3

Performance Comparison between the NVIDIA Tesla C870 Board and the NVIDIA GTX-280 Board (Time Is Given in Seconds)

NCBI
TBLASTN
(1 thread)  

GPU Tesla C870 TPLASTN  GPU GTX-280 TPLASTN NCBI Speedup GTX-280 Speedup

Total UNGAP Total UNGAP Tesla GTX 280 Total UNGAP

P1K  1,369    250    114    216    80  5.47  6.33 1.15 1.42
P3K  4,009    474    306    383    215  8.45 10.36 1.23 1.42
P10K 13,391 1,341    971 1,053    681  9.98 12.71 1.27 1.42
P30K 40,444 3,932 2,917 3,077 2,057 10.38 13.14 1.27 1.42
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TABLE 9.4

Execution Time (in Seconds) of RCC-TPLASTN with Different Numbers of PEs

NCBI
TBLASTN
(1 thread)

RCC-TPLASTN 64 PEs RCC-TPLASTN 128 PEs RCC-TPLASTN 192 PEs

Total UNGAP
Speed 
up Total UNGAP Speedup Total UNGAP Speedup

P1K 2,185 476 220 4.59 421 176 5.19 414 169 5.27

P3K 6,448 738 462 8.73 554 280 11.63 496 223 13.00

P10K 21,888 1,763 1,366 12.41 1,104 720 16.02 890 510 24.59

P30K 65,461 4,463 3,932 14.66 2,744 2,015 23.85 2,099 1,373 31.86
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processing two large banks of sequences. Different versions are available 
depending on the nature of the data: PLASTP (protein/protein), PLASTX 
(DNA/protein), TPLASTN (protein/DNA), and TPLASTX (DNA/DNA). 
DNA sequences are translated into six reading frames. The heart of these 
programs and their parallelization scheme are, however, identical.

Like FASTA and BLAST, PLAST uses the concept of seeds to reduce the 
search space. The main difference is that two index tables are built, allow-
ing groups of identical hits to be immediately identifi ed. Each group can 
be processed independently on a multithreaded architecture (fi rst level of 
parallelism), and the computation of each group can be deported on a GPU 
or FPGA accelerator (second level of parallelism). The combination of these 
two levels of parallelism fi t well with current machines made of multicore 
processors and this can easily be enhanced with hardware accelerators con-
nected through fast interfaces, like PCI express buses.

The originality of PLAST is that its design has been thought, in its earlier 
steps, as a parallel algorithm able to target the current and the next genera-
tions of computer systems. To compensate the end of systematical increase 
of the microprocessor clock frequency, to optimize the electric power con-
sumption, and to continue to follow the Moore’s law, the future chips will 
be highly parallel systems. The GPGPU architectures are probably an inter-
mediate (and necessary) phase before more fl exible parallel structures of 
hundreds of PEs. Bioinformatics algorithms need to be revisited to benefi t 
from maximal effi ciency provided by these new architectures to face the 
exponential demand in terms of genomic data processing.
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10.1 Introduction

Hidden Markov models (HMMs) have been applied as statistical models in 
the area of speech recognition since the early 1970s. The use of HMMs for 
protein modeling was introduced in the early 1990s by Haussler et al. [1] and 
Krogh et al. [2]. The general HMM structure to model protein sequence fam-
ilies is known as profi le HMM. A possible way to construct (or learn) such 
profi le HMMs is by using a multiple sequence alignment (MSA) of proteins 
belonging to the same family as an input (which is explained in more details 
in Section 10.2).

A profi le HMM M can emit any given protein sequence x with a certain 
probability P(xM). A common way to defi ne P(xM) is by the probability of 
a path of highest likelihood through M emitting x, which can be computed 
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using the well-known Viterbi algorithm [3]. An alternative way to defi ne 
P(xM) is by summing up the probabilities of all possible paths through M 
emitting x, which can be computed by the Forward algorithm. In any case, 
the probability P(xM) can be used as a basic building block for two common 
database search tasks:

 1. Searching a profi le HMM database with a query protein sequence: signif-
icant matches to profi le HMMs can identify the query as a member 
of the modeled protein families. This search procedure is hence fre-
quently used for annotating the protein sequences.

 2. Searching a protein sequence database with a query profi le HMM: signifi -
cant matches to the query HMM can identify additional homologous 
proteins of the family modeled by the query HMM.

Both search tasks frequently employ the Viterbi or Forward algorithm 
to compare (or align) each sequence/HMM to the query HMM/sequence. 
Owing to the quadratic time complexity of both algorithms the search proce-
dure is therefore highly time consuming. Actual runtime of course depends 
on the actual database/query sizes.

Prime examples where database searching with profi le HMMs requires 
acceleration are metagenomic sequencing studies such as the global ocean 
sampling (GOS) expedition [4]. By aligning all generated GOS protein 
sequences to the Pfam [5] and TIGRFAM [6] profi le HMM databases Yooseph 
et al. [4] were able to identify and annotate a large amount of new proteins and 
protein families. However, this procedure required 327 hours on a hardware 
system with multiple fi eld-programmable gate array (FPGA) accelerators.

In this chapter we will show how the Viterbi algorithm for profi le HMM 
database searching can be effi ciently parallelized on reconfi gurable hardware 
(FPGAs) as well as on many-core architectures (GPUs) with the compute uni-
fi ed device architecture (CUDA) programming model. The remainder is orga-
nized as follows: Section 10.2 provides more detailed background on profi le 
HMMs and the associated Viterbi algorithm. The reconfi gurable hardware 
design and the CUDA implementation are presented and evaluated in Sections 
10.3 and 10.4, respectively. Finally, Section 10.5 concludes the chapter.

10.2 Background

In this section we briefl y explain how a profi le HMM relates to an MSA. Each 
HMM state captures position-specifi c information about the likelihood of 
each residue in the corresponding MSA column. Figure 10.1 illustrates this 
in the case where gaps are not considered: an ungapped profi le of length four 
is derived from an ungapped MSA of length four.
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The derived simple ungapped profi le consists of linear sequences of states. 
States correspond to columns in the associated MSA. Also note that there are 
two types of probabilities associated with each state: transition probabilities 
and emission probabilities. All transition probabilities in ungapped profi les are 
one (as there is only one possible path). Emission probabilities are based on 
the probability of an amino acid occurring in the corresponding column in 
the multiple alignment. Pseudocounts are usually used to avoid over-fi tting; 
that is, the determination of emission probabilities adds pseudocounts to the 
distribution of the observed amino acids.

The extension of the ungapped profi le to a profi le HMM needs to model 
gaps. This extension can be best explained by looking at the alignment of 
a protein sequence to a profi le HMM as a basic operation. This alignment 
considers gaps in the two following ways:

Insertions:•  correspond to regions of the sequence that are not present 
in the profi le.

V H E H

V N E D

V D E H

V T E D

V N G H

F N E D

I N E H

V E E D

A: 0/8, C: 0/8
D: 0/8, E: 0/8
F: 1/8, G: 0/8
H: 0/8, I: 1/8
K: 0/8, L: 0/8
M: 0/8, N: 0/8
P: 0/8, Q: 0/8
R: 0/8, S: 0/8
T: 0/8, V: 6/8
W: 0/8, Y: 0/8

Begin End
1.0

A: 0/8, C: 0/8
D: 1/8, E: 1/8
F: 0/8, G: 0/8
H: 1/8, I: 0/8
K: 0/8, L: 0/8
M: 0/8, N: 4/8
P: 0/8, Q: 0/8
R: 0/8, S: 0/8
T: 1/8, V: 0/8
W: 0/8, Y: 0/8

1.0 1.0

A: 0/8, C: 0/8
D: 0/8, E: 7/8
F: 0/8, G: 1/8
H: 0/8, I: 0/8
K: 0/8, L: 0/8
M: 0/8, N: 0/8
P: 0/8, Q: 0/8
R: 0/8, S: 0/8
T: 0/8, V: 0/8
W: 0/8, Y: 0/8

A: 0/8, C: 0/8
D: 0/8, E: 7/8
F: 0/8, G: 1/8
H: 0/8, I: 0/8
K: 0/8, L: 0/8
M: 0/8, N: 0/8
P: 0/8, Q: 0/8
R: 0/8, S: 0/8
T: 0/8, V: 0/8
W: 0/8, Y: 0/8

1.0 1.0

FIGURE 10.1
An ungapped profi le of length four derived from an ungapped MSA with four columns.
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Deletions• : correspond to states in the profi le that do not correspond 
to amino acids in the sequence.

Thus, the simple structure of the ungapped profi le is extended as fol-
lows: three states at each position k (called node k) are used: a match 
(Mk ), insert (Ik ), and delete state (Dk ). These states have the following 
functionalities.

M-states:•  emit a single residue (correspond to the states described in 
Figure 10.1).
I• -states: emit a single amino acid (correspond to columns with a lot of 
gaps in the associated multiple alignment).
D• -states: do not emit (i.e., they are silent).

Furthermore, transitions are included so that at each node either the M-state 
or the D-state is traversed exactly once. I-states also have a self- transition, 
allowing one or more inserted residues to occur between consensus columns. 
The general transition structure of a profi le HMM with four nodes is shown 
in Figure 10.2. The transition structure in Figure 10.2 displays profi le HMM 
for global alignments. To allow for other types of alignments (most notably 
local and multihit alignments) a more fl exible HMM structure is required. 
Therefore, the popular HMMER software [7] uses the so-called Plan7 archi-
tecture [8, 9] (see Figure 10.3). Plan7 extends the general profi le HMM struc-
ture shown in Figure 10.2 as follows.

Flanking of the linear sequence of nodes by a begin state (• B) and an 
end state (E)
Inclusion of the special states: • S, N, C, T, and J

E

M1

R

-

N

M2

-

M3

S

-

T

M4

Begin

I0

M1

I1

D1

M2

I2

D2

M3

I3

D3

M4

I4

D4

End

FIGURE 10.2
General transition structure of a profi le HMM and a possible alignment of the protein sequence 
ERNST to the model.
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These additions allow the control of alignment-specifi c features; for exam-
ple, how likely the model is to generate various sorts of global, local, or even 
multihit alignments.

Many alignment algorithms (e.g., Smith–Waterman [10], basic local align-
ment search tool [BLAST] [11, 12], Needleman–Wunsch [13]) only use posi-
tion-independent scoring parameters; that is, substitution matrix and gap 
penalties are fi xed for all positions. Profi le HMMs on the other hand capture 
position-dependent information; that is, amino-acid score and gap penalties 
can vary depending on the position in the associated multiple alignments. 
Consequently, databases containing a large number of profi le HMMs are 
available that are applied extensively for genome analysis. The most popular 
database is Pfam [5], which covers common protein domains and families. 
The latest version at the time of writing (Pfam 24.0, October, 2009) contains 
11,912 profi le HMMs in Plan7 format. Construction and usage of Pfam is 
tightly coupled to the HMMER software package [7].

Profi le HMMs can be used for two types of database search tasks. One 
task is to search a database of profi le HMMs against a set of input query 
sequences. The other one is to search a sequence database for matches to an 
input profi le HMM. For both cases, the similarity score sim(H,S) of a profi le 
HMM H and a protein sequence S is used to rank all sequences/HMMs in the 
queried database. The highest ranked sequences/HMMs are then returned 
as the hits identifi ed by the corresponding database search task.

The key to effective database searching is the accuracy of the similar-
ity score sim(H,S). The similarity score can therefore be recast into fi nding 
the Viterbi score of the profi le HMM H and the protein sequence S. The 
Viterbi score is defi ned as the most probable path through H that generates a 

S N C TM1 M2 M3

D2 D3

I1 I2 I3

J

B M4 E

FIGURE 10.3
The Plan7 architecture for a profi le HMM of length four.
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sequence equal to S. The Viterbi dynamic programming (DP) algorithm for 
Plan7 profi le HMMs is shown in Algorithm 1.

Algorithm 1 Plan7 Viterbi algorithm
Input: A profile HMM H of length k in Plan7 format (see 
Figure 10.3) and a protein sequence S of length n. We describe 
the profile HMM in terms of transitions between two states and 
emissions of amino acids at particular states. For example, 
tr(State1,State2) implies the transition score from State1 to 
State2. Similarly, e(State1,s) implies the emission score from 
emitting s at State1.
Output: The similarity score, sim(H,S).

for j = 1, k do  M(0,j) = I(0,j) = D(0,j) = −∞ end for
for i = 1, n do M(i,0) = I(i,0) = D(i,0) = −∞ end for
XN(0) = 0
XB(0) = tr(N,B) {See Figure 10.3 for tr(N,B)}
XE(0) = XJ(0) = XC(0) = −∞
for i = 1, n do

for j = 1, k do

−

−

−

−

− − +
 − − += +  − − +
 − +

− +
= +  − +

− +
=

1

1

1

1

( 1, 1) ( , )

( 1, 1) ( , )
( , ) ( , [ ]) max

( 1, 1) ( , )

( 1) ( , )

( 1, ) ( , )
( , ) ( , [ ]) max

( 1, ) ( , )

( , 1) ( , )
( , ) max

j j

j j
j

j j

j

j j
j

j j

j j

M i j tr M M

I i j tr I M
M i j e M i

D i j tr D M

XB i tr B M

M i j tr M I
I i j e I i

I i j tr I I

M i j tr M D
D i j

S

S

−


 − + 1( , 1) ( , )j jD i j tr D D

 end for
 

≤ ≤

= − +
= +

− +
=  +

+
=  +

− +
= 



1

( ) ( 1) ( , )

( ) max{ ( , ) ( , )}

( 1) ( , )
( ) max

( ) ( , )

( ) ( , )
( ) max

( ) ( , )

( 1) ( , )
( ) max

( )

j
j k

XN i XN i tr N N

XE i M i j tr M E

XJ i tr J J
XJ i

XE i tr E J

XN i tr N B
XB i

XJ i tr J B

XC i tr C C
XC i

XE i

end for
Return Final Score: sim(H,S) = XC(n) + tr(C,T)
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In Algorithm 1, there are three two-dimensional matrices: M, I, and D. 
M(i,j) denotes the score of the best path emitting the subsequence S[1 . . . i] 
of S ending with S[i] being emitted in state Mj. Similarly, I(i,j) is the score of 
the best path ending with S[i] being emitted in state Ij, and D(i,j) for the best 
path ending in state Dj. Furthermore, there are fi ve one-dimensional matri-
ces: XN, XE, XJ, XB, and XC. XN(i), XJ(i), and XC(i) denote the score of the 
best path emitting S[1 . . . i] ending with S[i] being emitted in special state N, J, 
and C, respectively. XE(i) and XB(i) denote the score of the best path emitting 
S[1 . . . i] ending in E and B, respectively. Finally, the score of the best path 
emitting the complete sequence S is determined by XC(n) + tr(C,T). These 
matrices and their corresponding dependencies are also used for our paral-
lel implementations in the following sections.

10.3 FPGA Parallelization and Results

10.3.1 System Design

Our fi rst step in designing an FPGA system for databases searching with 
profi le HMMs has been to analyze the data dependencies in the recurrence 
relations presented in the previous section. Direct and indirect data depen-
dencies for computing the cell (i,j) in DP matrices M, I, and D are shown 
in Figure 10.4. The direct dependences for this cell requires the left, upper, 
and upper-left neighbor as well as XB(i−1). This leads to an indirect depen-
dency on XJ(i−1), which in turn depends on XE(i−1). XE(i−1) then depends on 

M(i, j )
I(i, j)
D(i, j )

M(i, j−1)
D(i, j−1)

i−1i−1

i−1

j

i

XB XE

XJ

M(i−1, j−1)
I(i−1, j−1)
D(i−1, j−1)

M(i−1, j )
I(i−1, j )

FIGURE 10.4
Data dependencies for computing the values M(i,j), I(i,j), and D(i,j) solid lines are used for direct 
(indirect) dependencies are represented by solid (dashed) lines.
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all cells in row i−1 in matrix M. Thus, to satisfy all dependencies the two-
 dimensional matrices M, I, and D must be fi lled one cell at a time, in row-
major order because of the feedback loop induced by the J state.

A typical strategy used when implementing the Viterbi algorithm in hard-
ware (see e.g., [14, 15]) has therefore been to eliminate the J state. The advan-
tage of this approach is that effi cient parallelism can be achieved with an 
FPGA using a linear systolic array of identical simple processing elements 
(PEs). Unfortunately, this approach comes at the cost of the implementation’s 
inability to fi nd multihit alignments such as repeat matches of subsequences 
of S to subsections of H, which in turn can result in a severe loss of sensitiv-
ity (in particular for proteins with multiple domains). Therefore, our FPGA 
solution implements a full Plan7 model. The individual PE design is shown 
in Figure 10.5. It contains the following features:

Registers to store the temporary DP matrix values • M(i−1,j−1), I(i−1,j−1), 
D(i−1,j−1), M(i,j−1), I(i,j−1), D(i,j−1).
M• (i,j), I(i,j), and D(i,j) are not stored explicitly, instead they are the 
inputs to the M(i,j−1), I(i,j−1), and D(i,j−1) registers, respectively.
Emission (• e(Mj,si) and e(Ij,si)) and transition probabilities (tr(Mj−1,Mj), 
tr(Ij−1,Mj), tr(Dj−1,Mj), tr(Ij,Mj), tr(Ij,Mj), tr(Mj−1,Dj), tr(Dj−1,Mj), and 
tr(Mj,E)) are read from the internal FPGA RAM (Block RAM).
Transition probabilities (• tr(B,Mj), tr(N,N), tr(E,J), tr(J,J), tr(J,B), tr(N,B), 
tr(C,C), and tr(C,T)) are stored in registers.
The PE has a four stage pipeline: • Fetch, Comp1, Comp2, and Store. In 
Fetch, transition, emissions, and intermediate DP matrix values are 
read from the Block RAM. All necessary computations are performed 
in the two compute stages Comp1 and Comp2. Results are written to 
the Block RAM in Store. Computation of the special state matrices 
uses intermediate values for XE(i) that are computed according to 
Equation 10.1.

XE(i,j) = max{XE(i,j−1), M(i,j) + tr(Mj,E))} (10.1)

Updating of • XN, XJ, XB, and XC is only performed at the end of the 
DP matrix row; that is, if j = k.

The PE design has the following implementation details:

Numbers are represented in 2’s complement form.• 
Adders use saturation arithmetic.• 
Number representation uses two tags to encode special cases: num-• 
ber (00), +max (01), −max (10), and not-a-number (NaN) (11). Adders 
and max-circuits take advantage of theses tags to compute special 
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+

tr(Mj,Ij)

+

tr(Ij,Ij)

+

M(i–1,j) tr(Mj-1,Mj)

+

I(i–1,j) tr(Ij-1,Mj)

+

D(i-1,j) tr(Dj-1,Mj)

+

tr(B,Mj)

XB (i−1)

max

+

e (Ij,S [i])

XB (i−1)

M(i−1, j−1) I(i−1, j−1) D(i−1, j−1)

max

+

e (Mj,S [i])

M(i,j−1)

+ + + + +

tr(Mj,E )
tr(E,C )tr(C,C )tr(Dj-1,Dj) tr(Mj-1,Dj)

max

D(i,j−1)

max

XC (i−1)

+

tr(C,T )

sim (H,S )

max

XE (i−1, j−1)

+ + +

tr(E,J ) tr(J,J ) tr(N,N )

max

XJ (i−1) XN(i−1)

tr(J,B )

+ +

tr(N,N )

max
tr(N,B )

sel

FIGURE 10.5
HMM processing element (PE) design.
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cases in a very simple and effi cient way (e.g., if any of the operand’s 
tags are set in an addition, a simple bit-wise OR operation suffi ces to 
compute the result).

Our system design exploits parallelism by aligning different query/sub-
ject pairs with the Plan7 Viterbi algorithm independently in separate PEs. 
Figure 10.6 shows the design for four PEs.

The following features are used in the design:

Intermediate value storage•  (IVS): Each PE has an IVS that stores one 
row of previously computed results of the matrices M, I, and D.
Emission and transition storage• : We assume that the same profi le HMM 
has to be aligned to different protein sequences. Therefore, PEs are 
synchronized to process the same HMM state in each cycle, which 
reduces the bandwidth requirement to access the transition storage 
to a single state.
Score collect and score buffer• : These units are designed to handle cases 
where PEs produce results in the same clock cycle.

Host interface

Sequence loaderHMM loader Score buffer

Score collectTransition storageEmission storage

PE1
IVS

PE2
IVS

PE1
IVS

PE4
IVS

25
4 8

FIGURE 10.6
HMM system design for four PEs.
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HMM loader• : The task of this unit is to transfer emission and transi-
tion values into their respective storage.
Sequence loader• : Sequence elements are fetched from external mem-
ory to the sequence loader. It then forwards them to the emission 
selection multiplexers.
Host interface• : The system is connected to a host via an universal 
serial bus (USB) interface.

Loading and storing of data to/from the FPGA and postprocessing of rel-
evant hits is performed by the host software. The host portion is described 
in Algorithm 2. The FPGA is used as a fi rst-pass fi lter; that is, large data-
base chunks are quickly scanned and narrowed down to a few interesting 
hits. These hits are then processed on the central processing unit (CPU) 
host.

Algorithm 2 FPGA integration for HMM-based database searching.
Input: T (threshold), E (cutoff value), HMM array hmm[], 
Protein sequence array seq[]
Output: Top matches
for all Current HMMs, hmm[j] do

repeat
 Pack_and_score()
 for all Current sequences, seq[i] do
   FPGA_score = score[i]
   if (FPGA_score ≥ T) and (e-value ≤ E) then
   Software_score = P7Viterbi(seq[i], H)
   if (Software_score ≥ T)and (e-value ≤ E)then
    PostprocessSignificantHit(seq[i])
 until No More Sequences
until No More HMMs

10.3.2 Performance Evaluation

Our PE design has been described in the Verilog HDL. To investigate the 
effect of the amount of logic slices and memory on the scalability of our 
design, we have targeted it to two members of the Xilinx Spartan-3 fam-
ily: XC3S1500 and XC3S4000. The amount of available logic slices and Block 
RAMs are 13,312 and 32 for the XC3S1500 and 27,648 and 96 for the XC3S4000, 
respectively. The achieved size of a single PE is 451 logic slices using Xilinx 
ISE tools for synthesis, mapping, placement, and routing.

Rather than the amount of logic slices, memory is the crucial resource 
determining the number of PEs. The amount of memory required is

Fifty RAM entries per HMM state, comprising 42 emissions and 8 • 
transitions
Three entries per HMM state for each PE’s IVS• 
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Thus, the overall amount of Block RAM entries required is 50 ⋅ k + 3 ⋅ k ⋅ N, 
where k is the HMM length and N is the number of PEs. Therefore, the 
maximum number of PEs that we are able to fi t onto an FPGA depends 
on the HMM lengths. The largest power-of-two HMM lengths we are able 
to support on an XC3S1500 and XC3S400 are k = 256 and k = 1,024, respec-
tively. In both cases the number of PEs is limited by the number of Block 
RAM in the targeted FPGA. The number of PEs can therefore be increased 
for shorter HMM lengths; for example, for k = 512 it is possible to fi t 30 PEs 
on an XC3S4000. Further improvement over the 512-state  version is then 
limited by logic slices on the XC3S4000; for example, for 256 states the max-
imal PE number is still 30. The results can be summarized as follows:

XC3S1500:•  clock frequency = 70 MHz; number of PEs = 10; maximal 
supported HMM = 256; theoretical peak performance = 10 PEs × 70 
MHz = 700 MCUPS (million cell updates per second)
XC3S4000:•  clock frequency = 70 MHz; cumber of PEs = 30; maximal 
supported HMM length = 512; theoretical peak performance = 30 
PEs × 70 MHz = 2.100 GCUPS (billion cell updates per second)

We have implemented the FPGA integration as described in Algorithm 2. 
The acceleration board used for this study is a very low-cost Spartan-3 
XC3S1500 board with 64 MB SDRAM and USB 2.0 interface. Figure 10.7 
shows the achieved speedups for searching a sequence database with a query 
profi le HMM on an FPGA. Furthermore, Figure 10.8 shows the speedups 
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FIGURE 10.7
Speedups for searching a sequence database with profi le HMMs of different lengths on a 
Spartan-3 XC3S1500 board compared to the sequential HMMER 2.3.2 software (hmmsearch). 
The utilized database contains 643,552 protein sequences.
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for searching a profi le HMM database with a number of query sequences. 
Measured timings include data transfer, initialization, and pre- and postpro-
cessing. An AMD Athlon 64 3500+ is used as a host machine. The speedups 
of the FPGA are compared with the nonaccelerated sequential version of the 
HMMER 2.3.2 package running on the same PC.

Examining the speedups we can see the effect of the number of states 
within an HMM and number of protein sequences on the FPGA implemen-
tation as compared with the software-only implementation. The speedup 
generally increases with a larger number of states and sequences. This is to 
be expected as the software implementation of the Viterbi algorithm does 
not improve effi ciency with a larger number of states or larger number of 
sequences. However, in case of the FPGA, the greater number of states results 
in more effective use of the resources, while the larger number of sequences 
reduces the impact of data transfer overheads. Thus, the FPGA is able to 
reach an effi ciency of up to 94% of the theoretical peak performance stated 
earlier for large HMMs (Figure 10.8).

10.4 GPU Parallelization and Results

General-purpose programmable GPUs have recently become popular tar-
gets for highly parallel applications, including HMM database searching. 
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FIGURE 10.8
Speedups for searching an HMM database with a varying number of query protein sequences 
on a Spartan-3 XC3S1500 board compared to the sequential HMMER 2.3.2 software (hmmpfam). 
A subset of the superfamily database consisting of 1,554 HMMs is used as HMM database.
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In this section we describe our implementation and the performance of a 
GPU-enabled Viterbi algorithm for HMM database searches. We begin with 
a description of the GPU hardware that our solution is built on.

10.4.1 CUDA Hardware

Computing with GPUs presents unique challenges and limitations that must 
be addressed to achieve high performance. Here we describe the NVIDIA 
8,800-based GPU that is used in our tests and also explain the unique features 
of the GPU that presents challenges to effi cient programming.

The graphics processors used in our tests are NVIDIA 8,800 GTX Ultra 
GPUs with 768 MB RAM. The 8,800 GTX Ultra is composed of 16 stream 
multiprocessors, each of which is itself composed of 8 stream processors 
for a total of 128 stream processors. Each multiprocessor has 8,192 32-bit 
registers, which in practice limits the number of threads (and therefore, 
performance) of the GPU kernel. The GPU is programmed using NVIDIA’s 
CUDA programming model [16]. Each multiprocessor can manage 768 
active threads. Threads are partitioned into thread blocks of up to 512 
threads each, and thread blocks are further partitioned into groups of 32 
threads (called a warp). Each warp is executed by a single multiprocessor. 
Warps are not user controlled or assignable, but rather are automatically 
partitioned from user-defi ned blocks. At any given clock cycle, an individ-
ual multiprocessor (and its stream processors) executes the same instruc-
tion on all threads of a warp. Consequently, each multiprocessor should 
most accurately be thought of as a single-instruction multiple-data (SIMD) 
processor.

Programming the GPU is not a matter of simply mapping a single thread 
to a single stream processor. Rather, with 8,192 registers per multiprocessor, 
hundreds of threads per multiprocessor and thousands of threads per board 
should be used to fully utilize the GPU. Memory access patterns, in partic-
ular, must be carefully studied to minimize the number of global memory 
reads. Where possible, an application should make use of the 16 KB of shared 
memory per multiprocessor, as well as the texture and 64-KB constant mem-
ory, to minimize GPU kernel access to global memory. When global memory 
must be accessed, it is essential that memory be both properly aligned and 
laid out such that each SIMD thread accesses consecutive array elements to 
combine memory reads into larger 384-bit reads.

10.4.2 Results

The C code of HMMER’s Viterbi algorithm was ported to CUDA with a 
variety of performance optimizations. The kernel operates on multiple 
sequences simultaneously, with each thread operating on a unique sequence. 
The number of threads that can be executed in parallel is limited by two fac-
tors: (1) GPU memory will limit the number of sequences that can be stored, 
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and (2) the number of registers used by each thread will limit the number 
of threads that can run in parallel. In our implementation, register use is the 
most prohibitive resource.

In the remainder of this section we describe the optimizations made to 
the GPU kernel. We consider a variety of optimizations in our implementa-
tion including database-level load balancing, memory layout and coalescing, 
loop unrolling, and shared/constant memory use. Results are shown with a 
variety of HMMs of increasing length.

We test HMMs of length 77, 209, 456, 789, and 1,431 states. All HMMs 
except the 77-state HMM were taken directly from the Pfam database, while 
the 77-state HMM is distributed with the HMMER source. We note that the 
average length of an HMM within the Pfam database is 209 states. All tests 
are taken against the publicly available NCBI nonredundant database NCBI 
NR [17]. The 3-GByte NR database used in these tests consists of more than 
5.5 million sequences with sequence lengths varying from 6 to 37,000 amino 
acids.

10.4.2.1 Database Sorting

HMMER’s Viterbi function is sensitive to both the length of the query HMM 
and the length of an individual sequence. CUDA provides limited support 
for thread synchronization; a barrier synchronization function is provided 
that returns only when all threads have fi nished executing cudaThread-
Synchronize(). In our implementation, 3,072 threads are run in parallel 
on a single GPU, with each thread operating on its own sequence. A typi-
cal database is unordered, placing short sequences in close vicinity to long 
sequences. On a CUDA-enabled GPU this results in threads operating on the 
shorter sequences completing early and being forced to wait for the thread 
computing the longest sequence in the current batch before the barrier syn-
chronization completes. The solution is to presort the sequence database by 
length, thereby balancing a similar load over all 3,072 threads participating 
in the computation. This has the advantage of being both effective and quite 
straightforward as we are able to achieve a nearly 7× performance improve-
ment over the unsorted database without changing the GPU kernel in any 
way. For the database used in these experiments, only 262.36 seconds were 
required for sorting. Further, the sorted database can be reused for the entire 
useful life of the database, making the one-time cost of sorting it negligible.

10.4.2.2 Memory Layout Optimizations

The most effective optimization to the Viterbi is from optimizing memory 
layout and usage patterns within HMMER’s Viterbi algorithm. Because the 
CUDA environment does not allow threads to dynamically allocate GPU 
memory, all memory allocations (even those allocating the GPU’s on-board 
memory) must be performed by the host system and copied to the GPU 
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before instantiating the kernel. By default, the Viterbi function requires inte-
ger arrays of size 3 ⋅ m ⋅ l + 5 ⋅ l, where m and l are the length of the HMM and 
sequence, respectively. For large HMMs and large sequences, this can easily 
result in several megabytes of data per thread. With only 768 MB memory for 
4,096 threads, this can quickly exhaust the GPU’s memory.

Through careful optimization we are able to reduce the memory require-
ments of the Viterbi scoring computation to 6⋅m + 10 integer array elements. 
This was accomplished by noting that the Viterbi algorithm described in 
Section 10.2 largely requires only the current and previous rows of the DP 
matrices M, I, and D over the length of the inner-most loop, m (the number of 
HMM states). Thus, M, I, and D contribute 6 ⋅ m array elements.

Reducing the memory footprint means that we can no longer perform 
the Viterbi trace-back procedure. Fortunately, the trace-back is only needed 
when a database hit is made. In our tests less than 2% of the database entries 
result in hits, so we simply perform a full software Viterbi, including trace-
back, on all database hits. We also exploit three opportunities within the 
core Viterbi loop to reuse intermediate values within registers, rather than 
repeatedly writing/reading from the GPU’s DRAM. Specifi cally, the current 
and previous values of the M, I, and D matrices may be reused in subsequent 
iterations through the Viterbi loop.

10.4.2.3 Memory Hierarchy Optimizations

Finally, we also include the use of the shared and constant memories. We 
note that the HMM stays constant throughout the entire computation and is 
used by each thread for each sequence. In most cases we can fi t the entirety 
of the core transition matrices (denoted as tr(Mj−1, Mj), tr(Ij−1, Mj), tr(Dj−1, Mj), 
and tr(B, Mj) in Section 10.2) into the 64-KB constant memory. In cases where 
the size of the HMM exceeds the amount of constant memory, we utilize 
the full constant memory before switching over to texture memory for the 
remaining portions of the HMM.

Further, we use shared memory to temporarily store our index into each 
thread’s digitized sequence that is referenced repeatedly throughout the core 
Viterbi loop. As a consequence, we are able to reduce the number of texture 
reads to two per iteration (four if the loop is unrolled).

In Figure 10.9 we present the results of our fi nal GPU kernel. As Figure 10.9 
shows, we are able to achieve between 12× and 37× speedup, depending on 
the size of the HMM. We note that the largest HMM (size 1,431) runs for more 
than 1 day before completion (serial time). This results in a much higher 
speedup as the vast majority of the CUDA runtime is spent on the GPU. For 
the same reason, the 77-state HMM results in much lower speedup as more 
of its time is spent reading from the sequence database and postprocessing. 
In fact, between postprocessing, database reading, and DMA transfers to the 
GPU, the 77-state HMM spends twice as much time outside of the GPU ker-
nel as within the GPU kernel.
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10.4.2.4 Host Optimizations

To compensate for such overhead, particularly for small or average-sized 
HMMs, we performed several host-side optimizations. Specifi cally, the 
serial overhead of reading the database and postprocessing the database 
hits between GPU kernel invocations was addressed. To do so we created 
two threads: the fi rst for database reading, and the second to postprocess 
database hits. We noted that the 8,800 GTX GPU did not permit us to over-
lap DMA operations to the GPU during kernel executions. However, current 
hardware is capable of such optimizations.

In Figure 10.10 we compare our fi nal implementation to the exist-
ing ClawHMMER GPU implementation by Horn et al. [18]. Because 
ClawHMMER runs within Windows XP, we were forced to use a smaller 
version of the NR database as well as smaller HMMs to stay within the 
Windows XP 2GB memory limit. Nevertheless, as we show, our imple-
mentation substantially outperformed the ClawHMMER implementa-
tion for every tested HMM. Moreover, as the size of the HMM increased, 
the performance of our CUDA implementation increased relative to the 
ClawHMMER implementation.

In Figure 10.11 we present our fi nal performance results for the full NR 
database and a variety of HMMs of increasing size. Here the benefi ts of the 
host-side optimizations become clear—the 77-state HMM, for example, now 
achieved a performance of 19×, compared to the 12× previously achieved. 
Further, both the 209-state and 456-state HMMs also improved in perfor-
mance, from 22.5× and 24.6× to 28× and 27× for the 209- and 456-state HMMs, 
respectively. The 789- and 1,431-state HMMs improved slightly, from 24× to 
26×, and from 37× to 38.6×. Their improvement was less dramatic as their 
runtimes dwarfed the serial portions of the computation.
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Runtime of fi nal Viterbi kernel without host optimizations.
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10.5 Discussion

In this chapter we have shown how GPUs and FPGAs can be effi ciently used 
to accelerate HMM-based database searching. Both architectures used the 
same parallelization approach (i.e., running different HMM/sequence com-
parisons in parallel) and achieved similar speedups of around 30× on low-
end hardware platforms.

An advantage of the GPU-based solution is the more convenient program-
mability with CUDA as well as the likely portability to newer runtime 
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environments such as OpenCL. Further, the widespread availability of 
CUDA-enabled GPUs makes the adoption of GPU-based solutions easy and 
exceptionally low cost.

On the downside, the utilized graphics card has signifi cantly higher power 
consumption than the USB-based FPGA solution. Moreover, USB-based solu-
tions are easily scalable within a single machine. Indeed modern desktop PCs 
are able to easily accommodate many such USB devices. GPUs, however, are 
currently limited by the number of PCIEx16 slots that are available on the host 
system’s motherboard. Finally, the GPU-HMMER solution does not currently 
implement the Pfam search functionality included within the HMMER distri-
bution. The main obstacle to its implementation is that hmmpfam is known to 
I/O-bound rather than compute-bound. This, along with the added memory 
consumption of thousands of HMMs executing in parallel on the GPU, make 
hmmfpam a challenge. We are currently investigating alternative strategies to 
enable Pfam searches while keeping memory consumption low.

Therefore, it would be interesting to compare both approaches on higher-
end systems. Extending these single node solutions to multiple  independently 
executing nodes (via MPI, for example) would also prove instructive. Not 
only would this expose issues such as host bandwidth, but it also would 
likely expose load-balancing issues that may not otherwise be visible. Finally 
we intend to examine how these parallel architectures may be used for accel-
erating other HMM-based search methods, such as the already announced 
HMMER3 tool [19].
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11.1 Introduction

11.1.1 History of Complexity

Several complexity measures have been used to evaluate the quality of 
algorithms running of different computer architectures. The dominating 
measures for sequential computers used to be the required computing time 
T and memory space S [1]. With the idea of parallel computations the num-
ber N of processors became an additional important complexity measure. 
Over the years, since about 1980, compute-intensive parallel algorithms 
have been implemented as full-custom or semicustom very-large-scale 
integration (VLSI) chips. Since then the chip area A became one of the 
important measures for such implementations. Combinations like AT and 
AT2 were widely used [2] to evaluate the quality of VLSI algorithms. Lower 
bounds for the time complexity of parallel algorithms could be proven 
by means of these combinations [3]. In the last 10 years another complex-
ity measure became dominant: power consumption P. As heat dissipation 
is one of the major problems of modern high-performance computer sys-
tems, the power is often the limiting parameter for computational perfor-
mance [4].

One conclusion from this historical observation could be drawn. Any 
time computations were evaluated by the computing time T and some sec-
ond measure that was equivalent to an amount of money: the memory space 
could be increased by money, additional processors were a matter of invest-
ment, and the cost of chip area and power is also a question of how much 
money one is willing to spend. Therefore, a useful complexity measure for 
the performance of compute-intensive algorithms is the product of time T 
and cost C [5]. It can be discussed whether T should be weighted more than 
C or if the T2C measure should be taken straight [6]. Of course, a parallel sys-
tem reduces T. Thus, it would benefi t from such a modifi ed measure. For the 
purpose of this chapter we keep in mind that we are heading for solutions 
optimized with respect to the TC measure and among those we prefer the 
faster ones.
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If we consider compute-intensive applications that can be partitioned into 
a large number of parallel threads, it is obvious to think about a computer 
architecture optimizing the TC product. This approach leads to a fi eld-
 programmable gate array (FPGA)-based parallel system. FPGAs are chips 
that are confi gurable to meet the requirements for the desired application. 
Here we are interested in reconfi gurable FPGAs; that is, chips whose confi g-
uration is performed by writing into static random access memory (SRAM) 
components integrated on the chip. By rewriting the SRAM, the FPGA is 
reconfi gured; that is, it gets a different functionality.

FPGAs are very well suitable for implementation of fi ne-grained paral-
lel algorithms because a large number of processing elements (PEs) that are 
tailored toward the desired application can be fi tted onto one single FPGA 
[7–10]. By using FPGAs the hardware costs can be optimized. In contrast to 
standard processor-based systems there are no (costs for) components being 
inactive during the whole computation. Furthermore, FPGAs are extremely 
power effi cient. Current has to fl ow only when the computation requires 
switching events.

11.1.2 Basic Idea of the COPACOBANA Series

The initial idea to develop cost optimal parallel code breaker (COPACOBANA) 
goes back to 2004 with the intent to build some low-cost hardware (less 
than US$ 10,000) that is able to break the 56-bit data encryption standard 
(DES) within 30 days. The choice was an FPGA-based parallel architecture 
optimized with respect to cost and time performance. It was to consist of a 
large number of low-cost FPGAs with some interconnection network able to 
deliver operand data and to transfer result data to the host system. The best 
individual price-performance ratio in 2004 had been provided by the con-
temporary Spartan3-1000 of Xilinx. It is an integrated circuit with a number 
of around one million system gates, 17,280 equivalent logic cells, and 1,920 
confi gurable logic blocks (CLBs) equivalent to 7,680 slices with a total 15,360 
4-input-lookup tables (LUTs) for the price of € 40.

For the interconnection and for data paths from and to the FPGAs the 
dominating requirements were simplicity and low costs. The same held for 
power supply and global signals for all FPGAs. Thus, as the desired applica-
tion did not need any interprocess communication, the choice was to design 
a simple single-master multiple-slave backplane bus with a shared medium 
and broadcast ability. Furthermore, the speed of the bus did not need to be 
high due to the fact that computations heavily dominate communication 
requirements. Hence, a single conventional host computer was suffi cient to 
provide the required data packets and fetch the results.

The fi nal decision on the numbers of FPGAs to be taken was dependent 
on the time boundary of 30 days for DES cracking. The solution was to 
take about 120 FPGAs. For the purpose of maintenance and occupancy of 
space, six FPGAs each were placed on an own small printed circuit board 
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(PCB), leading to 20 boards in total. All FPGAs were connected through 
an 64-bit shared bus with additional 8 bits to address an FPGA, 2 bits to 
signalize read-write operations or confi guration and 5 bits for optional 
register addressing. One extra bit was needed for the bus clock and 8 bits 
of the 64 data bits were double bound for the confi guration data. The bus 
was clocked with 33 MHz leading to a theoretical bandwidth of 2 Gbit/s, 
which in fact was never reached, but defi nitely more than enough. The 
bottleneck was a simple USB1.0 controller module acting as bus master 
and interface to the host computer. Later, the frequency was even set to 20 
MHz and the controller replaced with a Transmission control protocol/
Internet protocol (TCP/IP) interface via Ethernet to gain more stability 
and fl exibility.

For testing the FPGAs, the controller, and the bus a simple “MemoryTest” 
application was developed. The confi guration code for the FPGAs contains 
an implementation of only 32 registers, accessed by the fi ve register address-
ing bits. On a write operation the FPGA took the data from the bus and stored 
it in the addressed register while it responded to a read operation with the 
content of the addressed register. The host application now sent some data 
to every register fi rst. Afterward it fetched the data and compared it to what 
it sent before.

After many hardware patches and extensive testing fi nally the fi rst proto-
type of the COPACOBANA 1000 was running with the DES breaking appli-
cation in 2006.

11.2 COPACOBANA 1000

COPACOBANA 1000 is a massively parallel reconfi gurable architecture. As 
cryptanalytical applications, which COPACOBANA was intentionally devel-
oped for, need plenty of computing power, a total of 120 low-cost FPGAs are 
installed. COPACOBANA 1000 fi ts in standard 19 inches server racks using 
only 2 height units (2HE). The measures are 13 × 45 × 84 cm, and it weighs 
less than 18 kg. For rack enclosure COPACOBANA 1000 has front-to-back 
cooling. Power consumption is only 600 W on full load. The main compo-
nents of COPACOBANA are the FPGA modules, the backplane providing the 
interconnection of the modules with a shared bus medium, and the control-
ler card acting as interface to a host computer.

The fi rst prototype of COPACOBANA 1000 was taken into service in 2006. 
Already in 2007, a small fi rst series of 15 pieces was fabricated and deliv-
ered to research institutions all over the world to fi nd out what kind of 
applications could be implemented on such a machine. Furthermore, this 
was to fi nd out if VLSI designers were able to easily run confi gurations on 
COPACOBANA.
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Although the next version of the COPACOBANA series, the COPACOBANA 
5000, is already available, COPACOBANA 1000 is still successfully sold by 
SciEngines [11] because of its robustness, reliability, and easiness of use. 
Figure 11.1 depicts a photo of the COPACOBANA 1000 machine.

11.2.1 FPGA Module

There is a tradeoff between performance and price in the design of these 
PCBs: For higher performance, the number of FPGAs per PCB should be 
maximized. But larger PCBs are more expensive:

The number of layers of conductors increases with the number of • 
FPGAs.
The price for the PCB rises approximately quadratic with the size.• 
More FPGAs per PCB require more expensive power modules per • 
PCB.
It is cheaper to replace a small PCB in case of fabrication faults.• 
The width of the PCB determines the size of the box of the whole • 
machine.

FIGURE 11.1
COPACOBANA 1000.
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As regards these assumptions, it turned out that a small PCB with six 
FPGAs provided the best price-performance ratio.

For an easy and stable mounting having enough pins available, but occu-
pying as little space as possible, the dual in-line memory module (DIMM) 
connection seems to be the most appropriate. This is also working very well 
in standard PCs for mounting random access memory (RAM) modules on 
the mainboard. The backplane has to provide the DIMM slots  whereas no 
additional connector is required on the FPGA modules. The PCB simply has 
to fi t the form of the connector. With this type of connection it is easy to 
remove or exchange FPGA modules from the backplane, for example, for 
maintenance purposes.

In addition to the FPGAs the module needs bidirectional bus transceiv-
ers to forward data, address, and clock signals. The address decoding has 
already been done on the backplane, so every FPGA now needs only a selec-
tion signal instead of slot and FPGA address. The register address still needs 
to be completely available.

To get a system clock on the FPGA no oscillators are found on the FPGA 
module. It is the bus clock that simply acts as input for the digital clock man-
ager (DCM). This has to be confi gured together with the FPGA to modify the 
bus clock for appropriate system clocks.

The whole system is powered by 3.3 V. However, the FPGA core needs 1.2 V. 
Hence, a power converter to supply the core voltage to all FPGAs on the PCB 
is also mounted. Each FPGA-card has a maximal power dissipation of 20 W. 
For cooling purposes the FPGA-cards are adjusted in a vertical way such 
that the air can be transported through every two adjacent FPGA-cards. 
Nine fans are responsible for this air movement. Five of them are located 
in the front panel. They blow the air into the box. The remaining four are 
in the back wall of the box. They suck the warm air out. The inside temper-
ature is thus kept below 68°C. A picture of the FPGA module is shown in 
Figure 11.2.

11.2.2 Backplane

The functional behavior of the backplane is the interconnection between 
the FPGA modules and the interface controller card. It provides the shared 
medium of the bus as simple connections of the corresponding data pins. 
One exception is made for the controller slot. The bidirectional bus transceiv-
ers are mounted on the backplane instead of the module to obtain fl exibility 
in easier substitution of the controller card.

The backplane provides 20 DIMM slots for FPGA modules and one slot 
for the controller card. For historical reasons, the slot for the controller card 
is not a DIMM slot, like the one for the FPGA modules, but a simple 96-pin 
DIN 41612 connector. This decision was made after choosing the CESYS 
USB2FPGA development board for the fi rst version of the controller. It comes 
with an easy-to-use universal serial bus (USB) interface, fi ts in size, and 
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already has the DIN 41612 plug for general-purpose input/output (IO). The 
backplane has no oscillators to provide the bus clock. This has to be done by 
the bus master to assure a minimal clock skew. On the backplane, like on 
the FPGA modules, the clock is handled like any other bus signal and also 
simply forwarded by the bus transceivers.

One more important task of the backplane is the decoding of the slot and 
the FPGA address. A decoder GAL is located next to every module slot. Each 
decoder allocates six selection signals, one for each FPGA on the correspond-
ing module. A selection signal is set to high only if the appropriate address is 
latched at the input of the decoder.

Power supply has been one of the major problems in the design of the back-
plane of COPACOBANA 1000. Because each of the 20 FPGA modules has a peak 
requirement of 20 W there is an overall power consumption of 400 W. With a 
voltage of 3.3 V it means the maximal current is 120 A. It is impossible to lead 
currents of that magnitude through one layer of a PCB. Therefore, four extra 
power rails have been installed for the supply voltage of the FPGA modules.

11.2.3 Interface Controller

The interconnection between the host system and the backplane is an inter-
face controller board. The fi rst version of the COPACOBANA 1000 used 
the already mentioned CESYS USB2FPGA development board providing 
an interface via USB. The programming interface on the host side was a 
simple application programming interface (API) for using the USB driver 
of the CESYS board written in the language C. Later, this was made more 
comfortable. The USB board vanished for a TCP/IP interface via Ethernet. 
COPACOBANA could now be located somewhere in the local network and 

FIGURE 11.2
FPGA module of COPACOBANA 1000.
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connected to/from every PC in this network. In addition, the new API is 
written in Java, providing an easy-to-use and platform-independent inter-
face for communicating with COPACOBANA.

The interface module is a Memec Virtex-4 FX12 Mini Module by Avnet 
[12] connected to an adapter card for the DIN 41612 connector. This way the 
controller module can simply be replaced in every COPACOBANA with-
out changing other parts of the hardware. The Memec module contains a 
Virtex-4 FPGA with an integrated PowerPC processor running a TCP/IP 
server. Data packets from a TCP/IP connection are translated for an inbuilt 
hardware entity representing the bus master that serves the COPACOBANA 
bus. Even the bus clock is generated here.

Another benefi t from the new controller is the ability to store some data. 
It provides a little memory of approximately 64 MB of which 32 MB could 
be freely accessed. This can speedup applications where the same data is 
needed very often by the FPGAs. It is accessible very fast by the bus master 
and bypasses the bottleneck of the slower TCP/IP connection.

Although the connection can be made with 100 Mbit/s or even Gigabit 
Ethernet the achieved bandwidth is far below these terms. This is due to 
the slow inbuilt PowerPC processor, the little memory available and thus a 
noneffi cient implementation of the TCP/IP stack. Hence, the next version of 
a controller board is currently in the last phase of development. This time 
a PicoITX PC board in combination with an FTDI USB2.0 controller card 
will act as controller module. This design will reach a bandwidth suffi cient 
for 100 Mbit/s Ethernet and will still keep the fl exibility for the location of 
COPACOBANA.

11.2.4 Application Development

Because FPGAs are not ready-to-use processors like in conventional PCs but 
have to be confi gured in its functionality, a developer needs extra skills in 
hardware design using a hardware description language like VHDL. Thus, 
the functionality of an FPGA has to be designed in creating several PEs and 
control structure in hardware. Most FPGAs, as well as the Spartan3-1000, 
have already built-in components like block RAM, multipliers, DSPs, or, in 
some cases, even CPU cores. They could easily be integrated in an individ-
ual design to make it even more effi cient for special requirements and help 
speed up the design process.

Thus, the fi rst and most important layer to develop an application for 
COPACOBANA 1000 is to create a hardware design for the FPGAs with 
a hardware description language like VHDL. So, the problem instance 
should typically not be too complex for hardware implementation. 
Furthermore, to achieve massive parallelism by using all FPGAs effi ciently 
at the same time, and every FPGA even with several PEs, it is benefi cial to 
have a problem that is easy to parallelize without much interprocess data 
dependency.
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The benefi t of a real hardware design in comparison to a program run-
ning on a standard processor is the area and speed effi ciency of the problem 
implementation. While a standard processor is developed to solve a large 
variety of problem instances and therefore needs a whole lot of resources, 
a problem-specifi c hardware design can exactly be equipped with only the 
resources needed. For simple problem instances, a PE can be designed that 
are small in terms of area usage such that several PEs fi t into a single FPGA 
and thus working in real parallelism.

In addition, a standard processor runs with very high frequency to pro-
cess a lot of basic commands representing a problem instance. In hardware 
such a problem instance could be a simple step in an automation depending 
on a Boolean function that could be solved in one clock cycle. Thus, the fre-
quency in an FPGA design has limited signifi cance and so a high frequency 
is not always necessary.

For a little help in VHDL FPGA design for COPACOBANA the little 
“MemoryTest” application, which checks the functioning of each FPGA and 
the internal bus, is provided. This gives the developer a clue as to how to use 
the COPACOBANA bus system on the FPGA side.

The second layer of development is the creation of an application on 
the host PC. This application generally does not have to run computation-
 intensive processes because these should be solved by the COPACOBANA 
FPGAs. Its main purpose should be the data exchange between the host 
PC and COPACOBANA. Thus, it simply has to fi t the communication inter-
face with the provided API. Other tasks should be data preparation and 
postprocessing.

An optional third layer is the user interface. In most cases it is always 
some user who simply wants to change some problem parameters and is 
waiting for a result afterward. He/She does not want to learn complex com-
mand line usage reading tons of cryptic output data afterward. In most 
cases this leads to a graphical user interface (GUI), but will leave us with 
another topic here.

11.3 Cryptanalysis with COPACOBANA 1000

The security of symmetric and asymmetric ciphers is usually determined 
by the size of their security parameters, in particular, the key length. Hence, 
when designing a cryptosystem, these parameters need to be chosen accord-
ing to the assumed computational capabilities of an attacker. Depending on 
the chosen security margin, many cryptosystems are potentially vulnerable 
to attacks when the attacker’s computational power increases unexpectedly. 
In real life, the limiting factor of an attacker is often fi nancial resources. Thus, 
it is quite crucial from a cryptographic point of view to not only investigate 
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the complexity of an attack, but also to study possibilities to lower the cost-
performance ratio of attack hardware. For instance, a cost-performance 
improvement of an attack machine by a factor of 1,000 effectively reduces the 
key length of a symmetric cipher by roughly 10 bit (as 1,000 ~ 210).

Cryptanalysis of modern cryptographic algorithms involves massive 
and parallel computations, usually requiring more than 240 operations. 
Many cryptanalytical schemes perform their computations in indepen-
dent operations, which allows for a high degree of parallelism. Such par-
allel functionality can be realized by individual hardware blocks that can 
be operated simultaneously, improving the time complexity of the overall 
computation by a perfect linear factor. At this point, it should be remarked 
that the high nonrecurring engineering costs for application-specifi c inte-
grated circuit (ASICs)—which can often consume more than US$ 100,000 
for large projects—have put most projects for building special-purpose 
hardware for cryptanalysis out of reach for commercial or research institu-
tions. However, with the recent advent of low-cost FPGAs, which host vast 
amounts of logic resources, special-purpose cryptoanalytical machines 
have now become a possibility outside government agencies.

In this chapter, we will show how COPACOBANA can be used to break 
the DES block cipher [13] and a corresponding cryptosystems in real-world 
products. Though DES was revoked as standard in 2004, it is still a popu-
lar choice for low-end security system as well as available in many legacy 
systems. Still in 2008, we identifi ed a class of cryptotokens that generate one-
time-passwords (OTPs) according to the ANSI X9.9 standard in which the 
DES encryption is still in use. Alarmingly, we are aware of online banking 
systems in Europe, and North and Central America that still distribute such 
tokens to users for authenticating their fi nancial transactions. (Because we 
do not want to support hacking of bank accounts, we will not give further 
details here.)

Besides DES breaking and other symmetric ciphers, cryptanalysis on asym-
metric cryptography can also be supported by COPACOBANA; for exam-
ple, for solving the Elliptic Curve Discrete Logarithm Problem [14], which 
is known as the fundamental primitive for cryptosystems based on elliptic 
curves. Further work employing COPACOBANA for cryptanalysis (which is 
also not in the scope of this chapter) has been done on breaking the legacy 
hard disk encryption (Norton Diskreet) [7], the GSM A5/1 stream cipher [15], 
and recent Machine Readable Travel Documents (ePassport) [16].

11.3.1 Previous Work on DES Breaking

Since the invention of the computer, a continuous effort has been taken to 
build clusters providing the recent maximum of computing power. For our 
purpose, we focus on the cost-effi cient COPACOBANA system instead of 
reviewing all recent variants of such high-performance clusters or super-
computers for investments of several millions of dollars. Thus, we now 
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shortly survey the history of breaking the most popular block cipher of the 
last decades—the DES. After that, we will come up with an evaluation of 
the security margin provided by DES nowadays with respect to available 
machines like COPACOBANA.

Although the DES was reaffi rmed for use in (U.S. government) security 
systems several times until 1999, the worries about the inherent threat of 
its short key space was already raised in 1977 when it was fi rst proposed. 
The fi rst estimates were proposed by Diffi e and Hellman [17] for a brute 
force machine that could fi nd the key within a day at a cost of US$ 20 mil-
lion. Some years after that, a fi rst detailed hardware design description for 
a brute force attack was presented by Michael Wiener at the rump session 
of CRYPTO’93; a printed version is available in [18]. It was estimated that 
the machine could be built for less than a million U.S. dollars. The pro-
posed machine consists of 57,000 DES chips that could recover a key every 
31/2 hours. In 1997, a detailed cost estimate for three different approaches 
for DES key search, distributed computing, FPGAs, and custom ASIC 
designs, was presented by Blaze et al. [19]. In 1998, the Electronic Frontier 
Foundation (EFF) fi nally built a DES hardware cracker called Deep Crack, 
which could perform an exhaustive key search within 56 hours [20]. Their 
DES cracker consisted of 1,536 custom-designed ASIC chips at a cost of 
material of around US$ 250,000 and could search 88 billion keys per second. 
To our knowledge, the latest step in the history of DES brute force attacks 
took place in 2006, when the COPACOBANA was built for less than US$ 
10,000 [8]. COPACOBANA is capable of breaking DES in less than 1 week on 
average as shown in the next sections. We would like to note that software-
only attacks against DES still take more than 1,000 PC-years (based on Intel 
Pentium-4@3GHz) in worst case.

11.3.2 Exhaustive Key Search on DES

The DES with a 56-bit key size was chosen as the fi rst commercial crypto-
graphic standard by NIST in 1977 [13]. A key size of 56-bits was considered 
to be a good choice considering the huge development costs for computing 
power in the late 1970s, which made a search over all the possible 256 keys 
appear impractical. As DES was designed to be extremely effi cient in terms of 
area and speed for hardware, an FPGA implementation of DES can be orders 
of magnitude faster than an implementation on a conventional PC at much 
lower costs [8]. This allows a hardware-based engine for a DES key search to 
be much faster and effi cient compared to a software-based approach.

Our attack is based on simple known-plaintext scenario; that is, we assume 
to have knowledge of a single pair of ciphertext and its corresponding plain-
text. Although it might seem to be a strong assumption in the fi rst place that 
the attacker has access to a piece of unencrypted information, it is indeed valid 
in many scenarios. Whenever data in protocols or fi les are encrypted, there 
are requirements on the structure and formatting of data. The information 
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about formats and data structures is usually publicly known, also to a poten-
tial attacker. As an example, all pictures in the graphics interchange format 
(GIF) start with the fi xed token GIF89a; many other formats include (redun-
dant) length information of the document. Whenever the type of encrypted 
data is known, we can exploit these and similar bits of information to con-
struct a valid plaintext–ciphertext pair from the document.

Then, the approach to use such a plaintext–ciphertext (p,c) pair in an exhaus-
tive key search is simple: we sequentially encrypt the given plaintext p with 
all possible key candidates of the cipher’s key space K (i.e., kc enc p( )=�  with 
k K∈ ) and compare each returned ciphertext c� to the given  ciphertext c. As 
soon a match is found (i.e., c c=� ), we can identify the correct key candidate.

Our core component to perform the key search is an improved version of 
the effi cient DES engine developed by the Université Catholique de Louvain’s 
Crypto Group [21] based on 21 pipeline steps. Our design can test one key 
per clock cycle and engine. On the COPACOBANA, we can fi t four such DES 
engines inside a single FPGA, which allows for sharing plaintext–ciphertext 
input pairs and the key space as shown in Figure 11.3.

We can operate each of the machine’s FPGAs at a clock rate of 136 MHz, 
which is an improvement in performance by 36% compared to our original 
design in [8]. Consequently, a partial key space of 242 keys can completely 
be checked in 240 × 7.35 ns by a single FPGA, which is approximately 135 
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Architecture for exhaustive key search with four DES key search units.
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minutes. As COPACOBANA hosts 120 of these low-cost FPGAs, the key search 
machine can check 4 × 120 = 480 keys every 7.35 ns; that is, 65.28 billion keys 
per second. To fi nd the correct key, COPACOBANA has to search through 
an average of 255 different keys. Thus, COPACOBANA can fi nd the right key 
in approximately T = 6.4 days on average. As more than one COPACOBANA 
can be attached to a single host and the key space can be shared among all 
machines, the search time then reduces to T/l, where l denotes the number 
of machines.

11.3.3 Breaking DES-Based Crypto Tokens

In this section, we employ COPACOBANA for an attack on a real-world 
system. More precisely, we attack cryptographic tokens that are used for 
user authentication and identifi cation according to FIPS 113 and ANSI X9.9, 
respectively. Their authentication method is based on one-time passwords 
(OTP) generated using the DES algorithm. Unfortunately, such devices are 
still used in many security relevant applications. (We are aware of online 
banking systems in some places of the world still relying on ANSI X9.9-based 
tokens for authorization of fi nancial transactions. We prefer not to give any 
details at this point.) Hence, the attack presented in the following still has an 
impact on affected online banking systems used worldwide.

11.3.3.1 Basics of Token-Based Data Authentication

We will now describe an OTP token-based data protocol according to FIPS 
113 or ANSI X9.9, which is used for authentication in some real-world online 
banking systems. Please note that we assume that OTP tokens have a fi xed, 
securely integrated static key inside and do not use additional entropy 
sources like time or events for computing the passwords. Indeed, there are 
tokens available that generate new passwords after a dedicated time inter-
val (e.g., products like the RSA SecurID solution [22]) but those will not be 
the focus of this chapter. This type of tokens require additional assump-
tions concerning the unknown plaintext, and thus are harder to attack. 
More precisely, our contribution assumes fi xed-key OTP tokens that can be 
used in combination with a challenge–response protocol. In such protocols, 
a decimal-digit challenge is manually entered into the token via an inte-
grated keypad. The token in turn computes the corresponding response 
according to the ANSI X9.9 standard. Tokens implementing this standard-
ized authentication scheme (incorporating ANSI 3.92 DES encryption) often 
have a fi xed-size liquid crystal display (LCD) allowing for displaying eight-
decimal digits for input and output.

After the user has typed in eight-decimal digits as input (challenge), the 
value is converted to binary representation using standard ASCII code 
notation according to the ANSI X9.9 standard. For instance, the typed num-
ber “12345678” is converted into the 64-bit challenge value in hexadecimal 
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representation c = (0 × 31, 0 × 32, 0 × 33, 0 × 34, 0 × 35, 0 × 36, 0 × 37, 0 × 38). After 
recoding, c is used as plaintext to the DES encryption function r = ek(c) with the 
static key k stored securely in the token. The output of the encryption function 
is the 64-bit ciphertext r = (r1, r0) where each ri denotes a 32-bit word to be trans-
formed using a mapping μ to fi t the eight-digit display of the token. The map-
ping μ takes the eight hexadecimal digits of r1 (32 bits) of the DES encryption as 
input and converts each digit individually from hexadecimal (binary) notation 
to decimal representation. Let H = {0, . . . ,9,A, . . . ,F} and  D = {0, . . . ,9} be the alpha-
bets of hexadecimal and decimal digits, respectively. Then μ is defi ned as

H D H D H D H DH D A F: : {0 0 ; ...; 9 9 ; 0 ; 5 }→m 6 6 6 6

Hence, the output after the mapping μ is an eight-decimal digit value that 
is displayed on the LCD of the token. Figure 11.4 shows how the response is 
generated on the token according to a given challenge. In several countries, 
this authentication method is used in banking applications whenever a cus-
tomer needs to authenticate fi nancial transactions. For this, each user of such 
an online banking system owns a personal token used to respond to chal-
lenges presented by the banking system to authorize every security-critical 
operation. In this context, for example, a security-critical operation can be the 
login to the banking system as well as the authorization of a money transfer. 
Figure 11.5 depicts a token-based challenge–response protocol interaction 
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with an online banking system from a user’s perspective. The central role 
in such a security-related application makes the secret token an interesting 
target for an attack.

11.3.3.2 Cryptanalysis of the ANSI X9.9-Based 
Challenge–Response Authentication

With the knowledge of how an authenticator is computed in the challenge–
response protocol, we will continue with identifying weaknesses to attack 
this authentication scheme. Firstly, ANSI X9.9 relies on the DES algorithm 
for which we built a low-cost special-purpose hardware machine and this 
can perform an exhaustive key search in less than a week. Second, the out-
put r of the DES encryption is only slightly modifi ed. Note that a more com-
plex scrambling with additional dynamic input, like hash functions with 
salt, would make the attack considerably more complex or even impossible. 
The output r is only truncated to 32 bits and modifi ed using the mapping 
μ to convert c1 from hexadecimal to decimal notation. Owing to the trun-
cation to 32 bits, we need to acquire knowledge of at least two plaintext– 
ciphertext pairs when mounting an exhaustive key search to return a single 
key candidate only. The digit conversion μ additionally reduces the infor-
mation leaked by a single pair of plaintext–ciphertext, which is addressed 
by Observation 1.

Observation 1: Let D = {0, . . . ,9} be the alphabet of decimal digits. With a 
single challenge–response pair (c,r) of an ANSI X9.9-based authentication 
scheme with c r D8, ∈ , on average 26 bits of a DES key can be determined (24 
bits in the worst case, 32 bits in the best case).

As only 32 bits of the output for a given challenge c are exposed, this is a 
trivial upper bound for the information leakage for a single pair. Assuming 
the DES encryption function to be a pseudorandom function with appro-
priate statistical properties, the 32 most-signifi cant bits of c form eight hexa-
decimal digits that are uniformly distributed over H8 = {0, . . . ,9, A, . . . , F}8. The 
surjective mapping μ has the domain F = {0, . . . ,9} of which T = {0, . . . ,5} are 
doubly assigned. Hence, we know that F\T {6, ..., 9}∆ = =  are four fi xed points 
that directly correspond to output digits of c yielding four bit of key infor-
mation (I). The six remaining decimal digits F TΩ = ∩  can have two poten-
tial origins allowing for a potential deviation of one bit (II). According to a 
uniform distribution of the eight hexadecimal output digits, the probability 
that (I) is given for an arbitrary digit i of c is iPr( ) 1/4∈ ∆ = . Thus, on average 
we can expect two out of eight hexadecimal digits of c to be in ∆ revealing 
four bits of the key, whereas the remaining six digits introduce a possible 
variance of one unknown bit per digit. Averaged, this leads to knowledge of 
R = 2 ⋅ 4 + 6 ⋅ 3 = 26 bits of DES key material. Obviously, the best case with all 
eight digits in ∆ and worst case with no digits out of the set ∆ provide 32 and 
24 key bits, respectively.
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According to Observation 1, we can develop two distinguished attacks 
based on the knowledge of two and three known challenge–response pairs:

Observation 2: Given two known challenge–response pairs (ci, ri) for  i {0,1}∈  
of the ANSI X9.9 authentication scheme, an exhaustive key search using both 
pairs will reveal 24 = 16 potential key candidates on average (256 candidates 
in the worst case, and in the best case the actual key is returned).

Assuming independence of two different encrypted blocks related to the 
same key in block ciphers, we can use accumulated results from Observation 
2 for key determination using multiple pairs (pi, ci). Hence, on average we 
can expect to determine 52 bits of the key where each ci has two digits from 
the set ∆. Given a full DES key of 56-bit size, the results are 24 possible varia-
tions for key candidates. Having at least four digits from ∆ for each ci, we can 
determine the best case resulting in a single key candidate. In the worst case 
and with no ∆ digits in any ci, we will end up with 48 bits of determined key 
material and 28 = 256 possible remaining key candidates. As a consequence, 
the number of potential key candidates is directly dependent on how many 
digits of a ci are fi xed points from the set ∆.

Observation 3: Given three known challenge–response pairs of the ANSI 
X9.9 authentication scheme, an exhaustive key search based on this informa-
tion will uniquely reveal the DES key.

This directly follows from Observation 2. For this attack, 3 24 72 56⋅ = >  
bits of key material can directly determined (even in the worst case) resulting 
in the correct key to be defi nitely identifi ed.

11.3.3.3 Possible Attack Scenarios on Banking Systems

With these fundamental observations at hand, we can begin to develop two 
attack variants for two and three plaintext–ciphertext pairs. As we need 
only few pairs of information, an attack is feasible in a real-world scenario. 
For instance, if we consider a phishing attack on an online banking system, 
we can easily imagine that two or three (faked) challenges are presented to 
the user, who is likely to respond with the appropriate values generated by 
his token. Alternatively, spying techniques, for example, based on malicious 
software like key-loggers or hidden cameras, can be used to observe the user 
while responding to a challenge. Note that the freshness of these values do 
not play a role as we use the information only for computing the secret key 
and not for an unauthorized login attempt. Figure 11.6 shows a possible 
attack scenario on ANSI X9.9 tokens and associated banking applications 
based on phishing of challenge–response pairs c, r. With at least two pairs of 
challenge–response data, we can perform an exhaustive key search on the 
DES key space implementing the specifi c features of ANSI X9.9 authentica-
tion. To cope with the DES key space of 256 potential key candidates we will 
propose an implementation based on dedicated special-purpose hardware.

In case that three challenge–responses pairs are given, we are defi nitely able 
to uniquely determine the key of the secret token using a single exhaustive 
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key search. When only two pairs (ci, ri) are available to the attacker, then it is 
likely that several potential key candidates are returned from the key search 
(cf. Observation 2). With 16 potential solutions on average, the attacker can 
attempt to guess the right solution by trial and error. As most banking sys-
tems allow the user to enter up to three erroneous responds to a challenge in 
a row, two key candidates can be tried by the attacker at a time. Then, after a 
period of inactivity, the authorized user has probably logged into the bank-
ing application that resets the error counter and allows the attacker to start 
another trial session with further key candidates. On average, the attacker 
can expect to be successful after about four trial-and-error sessions, testing 8 
out of the 16 keys from the candidate list. Hence, an attack on an ANSI X9.9-
based token is very likely to be successful even with knowledge of only two 
given challenge–response pairs.

11.3.3.4 Implementing the Token Attack on COPACOBANA

As before, the main goal of our hardware design is a key search of the token 
to be done in a highly parallelized fashion by partitioning the key space 
among the available FPGAs on the COPACOBANA. This requires hardly any 
interprocess communication, as each of the DES engines can search for the 
right key within its allocated key subspace.

Within the FPGAs, we use again a slightly modifi ed version of the highly 
pipelined DES implementation of the Université Catholique de Louvain’s 
Crypto Group [21], which computes one encryption per clock per engine. As 
with the brute force attack, we can fi t four such DES engines inside a single 
FPGA, and therefore allow for sharing of control circuitry and the key space 
as shown in Figure 11.7. The FPGA architecture comprises two 64-bit plain-
text registers for the challenges and two 32-bit ciphertext registers for storing 
the corresponding responses that can be acquired from the OTP token. The 
key space to be searched is allocated to each chip as the most signifi cant 14 
bits of the key that is stored in the key register. The counter (CNT 1) is used 

Special-purpose
hardware

Attacker

Bank

User with ANSI
X9.9 token

(3) Attacker can generate new responses r
to challenges c from bank using key k

(2) Attacker computes
token key k using (c,r) pairs

(1) Attacker phishes
for pairs (c,r)

Online Banking

Phishing Webpage

1234c =
r =

FIGURE 11.6
Attack scenario for token-based banking applications using phishing techniques.
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to run through the least signifi cant 40 bits of the key. The remaining two bits 
of the 56-bit key for each of the DES engines are hardwired and dedicated 
to each of them. Thus, for every such FPGA, a task is assigned to search 
through all the keys with the 16 most-signifi cant bits fi xed, in total 240 differ-
ent keys. The key space is partitioned by a connected host PC so that each 
chip takes around 150 minutes (at 120 MHz) to test all ANSI X9.9 authentica-
tors in its allocated key subspace. During a single check of an authenticator, 
the DES engines use the fi rst challenge (plaintext 1) as a primary input to the 
encryption function. Then, the upper 32-bits of the generated ciphertext are 
mapped digit per digit by the function μ and compared with the value of the 
response stored in the register ciphertext 1.

If any of the DES engines provides a positive match, the corresponding 
engine switches its input to the second challenge encrypting it with the same 
key. To match the pipelined design of the DES engine, we are using a shadow 
counter (CNT 2) tracking the key position at the beginning of the pipeline. 
In case that the derived authenticator from the second encryption compares 
successfully to the second response, the controller CTL reports the counter 
value to the host PC as a potential key candidate. The host PC keeps track of 
the key range that is assigned to each of the FPGAs and, hence, can match the 
right key from a given counter value. If no match is found until the counter 
overfl ows, the FPGA reports completion of the task and remains idle until a 
new key space is assigned.
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FIGURE 11.7
Four ANSI X9.9 key search units based on fully pipelined DES cores in a Xilinx Spartan-3 
FPGA.
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In case that a third challenge–response pair is specifi ed, the host PC per-
forms a verifi cation operation of the reported key candidate in software. In 
case the verifi cation is successful, the search is aborted and the key returned 
as a result of the search.

We have implemented the FPGA architecture shown in Figure 11.7 using 
the Xilinx ISE 9.1 development platform. After synthesis of the design incor-
porating four DES engines and the additional logic for the derivation of the 
ANSI X9.9 authenticator, the usage of 8,729 fl ip-fl ops (FF) and 12,813 LUT was 
reported by the tools (56% FF and 83% LUT utilization of the Spartan3-1000 
device, respectively). As discussed in Section 1.3, we included specifi c opti-
mizations like pipelined comparators because n-bit comparators are likely 
to introduce a long signal propagation path reducing the maximum clock 
frequency signifi cantly. By removing these potential bottlenecks, the design 
can be clocked at 120 MHz after place and route resulting in a through-
put of 480 million keys per FPGA and second. In total, a fully equipped 
COPACOBANA with 120 FPGAs can compute 57.6 billion ANSI X9.9 authen-
ticators per second. On the basis of this, we can present time estimates for an 
attack provided that two challenge–response pairs are given. Recall that in 
this scenario we will be faced with several potential key candidates per run 
so that we have to search the entire key space of 256 to build a list with all of 
them. This ensures that we are able to identify the actual key in a separate 
step.

Similarly, we can present fi gures for an attack scenario where three chal-
lenge–response pairs are available. In this attack, we must test 255 ANSI X9.9 
authenticators on average to fi nd the corresponding key that is half the time 
complexity of an attack having two known pairs of data. Note that all pre-
sented fi gures of Table 11.1 include material costs only (not taking energy 
and development costs into account).

For comparison with our hardware-based cluster, we have included esti-
mations for an Intel Pentium 4 processor operating at 2.4 GHz. This micro-
processor allows for a throughput of about 2 million DES computations a 
second, what we also assume as appropriate throughput estimate for gener-
ating ANSI X9.9 authenticators.

TABLE 11.1

Cost-Performance Figures for Attacking the ANSI X9.9 Scheme with Two and Three 
Known Challenge–Response Pairs (ci, ri)

Hardware System Material Cost Two Pairs (ci, ri) Three Pairs (ci, ri) 

1 Pentium 4 @ 2.4 GHz
1 FPGA XC3S1000

US$ 50
US$ 50

1,170 years
4.8 years

585 years
2.4 years

1 COPACOBANA
100 COPACOBANAs

US$ 10,000
US$ 1 million

14.5 days
3.5 hours

7.2 days
104 minutes
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11.4 COPACOBANA 5000

11.4.1 Direction toward New Applications

When the architecture of COPACOBANA 1000 was published [7–8, 23–26] it 
was mainly seen as a special-purpose device for cryptoanalysis. But the sci-
entifi c discussion [27, 28] brought up the idea to make some minor changes to 
the architectural concept to be able to cover a much wider application spec-
trum. With the new upcoming questions in scientifi c computing [29] and 
bioinformatics, like short-read genome assembly [30–32], it turned out that 
these changes were feasible and it was obvious that such a machine would 
have a signifi cant impact on research advancement in these areas.

11.4.2 Requirements

The bottleneck of COPACOBANA 1000 for I/O-dominated applications was 
the small data rate of the global bus. This was the case due to two reasons: 
fi rst, the bus speed is bounded to the bandwidth of TCP/IP over Ethernet (at 
most 100 Mbit/s or 1 Gbit/s). Second, the capability of the internal control-
ler module (the older Memec controller module as well as the newer FTDI 
USB bridge) decreases the bandwidth again. In addition, the fan out of one 
to twenty from the controller to the FPGA modules limited the clock rate for 
the global bus, and the physical distance between the controller board and 
the last FPGA module gave a lower bound for the speed of the communica-
tion over the bus.

For applications like error correction in genome assembly, motif search, 
or alignment a data rate of at least 2 Gbit/s between controller and FPGA 
would be desirable. This created the need of some more sophisticated inter-
connection network. The LUTs and the block RAM of the Spartan FPGAs 
allowed a fast access to a small amount of memory with some limited degree 
of parallelism. This was not suffi cient if genome or amino acid sequences or 
large parts of them had to be locally stored for access of the individual pro-
cessing units on the FPGAs. Therefore, a second level of memory hierarchy 
had to be introduced into the COPACOBANA concept.

The problems in cryptoanalysis are typically of the form that identi-
cal, compute-intensive operations have to be applied to a large number 
of distributed data. Therefore, the algorithms consist of a fi rst phase, 
where these data are distributed (or generated in the FPGAs); a second 
phase of computation; and a third phase of collecting the results. The 
dominating part is the second. This means there was no need to cope 
with complicated communication patterns between the active units of 
COPACOBANA 1000. As the requirements for bioinformatics applications 
were much more demanding in terms of communication it was neces-
sary to develop a communication network that allowed effi cient point-to-
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multipoint communication and parallel point-to-point communication as 
well. A set of different communication patterns were developed to specify 
the needs of the bus and communication system for the new version of 
COPACOBANA.

One obvious weakness of COPACOBANA 1000 was the computing power 
of the Spartan3-1000. One of the requirements for the new system was there-
fore to fi nd a more powerful FPGA with comparable values in power con-
sumption and price.

As COPACOBANA 1000 was designed as a monolithic system for 
 cryptoanalysis, there had been no standardization of its modules. This fact 
made it diffi cult to keep track with the performance development of newly 
upcoming chips. As an example, it was impossible to adapt the FPGA-cards 
to make use of the DSP-units of the Virtex-4 series of Xilinx. The new sys-
tem therefore has been designed in classes of modules where the modules in 
each class could be exchanged among each other.

11.4.3 Architecture of COPACOBANA 5000

The new architecture COPACOBANA 5000 consists of an 18-slot backplane 
equipped with 16 FPGA modules and two controller modules intercon-
nected with a high-performance bus system. This massively parallel FPGA-
computer is connected to an in-system off-the-shelf PC via the two controller 
modules and the PCIe interface. The embedded PC is capable of running 
computation-intensive applications and/or acting as storage database due to 
at least a quad-core CPU, 8 GByte RAM, and 1 TByte SATA hard disk. To 
preserve some backward compatibility and usability COPACOBANA 5000 
provides nearly all interfaces a standard PC also does, for example, Gigabit 
Ethernet.

Each of the replaceable FPGA modules carry eight high-performance 
FPGAs (e.g., the Spartan3-5000, not fi xed in advance) interconnected in a 
one-dimensional array. The 1.8 kW main power supply with 12 V and 125 A 
on the output site provides enough energy to run all 128 FPGAs, the embed-
ded PC, controllers, and six high-performance fans for front-to-back cooling. 
An optional standard power supply for the embedded PC can be mounted to 
discharge the main supply on extreme power-consuming applications.

Like in COPACOBANA 1000 the COPACOBANA 5000 comes in a case 
mountable in standard 19-inch racks, now still occupying only 3 height units 
(3HE). A photo of the new machine is depicted in Figure 11.8.

11.4.3.1 Bus Concept and Backplane

The COPACOBANA 5000 backplane provides 18 slots for communication mod-
ules. In general, these are 16 FPGA modules and two controller modules. The 
backplane does not contain any further important electronic components as 
only the interconnection of the slots and the supplying of power is done here.
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Owing to the requirements of communication speed, the interconnection 
of all individual FPGAs and the two controller modules is organized as a 
systolic chain: There are fast point-to-point connections between every two 
neighbors instead of one physical global bus. The fi rst controller communi-
cates with the fi rst FPGA on the fi rst module and the last FPGA on the last 
module communicates with the second controller. This implies a long queue 
of all FPGAs putting the embedded PC at the beginning and at the end of this 
queue. To speedup certain communication profi les, for example, global broad-
casts, there are shortcuts in this chain between adjacent FPGA modules.

The point-to-point interconnections consist of eight pairs of wires in each 
direction. Each pair is driven by low-voltage differential signaling (LVDS) 
with a speed of 250 MHz. All FPGAs are clocked globally and synchro-
nously. Each clock cycle data is transferred from one FPGA to the adjacent 
one forming a huge communication pipeline. Thus, inside the system this 
technique allows a systolic data fl ow of 2 Mbit/s in each direction. Between 
the controller modules and the embedded PC the maximum data rate is also 
limited to 250 MByte/s (2 Gbit/s) due to the PCIe connection.

As all communication is done serially, there are no extra pins for address-
ing. All relevant information is bound in a communication protocol requir-
ing an overhead of bandwidth of about 20%. Only the confi guration is done 
over special data paths leading to each FPGA.

The interconnection network can be used fl exibly either for local exchange 
of data between every two adjacent FPGA modules or as a systolic point-to-
multipoint bus. The idea of systolic communication is not new: it is simply a 
pipelined bus, where in every clock cycle one data item is propagated form 
one unit to the next. As all units operate in parallel, the throughput is max-
imized at the prize of a considerable latency of several clock cycles between 
two distant communication points. Former architectures have exploited this 
concept of systolic communication as well [33]. Figure 11.9 shows the overall 
bus architecture of COPACOBANA 5000.

11.4.3.2 FPGA Module

To overcome the limits of the Spartan3-1000 different FPGA chips have been 
taken into account. Virtex-4 and Virtex-5 turned out to be too expensive 
with respect to their performance. The best price-performance results were 

FIGURE 11.8
COPACOBANA 5000 front view.
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provided by the Xilinx Spartan3-5000. It comes with different packages, 
whereas the chosen one is compatible with many other Xilinx FPGAs. Hence, 
it is possible to easily build FPGA modules mounted with different FPGAs.

Thus, in the standard version of COPACOBANA 5000 each FPGA mod-
ule contains eight freely confi gurable Spartan3-5000 FPGAs. One additional 
FPGA with a fi xed confi guration is mounted on each controller module to 
do intelligent routing of the systolic data streams. The simple communica-
tion protocol provides address information in the header fi elds of the data 
stream, so this FPGA can easily fi lter packets out.

As the new COPACOBANA architecture is intended to be used for applica-
tions with dependence on large amounts of data and FPGAs generally do not 
provide the ability to store more than a few kilobytes in their block RAMs, 
each FPGA can optionally be equipped with a 256-Mbit DRAM module. This 
provides a lot more fl exibility to an application developer and can release the 
bus traffi c signifi cantly. Figure 11.10 shows the components and the data path 
of the FPGA module.

In comparison to the COPACOBANA 1000 the connection mechanism 
for the FPGA modules to the backplane has changed. Now, because high-
 performance FPGAs have higher heat dissipation, some more space between 
two adjacent FPGA modules is required for cooling mechanisms. This 
implies the possibility of taking a connection mechanism which is not that 
small and better to handle than the DIMM connectors in COPACOBANA 
1000. Hence, the FPGA modules are connected to the backplane via PCI con-
nectors, providing good electrical characteristics, stability, enough pins, and 
ease of use.
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FIGURE 11.9
Architecture of the COPACOBANA 5000.
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11.4.3.3 Interface Controller

The root entity of control is normally located on some host PC outside the 
COPACOBANA 5000 machine. However, COPACOBANA 5000 contains a 
fully featured embedded PC as front end directly connected to the two con-
troller modules for the COPACOBANA bus. The connection to this PC can 
be done in several ways. The easiest way is to integrate the COPACOBANA 
machine into a local area network (LAN) and connect via TCP/IP. The usage 
of this connection is then very fl exible.

Two scenarios are considered here: the fi rst scenario is to let the host com-
puter control the FPGAs and the internal bus directly via a special API. This 
is the way it was already done on COPACOBANA 1000. For this purpose 
COPACOBANA 5000 provides two Gigabit Ethernet interfaces to assure 
enough bandwidth for communication.

The second scenario is the preferable one in most cases: A database of 
input data is physically stored inside the COPACOBANA machine, for exam-
ple, on the 1TB SATA hard drive attached to the embedded PC. The hard 
disk provides a last stage of memory hierarchy for the parallel system as 
well as for the interchange of data between COPACOBANA and the out-
side world. The Gigabit Ethernet connection can then be used for preparative 
data transfers. In this case, the controlling application is running remotely 
on COPACOBANA and the host computer acts as user terminal only. As the 
embedded PC is running a conventional operating system, the user can thus 
access COPACOBANA in a familiar way.

11.4.3.4 Power Supply and Cooling Mechanism

COPACOBANA 5000 comes in a box fi tting in standard 19-inch racks using 
3HE. As a lot of power-consuming components were to be placed in compar-
atively small space the designers were confronted with heat dissipation—one 
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of the major problems in the design of COPACOBANA 5000. As the FPGAs 
tend to be confi gured such that they exploit the majority of their CLBs, each 
FPGA will come to its limits with respect to power consumption. Eight com-
puting FPGAs plus one routing FPGA on each board reach a maximal power 
of about 75 W. In addition, the ATX-board with its main processors and the 
hard disks contribute to the heat that has to be dissipated. The cooling air 
is blown through the box of COPACOBANA by six high-performance fans. 
Three of them force the intake of cold air; three others transport the heated 
air out. The FPGA modules are plugged in vertical direction to let the heated 
air rise up and to maximize the air fl ow.

Closely related to the cooling system is the power supply. Under maximal 
load, COPACOBANA takes 1.8 kW. The FPGAs are driven with a core voltage 
of 1.2 V (2.5 V for signals). Therefore, the current to each FPGA can reach a 
value up to 7 A, which makes a total of 63 A on each FPGA module. To dis-
charge the backplane from transporting current in this order of magnitude, 
power converters are mounted on each FPGA module converting the supply 
voltage of 12 V to the core voltage of 1.2 V. This decreases the amount of cur-
rent by a factor of 10, but still, the total current to all FPGA modules is greater 
than 100 A. Specifi c power lines have been implemented into the backplane 
to be able to cope with currents of this order of magnitude.

11.4.3.5 Application Development

As COPACOBANA 5000 also benefi ts from the massive parallelization of PEs 
implemented on FPGAs, the way to develop applications is not much differ-
ent from the way for COPACOBANA 1000. The benefi t of the new machine 
is the expansion of suitable application types. Now, applications can be 
considered requiring more interprocess communication and/or high data 
throughput.

The fi rst layer of programming is still the design of the FPGA confi gu-
ration. But now on the one hand, because the bus system is more compli-
cated, the developer has to involve a bus controller in his/her design and 
use another API for accessing data of it. On the other hand, this controller 
releases the developer from taking care of data packets that simply have to 
run through the FPGA.

For developing the control software, the second layer of COPACOBANA 
application development, the amount of required resources has to be consid-
ered. Does the application depend on fast access of huge amounts of data or 
does data dependency have less priority? This is important for the decision 
if this application should run either on the host computer or directly on the 
embedded PC. An application running directly on the embedded PC has 
easier and faster access to the onboard resources. The developer can ben-
efi t from anything the operating system provides like simple fi le I/O on the 
hard disk. The communication with the FPGAs is done directly via an API 
operating the COPACOBANA bus controllers via the PCIe interface. This 
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API provides functions to easily manage the whole systolic data fl ow on the 
COPACOBANA bus. Hence, there is only a user interface to implement on 
the host computer, communicating with the COPACOBANA application. 
This usually does not require much bandwidth and can be done via Ethernet 
for example. In addition the interface can be operating system independent. 
Only the client for the host computer has to be implemented for the desired 
operating system, which implies an easier portability.

The implementation of an application to run on the host computer depends 
on a special server running on the embedded PC. This server provides 
another API to control the COPACOBANA bus, which is similar to the one 
operating directly on the PCIe interface. There are some drawbacks to con-
sider in this scenario. The fi rst to mention is the loss of fl exibility as the usage 
of onboard resources is limited and depends on the API. Second, data has 
to be streamed directly from the host, which can be a lot slower depending 
on the network infrastructure and third-party traffi c. And last but not least, 
portability is more diffi cult because the whole application including the user 
interface is running on a specifi c operating system. But because there are 
many applications already running for COPACOBANA 1000, porting them 
to COPACOBANA 5000 for speedup is easy using this type of application 
implementation.

As a helper tool again the little “MemoryTest” application is provided. It 
checks the functioning of each FPGA, the applied memory, and the internal 
bus. This tool acts as an example of how to use the different APIs for hard-
ware and software on both sides, the FPGA side and the host side.

11.5 Applications in Bioinformatics

The new hardware architecture COPACOBANA 5000 is designed especially 
for streaming algorithms that need a high throughput and that profi t easily 
by massive parallelization. It aims for many algorithms in bioinformatics as 
they have to cope with large amounts of genome data. In most cases these 
datasets could easily be analyzed in streams.

The greatest diffi culty software designers have to face when porting algo-
rithms to the COPACOBANA 5000 architecture is the hardware design of the 
PEs for the COPACOBANA FPGAs. As FPGAs are no real processors like the 
CPU in a standard PC running a simple program, the functional behavior 
depends on a hardware description written in a hardware description lan-
guage like VHDL. Fundamentals of the design are its speed and area usage. 
Therefore, it is often benefi cial not to implement existing algorithms directly 
in hardware, but to alter these algorithms or even create new ones to fi t the 
requirements of the new architecture and to gain better results in a more 
effi cient way.
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Two of the most challenging problems in bioinformatics are motif fi nding 
and alignment. As there is still no universal motif fi nding algorithm that 
satisfi es the needs of every biologist, for optimal global and local alignments 
the algorithms by Needleman and Wunsch [34] and Smith–Waterman [35] 
are widely accepted. Though it is hard to implement them directly in hard-
ware for high effi ciency, the next section describes a very powerful solution. 
Afterward the motif fi nding problem is addressed by an effi cient hardware 
solution searching for unknown regulatory elements of fi xed size but allow-
ing variations in the instances of the located strings.

11.5.1 Sequence Alignment

The alignment of nucleotide sequences deals with the problem of fi nding 
the best fi tting alignment of two nucleotide sequences against each other. 
Algorithms used to handle this problem may be classifi ed to either heuristic 
or nonheuristic ones. The heuristic alignment algorithms such as basic local 
alignment search tool (BLAST) [36] have become the common tools to search 
for alignments as they are much faster than nonheuristic ones. Although 
they produce a large amount of false results and may not succeed in fi nd-
ing all the correct solutions, in terms of computing time they outperform 
nonheuristic algorithms by far and have therefore gained broad acceptance 
within the group of molecular biologists.

In recent years, the advancing hardware technology has allowed the revival 
of nonheuristic alignment algorithms. In this section we want to demon-
strate how COPACOBANA 5000 can be used for this purpose.

11.5.1.1 Smith–Waterman Alignment

To demonstrate the applicability of nonheuristic alignment algorithms the 
so-called Smith–Waterman algorithm [35] is introduced as an example. This 
algorithm is capable of fi nding the best fi tting alignment of one sequence 
inside of another, meaning it searches for occurrences of one sequence. For 
convenience the sequence that is searched for is called “query sequence” 
while the one that is searched in is called “database sequence” To fi nd the 
best of every possible alignment a score is generated. These scores are calcu-
lated by the simple scoring function:

 
 − + =  − + 
 − − + 

H i j GapPenalty
H i j

H i j GapPenalty

H i j Match Mismatch

0
( 1, )

( , ) max
( , 1)

( 1, 1) /

Here, H is a matrix and the values for GapPenalty, Match, and Mismatch can 
be user defi ned. H is the so-called scoring matrix.
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A software implementation of the Smith–Waterman algorithm usually cal-
culates the entries of the scoring matrix one after the other using one or more 
processes. Typically, this is done line by line or column by column from left 
to right as the scoring function only uses the values of the top, the left, and 
the top-left neighbors. Once the matrix calculation has fi nished, the actual 
alignment is found by starting a backtracking through the matrix at the cell 
with the highest value. This technique is not practical to be implemented in 
hardware because the matrix can easily get too large to store it in the RAM 
of an FPGA. So a work around has to be found to solve this kind of problem 
in hardware.

Example: The scoring matrix for a Smith–Waterman alignment of the 
query “CGGA” on “ACGAT” can look like the matrix shown in Table 11.2.

This scoring matrix was generated with a score of 2 for Match and −1 for 
Mismatch and GapPenalty. The backtracking results in the alignment shown 
in Table 11.3.

11.5.1.2 Hardware Implementation

To cope with the memory limitations mentioned earlier it is essential to know 
that in a biologist’s workfl ow it is very likely to align thousands of query 
sequences at a time with only looking at the maximal scores of the align-
ments. These scores are analyzed and the actual alignment of a very little 
selection of query sequences with the highest scores may easily be computed 
on a standard PC. Hence, it is not important to store the whole matrix, but 
only the maximum and the values needed for computation. Then, the output 
is simply the maximum cell value.

Like in a software implementation, parallelization can be done line by line. 
Thus, every PE calculates one line, meaning that it is responsible for exactly 
one character of the query sequence. Therefore, referencing the value of the 

TABLE 11.2

Scoring Matrix for Smith–
Waterman Alignment

A C G A T

C 0 2 1 0 0
G 0 1 4 3 2
G 0 0 3 3 2
A 2 1 2 5 4

TABLE 11.3

Alignment Example (“-“ Denotes a Gap)

Base: A C G - A T
Query: - C G G A -
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left neighbor is simply accessing its own value of the previous clock cycle. 
Like this, referencing the value from the top or top-left neighbor means ref-
erencing the value of the preceding PE one or two clock cycles before, respec-
tively. In addition, the update of the maximum value that was seen so far has 
to be done.

With a parallelization scheme like this, the algorithm processes the matrix 
diagonally with the database sequence streaming through the chain of PEs. 
The processing of a matrix is seen in the following example while the illus-
tration of an FPGA implementation is shown in Figure 11.11.

Example: The processing scheme of the scoring matrix from the previous 
example is depicted in Table 11.4.

11.5.1.3 Performance on COPACOBANA 5000

Common FPGA implementations of the Smith–Waterman algorithm only 
use one single FPGA. Hence, they either are limited in the length of the 
query sequence or need to reinitialize their chain of PEs. Implementing the 
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FIGURE 11.11
Implementation of the Smith–Waterman algorithm on an FPGA.

TABLE 11.4

Processing Scheme for Smith–Waterman Alignment

A C G A T

C 0 2 1

G 0 1
G 0
A
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Smith–Waterman algorithm on COPACOBANA 5000 offers new ways to 
think about scaling. Now, there are 128 instead of 1 FPGA available. In addi-
tion, in contrast to the interprocess communication ability of COPACOBANA 
1000, all FPGAs can communicate in a systolic manner. Thus, it is possible 
to simply align 128 small query sequences at once, or, even better, to align 
a query sequence that is 128 times the size of what was possible before the 
COPACOBANA 5000 was available. It is even able to mix different query 
lengths and process them altogether in parallel.

Table 11.5 shows the performance results of the alignment of 3,685 20-mers 
against the human genome, comparing a standard PC (AMD Opteron at 2.2 
GHz), a Cray XD-1 using one FPGA [37], and the COPACOBANA 5000.

11.5.2 Motif Finding

The biological background for motif fi nding is the discovery of regulatory 
sequences in DNA. It is often described as the “needle-in-the-haystack prob-
lem” [38]. Algorithms search for overrepresented occurrences of unknown 
short sequences that in addition could have slight variations in their instances. 
This makes it one of the most challenging problems in bioinformatics. In fact 
there are problem instances of motif fi nding that are unsolvable by current 
techniques. There are two reasons that make this problem so diffi cult. First, 
the parameters of a given problem instance (like sequence and motif length, 
grade of mutation) can make it impossible to identify motifs due to back-
ground noise. Second, it is computationally expensive as nearly nothing is 
known on the instances intended to be found.

Decades have already been spent on this issue but no single algorithm 
meets all the demands of the biologists. Every scientist has his/her own 
special needs on special ways of the problem with modifi ed criteria for the 
algorithms. Thus most algorithms developed as yet only perform well on 
special problem instances, but deliver worse results on general problem 
instances [39, 40]. Although the MEME algorithm [41, 42] reached a broad 
acceptance in academic circles, like BLAST [36] for alignment problems, its 
results often only give a clue about what was expected for real. Important 
instances simply stay hidden although additional criteria could help to dis-
cover them.

TABLE 11.5

Performance Results on Smith–Waterman Alignment

COPACOBANA 5000 Cray XD-1 AMD Opteron (2.2 GHz)

Runtime 0.1 hours 7.39 hours 75 hours
Speedup (vs. PC) 750 10.15 1
Energy consumption 0.06 kWh 2.7 kWh 22.5 kWh
System cost 200,000 $ 100,000 $ 500 $
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The MEME approach and the similar Gibbs sampler [43, 44] develop matri-
ces as representation for motif candidates using an expectation maximiza-
tion method. Other algorithms like PROJECTION [45] only precompute start 
values for the expectation maximization method to fi lter out false-positive 
results. The greedy approaches like the original CONSENSUS [46] simply 
fi nd the most likely instances by aligning only small parts of the genome at a 
time, but have a high risk of missing other important instances.

The approach iterative generation of matrices (IGOM), later enhanced to 
Boolean matrix algorithm (BMA) [47], uses position frequency matrices as 
representation of motif instances. It iteratively generates these matrices by 
measuring a value similar to signal-to-noise ratio. This is done in correla-
tion to signal theory where the signal strength opposing to the background 
noise of the medium is maximized. The restrictions of the position frequency 
matrices are weakened to gain the highest signal-to-noise ratio, thus gener-
ating a candidate for a motif. The step from IGOM to BMA is due to the 
awareness that in general the exact distribution of the different bases on sev-
eral positions in the motif instances is not necessarily needed for further 
analysis. It is only important to know which bases are permitted to exist on 
a weakened position. So, a Boolean representation of the position frequency 
matrices is suffi cient, leading to the algorithm BMA.

11.5.2.1 The BMA Algorithm

In the following section the simple algorithm BMA [47] is described. This 
algorithm is highlighted by the success in discovering a new stress factor in 
Bacillus subtilis (in cooperation with the Institute of Virology, Free University 
of Berlin). Given clean input data, that is, for example a preanalyzed sequence 
with repeat regions already cut out, not much effort has to be made for fi lter-
ing the result data again. The results already provide clean indications for 
what is a real motif candidate and what is not.

In addition, BMA is highly customizable for special criteria; for example, 
the searching for underrepresented sequences, or motifs where instances 
with slight modifi cations do not occur, could easily be adapted.

11.5.2.2 Implementation of BMA

The basic implementation of BMA uses Boolean matrices as representation 
for a motif. The Boolean matrices used here have similarities to commonly 
used position frequency or position weight matrices. They consist of four 
rows, each for one of the four possible bases A, C, G, and T. The number 
of columns is equal to the size of the expected motif and represents a 
position in the motif. Thus exactly one “true”-value in a column forces the 
corresponding base to be present in every motif instance at the column’s 
position. This is called a “preserved” position. More than one “true”-value 
in a column imply a weakened preservation of bases in this position. BMA 
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only allows maximal two “true”-values in one column, which is called 
a “semi-preserved” position. The example in Table 11.6 shows a Boolean 
matrix with semipreserved positions at the second and third base, thus 
representing the sequences “AAGTCA,” “AGATCA,” “AGGTCA,” and 
“AAATCA.”

The first step in the BMA algorithm is the initialization of the Boolean 
matrix representing a possible candidate for a motif. The initializa-
tion value could either be taken from a substring of the genome data to 
 analyze or be taken out of all possible initialization values. The prefera-
ble way depends on the size of the genome data and the expected motif 
size. As there are four different bases the number of possible initiali-
zation values is limited to 4(motif size). If this number exceeds the number 
of subsequences of the same length in the genome data, the first way 
should be preferred.

After initialization the number of occurrences of the actual motif candi-
date in the genome data is simply counted and interpreted as score. In the 
same time variances of the actual candidate are registered by counting the 
differences in each position in some scoring matrix. The registration is done 
only in cases where exactly one base differs from the candidate. This way the 
most popular variation of the actual motif instance is voted and the corre-
sponding position will be weakened to “semipreserved” after analyzing the 
genome data once. In the following example an analyzing run is illustrated. 
A Boolean matrix and a sequence mismatching the matrix in exactly one 
position are shown. The corresponding counter to this mismatching position 
in an example scoring matrix is emphasized, leading to the ensuing weak-
ened Boolean matrix.

Example 11.1: An Analysis Run with BMA

The Boolean matrix is taken from the example in Table 11.6. An example sequence 
(“AGACCA”) with exactly one mismatch according to this matrix is stated in Table 
11.7. The fi elds corresponding to the characters in the sequence are highlighted.

An example of a scoring matrix emphasizing the corresponding counter is stated 
in Table 11.8.

The weakened Boolean matrix resulting from the scores of this scoring matrix 
can be seen in Table 11.9.

TABLE 11.6

An Example of a Boolean Matrix

A 1 1 1 0 0 1
C 0 0 0 0 1 0
G 0 1 1 0 0 0
T 0 0 0 1 0 0
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This procedure is repeated until the desired degree of weakened positions is 
reached. The score of each matrix then represents the degree of overrepresenta-
tion of the motif candidate in the genome.

11.5.2.3 Parallelization of BMA in Hardware

Because of their Boolean representation the matrices easily fi t in a hardware 
design, occupying less space than matrices containing integer or fl oating 
point numbers. The simplicity of the algorithm itself, the independence of 
several PEs, and the accessing of the genome data as stream make it perfectly 
well suited for massive parallelization on COPACOBANA [10].

The parallelization is straightforward. As every actual motif candidate has 
to be analyzed with the genome data, the best way is to take as many PEs 
as possible, each handling one motif candidate, and analyze the streamed 
genome data in parallel. Each PE has to hold the Boolean matrix for the can-
didate, some counters for its score and several counters in a scoring matrix. 
Thus, the most expensive component concerning area usage is the scoring 

TABLE 11.7

Matching a Sequence with a Boolean 
Matrix

A 1 1 1 0 0 1
C 0 0 0 0 1 0
G 0 1 1 0 0 0
T 0 0 0 1 0 0

A G A C C A
✓ ✓ ✓ ✗ ✓ ✓

TABLE 11.8

An Example of a Scoring Matrix, 
Corresponding to the Previous Example

A – – – 6 0 –
C 0 5 0 12 – 0
G 7 – – 0 4 4
T 0 0 2 – 0 1

TABLE 11.9

The Resulting Weakened Boolean 
Matrix from the Previous Example

A 1 1 1 0 0 1
C 0 0 0 1 1 0
G 0 1 1 0 0 0
T 0 0 0 1 0 0
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matrix, but it is rarely accessed benefi cially throughout the analysis. So, the 
scoring matrix could be placed in the block RAM structure abundant on 
every COPACOBANA FPGA. This way the resources of logic cells are saved 
and it is possible to place more PEs on each FPGA. To ensure the access to 
the genome data at high clock rates, the PEs on the FPGA are arranged in 
several queues along the location of the block RAM. Each element provides 
the data to its neighbor after one clock cycle. The same happens for the 
results whose data fl ow is just the other way round. In addition a prese-
lection is done by providing only the best results per chip. Figures 11.12 
and 11.13 show an illustration for the arrangement of the components on a 
COPACOBANA 1000 FPGA and the data fl ow for a single run.

There is not much difference in the implementations for the COPACOBANA 
1000 and the COPACOBANA 5000 architectures. The basic PEs are the same, 
but it is apparently the count that differs. While there are 32 elements fi tting 
on a COPACOBANA 1000 FPGA, it is 128 elements on a COPACOBANA 5000 
FPGA. In total 3,840 versus 16,384 PEs are working in parallel.

The second main difference between the architectures is the communica-
tion structure and thus the speed of a single analysis run. The COPACOBANA 
1000 provides the genome data to the PEs by broadcasting on the internal 
single-master multiple-slave bus. COPACOBANA 5000 communicates on a 
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Search control entity
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FIGURE 11.12
Hardware design overview of the parallelized BMA algorithm. The processing elements are 
arranged in a queue on each FPGA.
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communication ring basis. Broadcasting is done by sending chunks of data 
one by one to the fi rst client in the ring, which repeats it in sending it to the 
next client, and so on. The benefi t of this behavior is that communication 
is done over short distances. Hence, it could be very fast, but with the little 
drawback of a relative high delay for the least clients. Actually communica-
tion between two clients reaches the data rate of 2 Gbit/s on COPACOBANA 
5000. This is defi nitely enough to make the runtime of the whole algorithm 
solely depend on the speed of the internal clock while the critical factor on 
COPACOBANA 1000 is the speed of the bus.

To gain high clock frequency in a BMA PE for the COPACOBANA 5000 
the design was being optimized by introducing pipeline stages while com-
paring the motif candidate with the actual subsequence of the input data. 
This raised the clock speed from only 40 MHz in the COPACOBANA 1000 
design to a possible frequency of about 100 MHz for the COPACOBANA 5000 
design. For comparison with a standard PC the algorithm was accordingly 
adapted, implemented in C++, and compiled with highest processor specifi c 
optimization.

11.5.2.4 Performance Results of BMA

Table 11.10 shows the performance results of some motif-fi nding runs on 
several genomes for the COPACOBANA 5000, COPACOBANA 1000, and 
a standard PC architecture. The PC features the following properties: an 
Intel Core2 Quad CPU at 2.4 GHz, 8 GB DDR-II RAM, and SATA hard disk 
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FIGURE 11.13
The data fl ow of a parallelized BMA run on a single FPGA.
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running a Linux operating system. The algorithmic parameters were a motif 
size of 12, a number of six runs for each initialized candidate, and for every 
genome their subsequences of the same length as the motif were used for 
initialization instead of using all possible sequences. In the case of taking 
all possible initialization sequences, the runtime would increase linearly for 
all architectures. The measurement of the power consumption of the three 
architectures resulted in about 1000 W for COPACOBANA 5000, 600 W for 
COPACOBANA 1000, and 300 W for the standard PC.

The results show that the COPACOBANA architectures outperform a stan-
dard PC in an order of magnitude while taking the computation time back 
to rational means. The effi ciency factor calculated by dividing the hardware 
costs of one PC (€ 300) with the costs of one COPACOBANA 5000 machine 
(€ 150,000) and multiplied with the speedup of about 25,000, reaches 50. This 
means COPACOBANA is 50 times more effi cient than using a PC or PC clus-
ter for solving this kind of problems.

Further, according to the energy consumption, COPACOBANA even 
provides energy savings in several orders of magnitude. Imagine, a PC 
cluster working in parallel to decrease the runtime will not decrease the 
amount of energy needed! Thus, given the costs for a COPACOBANA 5000 
machine of about €150,000 and the energy costs for a PC cluster of about 
€180 just for solving only one problem of size B. subtilis (s. table), it will take 

TABLE 11.10

Performance Results on Motif Finding with BMA

COPACOBANA 
5000 (1,000W)

COPACOBANA 
1000 (600W)

Intel Core2 Quad 2.4 
GHz (300W)

Cowpox virus (230 kbp):
Runtime ~2 seconds 3 minutes 3 hours
Speedup (vs. PC) 5,400 60 1
Energy consumption 0.0006 kWh 0.03 kWh 0.9 kWh
Energy costs
(0.20 €/kWh)

€ 0.0001 € 0.006 € 0.18

Rickettsia can. (1.2 Mbp):
Runtime 21 seconds 21 minutes 4 days 19 hours
Speedup (vs. PC) 19,714 329 1
Energy consumption 0.006 kWh 0.21 kWh 34.5 kWh
Energy costs
(0.20 €/kWh)

€ 0.0012 € 0.042 € 6.90

Bacillus subtilis (5.9 Mbp):
Runtime 7 minutes 6 hours 10 minutes 122 days
Speedup (vs. PC) 25,097 475 1
Energy consumption 0.117 kWh 3.7 kWh 878.4 kWh
Energy costs
(0.20 €/kWh)

€ 0.023 € 0.74 € 176
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only 830 runs to reach energy costs the size of the hardware costs for one 
COPACOBANA 5000 machine. While scaling the size of the problem to 
higher amounts, this factor gets even worse on side of the PC. That makes 
the acquisition of COPACOBANA even cheaper than maintaining a cluster 
of standard PCs.

11.5.3 Future Work

As COPACOBANA 5000 is suitable for all kinds of algorithms processing huge 
amounts of data preferably in streams without diffi cult computations, the 
research area of bioinformatics has a lot of topics adequate for this massively 
parallel architecture. For instance, further research is done on genome assem-
bly with reassembly as well as de novo assembly on COPACOBANA. These 
kinds of algorithms require the processing of several ten thousand mega-
bytes of data in rational means of time. The capability of the COPACOBANA 
5000 to handle these requirements has already been shown in the examples 
earlier. The machine outperforms a standard PC by an order of magnitude 
while saving energy costs in several orders of magnitude. Hence, the com-
mercial availability makes it indeed an interesting opportunity for research-
ers in molecular biology to replace their existing PC clusters.
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12.1 Introduction

String set matching is an important operation in computational biology. For 
example, when proteomics data is used for genome annotation in a process 
called proteogenomic mapping [1–5], a set of peptide identifi cations obtained 
using mass spectrometry is matched against a target genome translated in 
all six reading frames. Given a large number of peptides and long translated 
genome strings, the fundamental problem here is to effi ciently search a large 
text corpus (i.e., the translated genome) to identify the locations of individual 
strings that belong to a large set of patterns (i.e., the set of peptides).
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12.1.1 String Matching Approaches

Effi cient substring search algorithms such as Boyer–Moore [6] and 
 Knuth–Morris–Pratt [7] that locate single pattern strings within a larger text 
string can be used in a multipass manner (i.e., one pass for each string in the 
set of peptides). However, this approach does not scale well with an increas-
ing number of pattern strings. In particular, assuming p patterns with an 
average length of n characters and a text corpus of length m characters, naïve, 
multipass approaches have computational complexity of O(p × (m + n)).

The Aho–Corasick algorithm (ACA) [8] provides a scalable solution to the 
string set matching problem because it incorporates the search mechanism 
for the entire set of patterns into a single deterministic fi nite automaton 
(DFA). The power of ACA stems from its ability to fi nd the location of the 
strings belonging to the pattern set in the large text corpus in a single pass. 
The computational complexity of Aho–Corasick search is O(m + k) where k is 
the total number of occurrences of the pattern strings in the text. This linear 
processing time complexity has resulted in the widespread use of ACA in 
string matching applications.

The performance of the ACA can be further enhanced by implementing it 
in hardware. Tan and Sherwood [9] were the fi rst to describe an area- effi cient 
hardware approach for implementing the Aho–Corasick for network intru-
sion detection systems implemented in application-specifi c integrated circuits 
(ASICs). However, the cost associated with ASIC development is a signifi cant 
impediment to their adoption in computational biology. Field-programmable 
gate array (FPGA) devices, conversely, can be repeatedly reconfi gured to cre-
ate a variety of application-specifi c processing elements, making FPGAs a 
popular low-cost alternative for developing low-cost hardware-based pro-
cessing accelerators.

Although the fundamental ACA is identical for all string set matching 
applications, optimization for specifi c applications and target hardware 
results in signifi cant performance and storage effi ciencies. This chapter 
expands on previous work by Dandass et al. [10], and demonstrates how an 
Aho–Corasick architecture and DFA organization can be specifi cally opti-
mized for implementation in FPGA hardware. This chapter also shows how 
the 18-kbit blocks of random access memory (BRAM) available on Xilinx’s 
Virtex-4 FPGAs and 9-kbit RAM blocks available in Altera’s FPGAs can 
be utilized to create resource-effi cient amino acid sequence set matching 
engines.

12.1.2 Use of the ACA in Computational Biology

The ACA is widely used in computational biology for a variety of pattern 
matching tasks. For example, Brudno and Morgenstern use a simplifi ed ver-
sion of ACA to identify anchor points in their CHAOS algorithm for fast 
alignment of large genomic sequences [11, 12]. The TROLL algorithm of 
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Castelo, Martins, and Gao uses ACA to locate occurrences of tandem repeats 
in genomic sequence [13]. Farre et al. use Aho–Corasick as the search algo-
rithm for predicting transcription binding sites in their tool PROMO v.3 [14]. 
Hyyro et al. demonstrate that Aho–Corasick outperforms other algorithms 
for locating unique oligonucleotides in the yeast genome [15]. The SITEBLAST 
algorithm [16] employs the ACA to retrieve all motif anchors for a local align-
ment procedure for genomic sequences that makes use of prior knowledge. 
Buhler, Keich, and Sun use an Aho–Corasick DFA to design simultaneous 
seeds for DNA similarity search [17]. The AhoPro software package adapts 
the ACA to compute the probability of simultaneous motif occurrences [18].

12.1.3 Use of FPGAs in Computational Biology

There has been signifi cant interest in using FPGAs to address bottlenecks 
in computational biology pipelines. Examples include the use of FPGAs to 
improve the speed of homology search [19, 20] for computing phylogenetic 
trees [21], for the pairwise alignment step in multiple sequence alignment 
using ClustalW [22], and for acceleration of the Smith–Waterman sequence 
alignment algorithm [19]. In computational proteomics, Alex et al. have dem-
onstrated the use of FPGAs to accelerate peptide mass fi ngerprinting [23]. 
Bogdan et al. have applied FPGAs to the problem of analyzing mass spectro-
metric data generated by MALDI-ToF instruments by developing hardware 
implementations of algorithms for denoising, baseline correction, peak iden-
tifi cation, and deisotoping [24].

12.1.4 Use of String Set Matching in FPGAs in Other Domains

Hardware implementations of ACA have been developed for applications 
other than bioinformatics. Snort is a popular computer security program 
that looks for a set of “signature” patterns corresponding to known intru-
sion attacks in network packets. Tan and Sherwood split the Aho–Corasick 
implementation for Snort into four separate FSMs such that each FSM is 
responsible for two separate bit positions in the signature string set and net-
work packet [9]. This bit-split implementation is more effi cient in terms of 
hardware area. However, their paper does not exploit the availability of spe-
cialized hardware resources in FPGAs.

Jung, Baker, and Prasanna describe an implementation of the bit-split ACA 
for Snort using FPGA technology [25]. They optimize the bit-split implemen-
tation of Aho–Corasick for Snort by using RAM blocks available on Xilinx 
FPGAs. However, in Snort, the input alphabet consists of all 256 distinct 
symbols that can be represented using 8 bits in a byte. By contrast, in string 
matching for proteogenomic mapping, the alphabet consists of 20 amino 
acids and a small number of additional symbols that can be represented in 
5 bits. Furthermore, in genomics only 3 bits are required to represent the four 
nucleic acid bases and any other special symbols. Furthermore, Jung et al. 

10768_C012.indd   26510768_C012.indd   265 6/17/2010   7:55:52 PM6/17/2010   7:55:52 PM



266 Bioinformatics: High Performance Parallel Computer Architectures

do not exploit the dual-ported nature of RAM blocks in modern FPGAs that 
enables more effi cient utilization of storage resources. Therefore, the previ-
ously described bit-split implementations designed for Snort are not optimal 
for proteomics processing in FPGAs.

Sidhu and Prasanna describe a technique for constructing nondeterminis-
tic fi nite automata (NFA) from regular expressions that can be used for string 
matching [26]. Their solution requires O(n2) space where n is the number of 
characters in the regular expressions to be searched. Because their NFA is 
implemented entirely in FPGA logic, this technique requires large FPGAs 
to implement searches for large-string sets. Lin et al. describe a technique 
for improving the space effi ciency by up to 20% for NFA implementations in 
FPGA logic fabric [27]. Their architecture optimizes space by sharing com-
mon prefi xes, infi xes, and suffi xes between multiple regular expressions. 
Fide and Jenks provide an extensive survey of string matching techniques 
and implementations in hardware [28]. The survey focuses on intrusion 
detection and network router implementation.

12.2 Approach

Utilization of ACA for string set matching requires two phases (a) prepro-
cessing, and (b) searching. In the preprocessing phase, a DFA is constructed 
from the set of strings to be matched. The DFA is used to perform that 
matching in the subsequent search phase. The preprocessing phase has a 
runtime complexity of O(pn) and the search phase has a runtime complexity 
of O(m + k). Detailed description and analysis of ACA can be found in [8]. A 
brief description follows below.

12.2.1 The Aho–Corasick Preprocessing Phase

In the preprocessing phase, the DFA is constructed using three steps. In the 
fi rst step, the set of target strings, P, is organized into a keyword tree data 
structure, Γ = {N, E} where N is the set of nodes and E is the set of directed 
edges. A keyword tree is rooted at node r ∈ N, each node v ∈ N represents a 
prefi x in the set of strings and each edge e ∈ E is labeled with a single char-
acter. In a keyword tree, all edges out of a node have unique labels and the 
sequence of edges on the path from r to v specifi es a prefi x of a string in P. 
Furthermore, all strings in P map to nodes in Γ. Figure 12.1 shows an exam-
ple keyword tree for the set of strings P = {“ACA,” “ACACD,” “ACE,” “CAC”}. 
The paths from node 0 to nodes 3, 5, 6, and 9 correspond to strings “ACA,” 
“ACACD,” “ACE,” and “CAC,” respectively.

The keyword tree can be used to search corpus T for strings in P by start-
ing at the root node 0 and following the path indicated by the prefi x of T 
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starting at position 1 until either a node that maps to a pattern in P is found 
or no edge leading out of a node matching the corresponding character in 
the prefi x exists. If a node v maps to a pattern, the match is reported and the 
search can continue along the path to match longer strings if v is a nonleaf 
node (e.g., node 3 in Figure 12.1). If v is a leaf node or no match is found, then 
the search starts over again at the root of T with the prefi x of T starting at 
position 2. This process continues until all of T has been searched. However, 
this naïve search method has a runtime complexity of O(n × m).

In the second preprocessing step, “failure links” are added to the tree 
to speedup the search. Failure links are nonlabeled edges that account for 
overlapping patterns strings in the corpus and can be used to continue the 
search, without starting at the root of the tree, when the current branch of the 
tree fails to produce a match because of the current symbol in the text string 
does not match an edge out of the current node. The algorithm for adding 
failure links is given below (Algorithm 1):

Algorithm 1 Add failure links to keyword tree Γ
The failure link of the root node, r in Γ, leads to r;
 The failure links of all immediate child nodes of r also lead 
to r;
 Repeat for every node v in Γ for which the failure link is not 
yet known traversed in a breadth-first manner:
 v’:= parent of v;
 x := character that labels edge (v’, v);
 w :=  node that results from following the failure link 

out of v’;
 While there is no edge out of w labeled x and w ≠ r:
  w :=  node that results from following the 

failure link out of w;
 End while;
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FIGURE 12.1
Keyword tree for P = {“ACA,” “ACACD,” “ACE,” “CAC”}.
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 If there is an edge (w, w’) labeled x
    Add failure link from v to w’;
 Else
    Add failure link from v to r;
End repeat;

Note that the algorithm requires the failure links of all nodes with shorter 
path lengths than v to be known before v can be processed. This is guar-
anteed by computing failure links for all nodes in a breadth-fi rst manner. 
Figure 12.2 shows the result of adding failure links to the keyword tree con-
structed in Figure 12.1. In Figure 12.2, the failure links from nodes 0, 1, 5, 6, 
which lead to node 0 and are not shown to preserve clarity.

In the third preprocessing step, a DFA is constructed from the keyword 
tree by adding labeled edges corresponding to the information encoded 
within the keyword tree using the following algorithm (Algorithm 2):

Algorithm 2  Add edges corresponding to failure links to 
keyword tree Γ

Repeat for every nonroot node v in Γ traversed in a breadth-
first manner:
 w:=  node that results from following the failure link 

out of v;
 Add to v any pattern matches indicated by w;
 For every edge (w, w’) out of w labeled x:
     If there is not already an edge out of v labeled x
   Add edge (v, w’) out of v labeled x;
 End for;
End repeat;

Figure 12.3 illustrates the DFA resulting from applying the algorithm to 
the example keyword tree. In the fi gure, state 0 is the start state and the 
shaded states 3, 4, 5, 6, and 9 match peptides ACA, CAC, ACACD, ACE, and 
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FIGURE 12.2
Keyword tree with added failure links.
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CAC, respectively. The DFA can be used to match sets of strings in an input 
corpus as follows (Algorithm 3):

Algorithm 3 Search input corpus using a DFA
 State v:= 0;
 While there are characters in the input corpus:
  c:= character at the front of the corpus;
  Remove the character at the front of the corpus;
  If there exists an edge (v, v’) out of v labeled c:
    v:= v’;
     If v indicates a match then report that 

match;
  Else
    v:= 0;
End while;

In a computer, the DFA state transitions can be represented in the form of a 
table. Table 12.1 presents a table-oriented representation used for implemen-
tation of the DFA in Figure 12.3.

12.3 FPGA Implementation of the String Set Matching DFA

The DFA resulting from the ACA processing phase can be directly used for 
implementing a string set matching solution in an FPGA. However, the large 
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FIGURE 12.3
DFA for matching P = {“ACA,” “ACACD,” “ACE,” “CAC”}.
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size of the resulting DFA for any realistic problem in computational biol-
ogy will require the DFA be stored in external memory (e.g., in the form 
of external DDR or DDR2 modules). While off-FPGA memory is plentiful 
and relatively inexpensive, it is also slow and requires several clock cycles 
of latency for every memory access. Therefore, using external memory for 
searches is not ideal. Splitting the set of strings to be matched into several 
small subsets, each encoded into small DFAs that are executed separately, is a 
straightforward approach to reducing storage requirements. However, using 
this approach alone will likely require several passes over the input corpus, 
thereby increasing the total processing time. Therefore, other approaches for 
reducing storage requirements of string set matching DFAs are described 
below.

12.3.1 Bit-Split DFA Architecture

For a given DFA, its branching factor and the number of states have a sig-
nifi cant impact on its storage requirements. Therefore, both these attributes 
must be addressed in an FPGA implementation. As observed in [25], the 
branching factor of the DFA can be reduced by splitting the original DFA, 
A, into smaller DFAs A0, A1, . . . ,AB, where B is the number of bit positions 
required to encode the characters in the input corpus and automata Ab pro-
cesses the bit position b in the input corpus. In proteomics, 5-bit positions are 
suffi cient for encoding 32 characters representing all possible amino acids 
and special characters. In genomics, two-bit positions can encode the four 

TABLE 12.1

A Table-Oriented Representation of the DFA in 
Figure 12.3

Input Character

Current State A C D E Match

0 1 7 0 0 Ø

1 1 2 0 0 Ø  

2 3 7 0 6 Ø  

3 1 4 0 0 ACA

4 3 7 5 6 CAC

5 1 7 0 0 ACACD

6 1 7 0 0 ACE

7 8 7 0 0 Ø

8 1 9 0 0 Ø

9 3 7 0 6 CAC
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bases. However, three bits are required if additional special characters such 
as “N” are required. A small translation module can convert ASCII-encoded 
input characters into the binary equivalents, if required.

Table 12.2 shows the table-based structure of the 5-bit-split DFAs correspond-
ing to the DFA in Figure 12.3. The states in the bit-split DFAs are composed 
from sets of states in the original DFA. Furthermore, each state in the bit-split 
DFA has exactly two edges labeled 0 or 1. The central idea behind the bit-split 
DFA construction algorithm shown below (Algorithm 4) is to aggregate states 
in the original DFA into states in the bit-split DFA based on the identity of the 
corresponding bit positions of the edge labels. In following discussion, A : p 
refers to state p in the original DFA and Ab : q refers to state q in the bit-split DFA 
for bit position b; bit positions are specifi ed in a right-to-left order starting at 0.

Algorithm 4 Construct DFA Ab for bit position b from DFA A.
V:= {v | v is state 0 in A};
Add state V to Ab;
Insert V into Q, a list of newly added states in Ab;
While Q is not empty:
 V:= the state in the front of Q;
 Remove the state in front of Q;
  E0:=  {(v, v’) | (v, v’) ∈ A ∧ v ∈ V ∧ the label of (v, 

v’) at bit position b is 0};
 V0’:= { v’ | (v, v’) ∈ E0};
 If V0’ does not already exist in Ab;
  Add V0’ to Ab;
  Insert V0’ to the back of Q;
 Add edge (V, V0’) with a label of 0 to Ab;
 E1:=  {(v, v’) | (v, v’) ∈ A w v ∈ V ∧ the label of (v, 

v’) at bit position b is 1};
 V1’:= { v’ | (v, v’) ∈ E1};
 If V1’ does not already exist in Ab;
  Add V1’ to Ab;
  Insert V1’ to the back of Q;
 Add edge (V, V1’) with a label of 1 to Ab;
End while;

Consider the construction of bit-split DFA A0 given the original DFA A in 
Figure 12.3. Initially, the start state A0:0 = {A:0} is added to A0. Next, all states 
in A that can be reached from the states that comprise A0:0 when the bit 
position 0 in the edge label is 0 are determined and aggregated into a new 
bit-split node A0:1. In the example, A:1 and A:7 are aggregated to form A0:1. 
Because A0:1 does not already exist in A0 (i.e., there is no state in A0 that is 
aggregated from exactly A:1 and A:7), it is added to A0. Furthermore, an edge 
(A0:0, A0:1) with a label of 0 is also added to A0. Next, all states in A that can be 
reached from the states that comprise A0:0 when the bit position 0 in the edge 
label is 1 are determined and aggregated; in this example, the aggregation 
results in state {A:0} that already exists in A0. Therefore, the edge (A0:0, A0:0) 
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TABLE 12.2

Bit-Split DFAs Equivalent to the DFA in Figure 12.3

 (a) A0 (b) A1 (c) A2

State 0 1 Match State 0 1 Match State 0 1 Match

0 1 0 Ø:0000 0 1 2 Ø:0000 0 1 0 Ø:0000

1 2 0 Ø:0000 1 1 3 Ø:0000 1 2 0 Ø:0000

2 3 0 Ø:0000 2 4 2 Ø:0000 2 3 4 Ø:0000

3 4 0 4,3,1:1101 3 5 2 Ø:0000 3 5 4 4,1:1001

4 4 5 4,3,1:1101 4 1 6 Ø:0000 4 1 0 3:0100

5 1 0 2:0010 5 1 7 3,1:0101 5 6 4 4,1:1001

6 5 2 4:1000 6 6 4 4,2,1:1011

7 5 8 4:1000

8 4 2 2:0010

(d) A3
(e) A4

State 0 1 Match State 0 1 Match

0 1 0 Ø:0000 0 1 0 Ø:0000

1 2 0 Ø:0000 1 2 0 Ø:0000

2 3 0 Ø:0000 2 3 0 Ø:0000

3 4 0 4,3,1:1101 3 4 0 4,3,1:1101

4 5 0 4,3,1:1101 4 5 0 4,3,1:1101

5 5 0 4,3,2,1:1111 5 5 0 4,3,2,1:1111
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with a label of 1 is added to A0. This process is repeated for all newly added 
states in A0 until there are no new unprocessed states in A0.

A0:1 was added to A0 previously and is examined next. Recall that A0:1 is 
an aggregate of A:1 and A:7. Therefore, all states in the original FSM that can 
be reached from either A:1 or A:7 when the edge label at bit position 0 is 0 are 
aggregated into A0:2. In this example, A0:2 is created from A:2 and A:8. Because 
A0:2 does not already exist in A0, it is added to A0 and the edge (A0:1, A0:2) with 
a label of 0 is also added to A0. Next, all states in the original DFA that can be 
reached from either A:1 or A:7 when the edge label at bit position 0 is 1 are 
aggregated; in this example, the aggregation results in state {A:0} that already 
exist in A0. Therefore, the edge (A0:1, A0:0) with a label of 1 is added to A0. This 
process is continued until there are no new states added to A0. Note that only 
unique new nodes are added to Ab. When a new state Ab:n is created by aggre-
gation but another node, Ab:k, created by aggregating the same set of states in 
A already exists in Ab, then instead of inserting the new node, Ab:n, an edge 
leading to Ab:k from the state currently under examination is inserted into Ab.

Indicators for string matches are also handled by aggregation (i.e., state 
Ab:k matches all the strings that are matched by the states in the original DFA 
that were aggregated into Ab:k). Given a set of p strings, each state in Ab can 
match up to p strings. Therefore, a sequence of bits is used for indicating the 
matches represented by state Ab:k such that a value of 1 at bit position p indi-
cates a match with string p in the string set. For the example in Table 12.2(b), 
a sequence of four bits is used to represent the matches in each state and 
because state A1:5 is created by aggregating states A:3 and A:6, a matching bit 
sequence of 0101 is used to indicate matches to strings 1 and 3 (note that the 
right-most bit corresponds to bit position 1).

Table 12.2 illustrates the fi ve bit-split DFAs resulting from the original DFA 
in Table 12.1 assuming proteomics processing. The characters A, C, D, and E 
are encoded as 00000, 00010, 00011, and 00100, respectively. Essentially, there 
is no need to create a more compact encoding that eliminates the codes for let-
ters not used to represent amino acids (e.g., B) because all fi ve bits are needed 
to encode the 20 amino acids and any other special characters (e.g., Z).

12.3.2 Implementing Bit-Split DFA Tables in FPGAs

Implementing the bit-split DFAs using lookup tables is more resource effi -
cient as compared with encoding sequences of conditional state transitions 
in the FPGA logic fabric. In modern FPGAs, the DFA tables can be stored 
using either confi gurable logic block resources (i.e., distributed RAM) or 
BRAM. However, BRAM is more effi cient when storing large tables because 
it has higher storage density than distributed RAM [9].

Xilinx FPGAs provide a large number of 18-kbit BRAMs that can be orga-
nized into 512 rows of 36-bit wide words [29]. The Xilinx BRAMs are dual 
ported; therefore, by tying the high-order bit of the 9-bit BRAM address 
input to 0 on one port and to 1 on the other port, the BRAM can be divided 
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into two independent 9-kbit RAM blocks containing 256 rows of 36-bit words 
each. Altera FPGAs also provide a large number of 9-kbit BRAMs that can be 
organized into 256 rows of 36-bit wide words (other BRAM confi gurations 
are also possible but are not used in this application) [30].

A 256×36-bit block of RAM can hold 256 rows of a bit-split Aho–Corasick 
DFA. Essentially, the bit-split DFA reads the row corresponding to the cur-
rent state to output the string match bit vector and to determine the next 
state. The DFA can transition into one of two states (note that the DFA can 
transition back into the state it is currently in) depending on the input value 
(i.e., 0 or 1). Because 8 bits are required to represent each of the 256 possible 
next state values, 16 bits in each 36-bit wide row are used for storing the two 
possible next state values. The remaining 20 bits in the row are used to store 
the 20-position string match bit vector.

Figure 12.4 illustrates the architecture of a bit-split DFA. In addition to the 
9-kbit RAM block, the implementation requires an 8-bit register to store the 
current state and a multiplexer to select one of the two next state values based 
on the value of the input bit. For proteomics applications, fi ve of these bit-split 
DFA modules are combined to create a complete Aho–Corasick tile as depicted 
in Figure 12.5. Inside a tile, the 5-bit input to the Aho–Corasick implementation 
is distributed to the 5 bit-split DFAs. A bit-wise and operator combines the bit-
split string match vectors into the consensus 20-bit string match vector output.

To conserve signal routing resources, the consensus string match vector is 
converted into a fi ve-bit numerical value using a 20-to-5 bit priority encoder 
(the reason for using a priority encoder is explained toward the end of this 
section). The encoder essentially scans the consensus string match vector in 
increasing index order and returns the index of the fi rst bit that has a value of 
1. Therefore, strings that appear near the beginning of the list of strings have 
higher priority than those appearing later. If all consensus string match vec-
tor bits are clear (i.e., there is no match), the priority encoder returns an unde-
fi ned value. Therefore, to indicate that a string has been found, an output 

Input
bit

State
(8-bit register)

256×36
RAM block

8

MUX

8

36 20

Clock

FIGURE 12.4
Architecture of the bit-split DFA implementation.
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valid indicator signal is also generated when any of the consensus string 
match vector bits are set.

Typically, proteomics pipelines require the detection of more than 20 pep-
tides. In this case, several Aho–Corasick tiles can be utilized in parallel as 
shown in Figure 12.6. The input reading frame is simultaneously streamed 
to all tiles. The output of the tiles is combined into a single output peptide 
number using a priority encoder. Because the priority encoder produces an 
undefi ned value when no peptide is matched, a match indicator signal is also 
generated when any of the tiles indicate a valid match.

Using the architecture described earlier, each tile can detect up to 20 pep-
tides in an input stream of reading frame data. However, because the tile 

Bit-split DFA1

20
Bit-split DFA0

20

Bit-split DFA2

20

Bit-split DFA3

20

Bit-split DFA4

20

20 Priority
encoder

…

5
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Valid 
match
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Input

Clock

5

FIGURE 12.5
Architecture of an Aho–Corasick tile.
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FIGURE 12.6
Aho–Corasick implementation with k tiles.
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has a capacity of only 256 states per bit-split DFA, in some cases, it may be 
necessary to reduce the number of peptides that can be detected to create 
a bit-split DFA with no more than 256 states (note that all fi ve peer bit-split 
DFAs must represent the same reduced number of peptides). A simple iter-
ative greedy algorithm can be employed to allocate peptides to tiles using 
a trial-and-error approach. Initially, the algorithm assigns a set of 20 pep-
tides to a tile. If the bit-split DFA for the given number of peptides has more 
than 256 states, the algorithm reduces the number of peptides assigned to 
the tile and tries again until the bit-split DFA is successfully created.

To minimize the number of states required in the Aho–Corasick imple-
mentation, strings beginning with the same sequence of characters should 
be grouped together into the same tile. This is because the strings will share 
the same initial states in the DFA. One way to achieve this is to sort the set of 
peptide strings in ascending alphabetical order before assigning them to the 
Aho–Corasick tiles. In addition, this bit-split Aho–Corasick implementation 
architecture can only indicate a single string match at any given time. This 
is typically not a problem unless one string is a suffi x of another peptide. 
String p’ is a suffi x of string p if and only if the length of p is greater than 
or equal to the length of p’ and p ends with a substring that is identical to 
p’. In this case, if the string for p appears in the corpus text, it is suffi cient to 
simply indicate that p has been found because this also implies that p’ has 
been found. The priority encoding architecture ensures that the detection of 
a match with p receives higher priority than p’ as long as p appears before 
p’ in the sorted set of strings. Therefore, the sorting of the peptide string set 
must account for both alphabetical and suffi x-based priority ordering.

12.3.3 Analysis of DFA Storage Utilization Efficiency

Assume that Pi, such that 1 ≤ Pi ≤ 20, is the number of strings that can be 
detected by tile i. This means that in each bit-split DFA table row, 20 – Pi bits 
are unused for indicating matches. Furthermore, in a majority of cases, a bit-
split DFA requires fewer than 256 states to detect Pi strings. This means that 
when DFA Ai,b of tile i requires Si,b states, such that 1 < Si,b ≤ 256, then 256 – Si,b 
rows of available storage in the 9-kbit RAM block are unused.

The storage utilization effi ciency of a single 256 by 36-bit block used by a 
single bit-split DFA is computed as follows:

   i b i i b i i b
i b

S PS P S, , ,
,

16 (16 )

256 36 9216

+ +
= =

×
h  (12.1)

The overall storage utilization for an implementation requiring T tiles can 
be computed using the following expression:

  
T T

i i b i i bi b i b
P S P S

T T

4 4
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(16 ) (16 )

5 9216 46080
= = = =

+ +
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h
 (12.2)
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12.4 Case Study

The bit-split ACA was implemented for a hypothetical proteomics applica-
tion requiring the matching of peptides with the human genome using the 
Virtex-4 family of FPGAs as reported in [10]. For example, the Virtex-4 FX-100 
device has 376 18-kbit BRAM blocks, of which 350 were used for implement-
ing Aho–Corasick tiles and the remaining 26 were reserved for meeting the 
storage requirements of other modules that support the implementation (e.g., 
input/output [I/O] functions and the memory for the embedded processor 
core that controls the overall implementation). Recall that a Xilinx BRAM can 
be confi gured as two 9-kbit RAM blocks. This means that there are effectively 
700 RAM blocks available that can hold a total of 140 tiles. Because each tile 
requires fi ve 9-kbit RAM blocks and can search for at most 20 peptides, the 
maximum number of peptides that can be searched using this device is 700 
× 20/5 = 2,800.

For the case study, reading frame data was derived using software on a 
standard workstation by concatenating all the chromosomes in the human 
genome (separated by sequences of 100 “N” characters). Next, the amino acid 
sequences were derived from each of the six resulting reading frames and 
were concatenated together. This resulted in 6,160,844,220 bytes of text to be 
searched for a given set of peptides. In-silico trypsin digestion was used to 
construct 400 different sets of peptides from chromosome 1 of the human 
genome for this experiment. In particular, 100 sets, each containing 2,800 
randomly selected peptides ranging in lengths from 5 to 30 amino acids 
were constructed. Similarly, 100 sets of 2,800 peptides with lengths ranging 
from 10 to 30, 15 to 30, and 20 to 30 amino acids were also created. Results of 
the bit-split implementations for each of the 400 sets of peptides are summa-
rized below.

12.4.1 Storage Utilization

Table 12.3 summarizes the results from generating the Aho–Corasick imple-
mentation for the various peptide sets. Most of the peptide sets where the 
minimum peptide size is 5 and having an average length of just more than 
11 amino acids were accommodated using 140 tiles. Two of these peptide 
sets require an additional tile because for each of these sets one of the tiles 
can only accommodate 19 peptides within the 256 state limits. The average 
storage utilization in the tiles is approximately 52.7% because many of the 
bit-split FSMs require signifi cantly fewer than the available 256 states.

The number of tiles required for the peptide sets with the minimum pep-
tide length of 10 amino acids (average length of 15.40) varies between 141 and 
142 with an average of 19.8 peptides detected per tile. The average storage 
utilization is a much higher 81.12%. The average number of tiles required 
for the peptide sets with the minimum peptide length of 15 amino acids 
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(average length of 19.79) is 178.40 with an average of 15.7 peptides detected 
per tile. The average storage utilization is relatively high at 81.53%. This effi -
ciency is comparable to the effi ciency of the peptide sets with average size of 
15.40. However, while in the case of the shorter peptides, underutilization of 
row storage is the main cause of ineffi ciency, for longer peptides, underuti-
lization of the peptide match vector storage has a larger contribution to the 
overall ineffi ciency.

The average number of tiles required for the peptide sets with the mini-
mum peptide length of 20 amino acids (average length of 23.70) is 277.23 with 
an average of 12.32 peptides detected per tile. The number of tiles required 
is signifi cantly larger than in the previous cases because the bit-split FSMs 
have more states. The storage effi ciency is also reduced to 72.96% because of 
signifi cant underutilization of match vector storage.

12.4.2 Implementation Performance

Maximizing the clock frequency is an important goal of many digital designs 
because higher operating frequencies result in faster execution. In general, 
the implementations of large designs in FPGAs typically have lower operat-
ing frequencies as compared with smaller designs because the signals must 
traverse greater distances on the chip. Therefore, to study the practical limits 
of implementations with large numbers of tiles, Xilinx’s FPGA application 
development tool, XST 10.1.03, was used to implement a number of designs 
with varying number of Aho–Corasick tiles on a Virtex-4 FX-140 speed 
 grade-11 device. Table 12.4 lists the performance statistics of the designs 
reported by XST. The smallest design composed of 40 tiles, requiring 100 
BRAM blocks with a capacity of 800 peptides, operates at a frequency of 
198.649 MHz. The design composed of 200 tiles, requiring 500 BRAM blocks 
with a capacity of 4,000 peptides, operates at a frequency of 134.971 MHz.

The runtime performance of the FPGA-based bit-split Aho–Corasick imple-
mentation was also compared with the performance of the Aho–Corasick 
implementation on a standard workstation. The bit-split Aho–Corasick 
design with supporting elements such as an embedded PowerPC processor, 

TABLE 12.3

Tile Packing Effi ciency

Peptide Length
Average Number of 
Tiles Required

Average Peptides 
Per Tile

Average 
Storage 
Effi ciency (%)Min Max Average

5 30 11.28 140.02 19.99 52.70
10 30 15.40 141.41 19.80 81.12
15 30 19.79 178.40 15.70 81.53
20 30 23.70 277.23 12.32 72.96
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an ATA hard disk controller, an RS232 link, system busses, and memory 
are synthesized to run at a clock frequency of 100 MHz on a board with a 
Virtex-4 FX-100 device. In this design, an ATA disk controller module imple-
mented on the FPGA is used for reading data at a peak rate of 100 MB/s (i.e., 
one character from the reading frame is streamed to the Aho–Corasick tiles 
every clock cycle). The PowerPC is responsible for initializing the disk drive 
and initiating the read operations. The PowerPC also monitors the peptide 
match indications from the tiles and reports match data (e.g., peptide and 
location) to the host workstation over the RS232 link.

Previous results show that the Aho–Corasick tiles can operate at fre-
quencies more than 150 MHz, resulting in input rates exceeding 150 Mbps. 
Although the Aho–Corasick tiles can operate at faster frequencies, in this 
series of experiments the clock frequency was restricted to execute at 100 
MHz system clock to eliminate the complexity that arises with designs con-
taining multiple clock domains. Essentially, the Aho–Corasick tiles operate 
at 100 MHz to match the ATA controller’s peak data delivery rate of 100 MB/s 
and the system bus that is restricted to run at 100 MHz. Note that the tiles 
do not introduce any processing delays (i.e., the disk drive is the primary 
performance bottleneck in this implementation and increasing the imple-
mentation’s clock frequency to 150 MHz produces no tangible improvements 
in processing time). Furthermore, to minimize processing and concomitant 
delays associated with a fi le system, the reading frame data is stored on con-
secutive sectors on a raw disk (i.e., the disk is not formatted using a well-
known, operating system-supplied fi le system). Essentially, the 6,160,844,220 
bytes of text derived from the human genome is written to 12,032,899 con-
secutive sectors on an IDE disk drive at a known starting location. The disk 
drive is connected to the FPGA board and a fl ash RAM module containing 
the Aho–Corasick implementation FPGA confi guration fi le and RAM block 
content implementing the DFA tables is also connected to the board. On 
bootup, the FPGA board reads the confi guration information from the fl ash 
RAM and begins executing the ACA.

TABLE 12.4

Operating Frequencies of Aho–Corasick Designs with a 
Variety of Tiles

Frequency (MHz)

Peptides Tiles BRAMs Virtex-4 FX140-11

800  40 100 198.649

1,600  80 200 169.866

2,400 120 300 169.635

3,200 160 400 150.648

4,000 200 500 134.971
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For these experiments, a set of 2,800 peptides that fi t in exactly 140 tiles 
(i.e., a set with minimum and average peptide lengths of 5 and 11.5257 amino 
acids, respectively) was selected. Note that storage effi ciency of the selected 
peptide set has no bearing on the runtime performance of the bit-split Aho–
Corasick implementation. This is because the Aho–Corasick tiles can each 
search for a subset of 20 peptides in parallel. The performance of the FPGA-
based implementation was compared with the performance of a software 
implementation employing a traditional table-driven Aho–Corasick orga-
nization in which a single large table represents a single FSM with all the 
states for all 2,800 peptides. The software implementation was executed on 
a Windows XP workstation having a 2.67 GHz Intel Core2 Duo processor, 2 
GB RAM, and a pair of Serial ATA disks confi gured as a RAID 0 disk drive 
(i.e., striped data for fast disk I/O), formatted as a new technology fi le system 
(NTFS) volume.

Five runs each of the FPGA and workstation implementations were per-
formed. The FPGA implementation takes, on average, 94.17 seconds to 
process the entire 6 gigabytes of reading frame data. The workstation imple-
mentation takes an average of 1870.18 seconds to complete the search. This 
means that the FPGA-based implementation is nearly 20 times faster than 
the workstation implementation.

12.5 Conclusions

This chapter describes a technique for accelerating string set matching 
implementation using FPGAs for use in computational biology applications. 
FPGAs provide a large number of embedded memory blocks that enable more 
effi cient implementation of DFAs than possible using the FPGA logic fabric. 
Furthermore, the synthesized tile-based design can be reused for different 
peptide sets by simply initializing the RAM block content with appropriate 
bit-split DFA state data. This is much faster than having to rerun the signifi -
cantly time-consuming “placing and routing” synthesis stages required for 
logic-based implementations in FPGA fabric for each new peptide set.

Empirical results presented here show that the FPGA-based implementa-
tion of Aho–Corasik outperforms the workstation implementation by a fac-
tor of 20. This demonstrates that using specialized hardware to solve the 
string set matching problem can make a signifi cant impact on the runtime of 
a number of computational biology processes where exact string matching 
is commonly required. The throughput of FPGA implementation described 
here is essentially limited by the data transfer speed of the ATA disk drives. 
Higher frequency implementations utilizing Serial ATA (SATA) disk drives, 
parallel disk arrays, and gigabit Ethernet interfaces are under investigation 
as part of ongoing implementation efforts and future research.
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This chapter also demonstrates that the signifi cantly smaller string alpha-
bets found in computational biology enable more space-effi cient designs 
for string matching as compared to previously published implementations 
focused on network intrusion detection. Although the case study focused 
on exact string matching, the ACA can also accommodate regular expres-
sions. The implementation described can easily be adapted for other types of 
search using, for example, spaced seeds.

A number of techniques can be used to increase the number of peptides 
that can be searched. A simplest approach is to utilize several devices in 
parallel (note that this also requires the input corpus to be replicated for 
each FPGA). The cost of replicating the corpus for a large number of FPGAs 
can be eliminated by implementing a data streaming interface between the 
separate FPGA boards. Tools to facilitate building such interfaces are typi-
cally provided by the FPGA vendors [31, 32]. Using such an interface, only 
one board needs to be connected to a single disk drive containing the corpus 
while the other boards are connected to each other in a chain using multi-
gigabit-per-second serial links available on many modern FPGA devices. 
This way, the reading frame data can be streamed from the disk drive to 
each board (i.e., as soon as an FPGA board receives a byte of data, it for-
wards the data to the next board in the chain). The runtime complexity of 
this latter implementation is essentially O(m + k + λ), where λ represents the 
cumulative latency of transmitting a single character over the entire chain.
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13.1 Introduction

Computational approaches to the genome-wide identifi cation of transcrip-
tion factor binding sites (TFBSs) have attracted bioinformatics researchers 
[1–3]. Since the UIPAC matching algorithm was fi rst reported in 1991 [4], the 
computational methods have evolved to complex multiple-feature prediction 
frameworks that include phylogenetic footprintings [5], gene expression data 
analysis [6], Bayesian trees and graphs, and so on [7]. Nevertheless, although 
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the previous computational approaches to binding site identifi cation have 
achieved high sensitivity, they have not demonstrated the desired high spec-
ifi city comparable to that of experimental methods [8].

Artifi cial neural networks (ANNs) have been used as an effective tool in 
pattern recognition [9]. Different ANN architectures have been developed 
to date, each with its own domain of applicability and requirements [10]. A 
special ANN architecture, recurrent neural network, is an intelligent com-
putational method of classifi cation especially suitable in the case of partially 
overlapping classes. The applicability of the recurrent neural networks for 
biological sequence analysis has recently been reviewed by Hawkins and 
Boden [11] with the examples of motif recognition and prediction of subcel-
lular localization of peptides. Empirical results obtained by the authors indi-
cate that though the network architecture refl ects the presence of a certain 
bias because of recurrence, properly designed recurrent neural networks 
indeed provide access to the patterns of biological signifi cance. Hopfi eld 
neural network (HNN) is an excellent example of the recurrent neural net-
works. However, as the complexity of the network grows, computational 
time for network training and operation becomes prohibitively long, which 
is often the reason for inaccuracy of such systems. The bottleneck usually 
lies in certain stages of the neural adaption. Reconfi gurable computing, with 
this respect, allows a hybrid architecture with an application-specifi c hard-
ware unit, which outperforms general-purpose processors [12].

In a HNN, the states of the recurrent neural models depend on previ-
ously processed data; hence, massive data parallelism can hardly be imple-
mented. Some parallelism may be achieved when neurons, or groups of 
them, are mapped to different processors for independent computation, 
but such an implementation will incur extremely high communication 
overheads because of frequent function calls for transmitting neuron out-
puts between the processors. The problem of overcommunication and bus 
contentions can be avoided by using the fi eld-programmable gate array 
technology (FPGA), which, in addition to the on-chip parallelism, pro-
vides application-specifi c logic interconnections for data fl ow [13]. In con-
trast to that of distributed computing technologies, the communication 
cost within an FPGA chip is low. A recent review on the state-of-the-art 
in development of on-chip neural networks using FPGA was done by Zhu 
and Sutton [14].

In this chapter, we describe a two-phase neural system for recognition of 
dimeric DNA motifs, and we demonstrate its power by applying the hybrid 
system into genome-wide identifi cation of hormone response elements 
(HREs) in DNA. The fi rst phase is used for sequence-based selection of puta-
tive motifs by the feed-forward neural network (FFNN), and the second 
phase is for structure-based prediction of functional dimers by HNN. We 
have also invented a dynamic adaptation procedure for HNN for robust pre-
diction of the dimeric structure, yielding highly sensitive and reliable motif 
recognition.
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13.2 Design of the Neural System

For design of multiple-feature frameworks and highly specifi c ensemble 
models [15], two or more pattern recognition methods can be designed for 
different properties of the underlying object, and one may outperform each 
single method operating solely by aggregating their predictions. In the pro-
posed two-phase neural system for recognition of dimeric DNA motifs, a 
trained FFNN recognizes putative binding sites that are similar to the pre-
selected set of experimentally confi rmed functional motifs. This fi rst phase 
could be considered as a sequence-based selection. Second, a recurrent neu-
ral network assigns each putative binding site predicted at the fi rst step with 
one of possible dimeric structures (either functional or not functional). The 
rationale behind this structure-based phase is that a sequence is unlikely to 
be involved in dimeric DNA-protein binding if it cannot be assigned with a 
functional dimeric structure [16]. In the following section, the data fl ow for 
modeling dimeric DNA motifs is described.

13.2.1 Numerical Representation of DNA Sequences

The set of putative binding sites to be processed by the two-phase neural 
model consists of a number of DNA sequences in the four-letter alphabet, 
Ω = A C G T{ , , , }. Let 1[ ,..., ]=

G
Lx xu , ∈ Ωjx  ∀ =j L1, ...,  be a DNA sequence of length 

L, and n1{ , ..., }Θ =
G G
u u  be a set of such sequences.

Although we are dealing with the DNA alphabet, the neural models 
require numerical representation of the input data. The space of real num-
bers is one dimensional, and four nucleotide bases cannot be equidistantly 
mapped onto it without introducing artifacts to the model. Thus, for numeri-
cal representation of the DNA alphabet, we use the one-hot encoding scheme 
that operates as follows. The encoding module Σ is a function on the space of 
DNA sequences Θ – ΘΣ Θ → Ξ: , where ΘΞ  is the space of vectors 

G
j  of length 

4L. The elements of this vector are defi ned as follows:

   

i k
i k

if x

otherwise4( 1)

1
1− +

=
= −

ω
ξ

 
(13.1)

where the DNA sequence under transformation is Lx x1[ , ..., ]=
G
u , ∈ Ωjx  

∀ =j L1, ..., , and the DNA alphabet elements are A1 ' '=v , C2 ' '=v , G3 ' '=v , 
T4 ' '=v , 1 2 3 4{ , , , }Ω = v v v v . For example, if ux G 3= = v , then the uth element 

of the sequence is transformed into a four-vector (-1,-1,1,-1)T. Thus, the entire 

DNA sequence 
G
u  undergoes a transformation according to that rule: = Σ

G G
( ).uj  

Thus, the two-phase neural system is forestalled by the encoding module 
ΘΣ Θ → Ξ: . Reverse encoding procedure of the 4L-vectors ΘΣ Ξ → Θˆ :  is per-

formed using Equation 13.1 as well.
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A dimeric motif can be represented in the form of two half-sites with an 
optional spacer in the middle. In the case of partially symmetric motif com-
position, the two half-sites are similar to each other and are usually believed 
to have arisen due to DNA duplication [17]. Moreover, in addition to the 
dimeric nature of the protein–DNA interaction, the dimerization may have a 
different structure, namely, head-to-head, head-to-tail, or tail-to-tail compo-
sition [18], thus providing us a reason to consider different orientations of the 
half-sites for modeling TFBS dimers.

Consider the consensus TFBS dimer with the half-site 
G
y of b base pairs of 

length =
G

by y y1[ , ..., ], ∈ Ωjy , =j b1, ..., , and the spacer cd  of c nucleotides. The 
possible dimeric structures can be represented as follows:

cDR

cIR

cPR

cER

s y y

s y y

s y y

s y y

= ∪ ∪
= ∪ ∪
= ∪ ∪
= ∪ ∪

G G
G H
H G
H H

d

d

d

d  

(13.2)

where y
H
 = [yb, . . . ,y1] represents the reverse of 

G
y. Also, sDR is called a direct 

repeat, sIR is an inverted repeat, sPR is a palyndromic repeat, and sER is an 
everted repeat. The subspace of dimeric structures is therefore defi ned as 

DR IR PR ERs s s s{ , , , }Ψ = , and the HNN : that predicts TFBS dimeric structures 
actually performs the transformation from the space of DNA sequences Θ 
into the space of structures Ψ: : Θ → Ψ: .

The two-phase neural system works as follows:

  
DP HNN ˆ: Σ − Σ

Θ ΨΘ →Ξ →Ξ →Ψ:  
(13.3)

where DP-HNN stands for dynamically programmed HNN, described later.

13.2.2 The FFNN

For prior sequence-based selection of DNA motifs, we do not consider their 
dimeric structure. Instead, we train an FFNN in a supervised manner to dis-
tinguish putative binding sites from surely neural sequences. The output of 
the FFNN phase is a binary signal that indicates whether the input sequence 
is a motif similar to those from the training set or not, although the defi nition 
of required similarity is subject to certain adjustment by a threshold.

For training the FFNN model, back-propagation learning algorithm is 
used [10]. The learning procedure is stopped if either the 99.9% accuracy 
level is exceeded or the maximum number of back-propagation cycles (which 
is at most 5,000) or the error plateau is reached, meaning that no improve-
ment of the training error has been detected by more than 100 of consecutive 
operations.
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13.2.3 The HNN

Hopfi eld network is a neural network where the connections between units 
form a directed cycle, and the output of the network becomes its input in 
an iterative manner [10]. Hopfi eld networks were initially developed for 
sequence recognition tasks in the domain of natural language processing 
[19]. They were also shown to serve effectively as associative memories [20] 
and pattern classifi ers [21–23].

HNNs, like other recurrent neural networks, must be treated differently 
from FFNNs both when analyzing their behavior and when training them. 
The goal of HNN training is to design a discrete system that possesses a spe-
cifi c set of equilibrium points such that when an initial condition is  provided 
the network eventually converges at one of its equilibrium points. The net-
work is recursive in that the output is fed back as the input once the network 
is in operation. Hopefully, the network output eventually settles in one of the 
original design points. Usually, the theory of dynamical systems is used to 
model and analyze HNNs [20].

Let the space of functional dimeric TFBSs be a subspace of all DNA 
sequences. This subspace should be distinguishable from other sequences, at 
least because the respective transcription factors are capable of distinguish-
ing their binding sites from neutral DNA. Thus, we fi nd a set of basis vec-
tors (which should serve as major indicators of a functional dimeric TFBS) 
in this subspace, and then use a HNN with the same basis vectors as stable 
states, for dimeric structure prediction. Convergence of the network from 
its initial condition to a stable state corresponding to a functional dimeric 
structure serves as an indicator whether the input vector belongs to the sub-
space of functional dimers or not. A functional dimeric TFBS that is different 
from the consensus dimer can be considered as a disturbance in the space of 
TFBSs (whose diversity is usually explained by evolution and neutral muta-
tions), and thus should be smoothly converted into one of the basis vectors 
by the trained HNN. Neutral DNA sequences are considered as the elements 
of the complimentary subspace.

The behavior of recurrent neural networks is more like that of an iterative 
process or a dynamical system rather than a neural network in its conven-
tional feed-forward form. The equations that describe the HNN operations 
are defi ned as follows:

    a(0) =
GG
j   (13.4)

  a t F W a t b( 1) ( ( ) )+ = ⋅ +
GG G

  (13.5)

where 
G
j  is the input vector to the HNN, F is the activation function, a t( )

G
 is 

the output vector of the network after tth cycle, W is the matrix of neuron 

10768_C013.indd   28910768_C013.indd   289 6/17/2010   7:56:56 PM6/17/2010   7:56:56 PM



290 Bioinformatics: High Performance Parallel Computer Architectures

weights for the recurrent layer, and b
K
 is the vector of biases of the network. 

Additional requirement that weights are symmetric is set to guarantee that 
the error function decreases monotonically while following the activation 
rules, and the whole system reaches a stable state after a fi nite number of 
learning cycles [24]:

    

da t
dt
( )

0=
G

  
(13.6)

For the problem of dimeric TFBS recognition, the equilibrium points for the 
HNN design are the dimeric structures represented by the Equation 13.2 and 
nonfunctional structures taken from literature, and the HNN is expected to 
reach a stable state, which corresponds to one of those structures with any 
input DNA sequence used as an initial condition. If the network reaches a stable 
state other than that from the set of equilibrium points, or causes infi nite oscil-
lations, then the input DNA sequence is marked as misclassifi ed. Otherwise, a 
certain dimeric structure is attributed to the input DNA sequence.

When the equilibrium points are orthogonal, the problem of describing 
the corresponding HNN can be easily solved by Hebb rule [10]. Otherwise, a 
more complex procedure of HNN synthesis must be used. Accurate numeri-
cal approximation of an iterative discrete machine by a dynamic system was 
proposed by Li et al. [25]. We adapt the proposed approach to learning of the 
HNN that is designed for recognition of dimeric DNA motifs.

Suppose we are given m vectors that represent the asymptotically stable 
equilibrium points for an N-dimensional dynamic system: N

m1 , ..., ∈ℜ
G G
j j . We 

proceed to the HNN learning as follows:

 1. Compute N × (m − 1) matrix Z.

   
m m mZ 1 1, ..., − = − − 

G G G G
j j j j

  
(13.7)

 2. Perform a singular value decomposition of Z and obtain the matrices 
U, V, and S such that Z = USVT, where U and V are unitary matrices, 
and S is a diagonal matrix.

=
G G

LU u u1[ , ..., ]  (13.8)

Let k be the rank of Z (and U correspondingly).
 3. Compute the auxiliary matrices.

+

=

= ∑
k

T
i i

i

T u u
1   

(13.9)
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−

= +

= ∑
L

T
i i

i k

T u u
1  

(13.10)

T T T+ −= − ⋅τ t  (13.11)

τ = − ⋅
G G

m mE Tj jt  (13.12)

where t is a learning parameter. According to the proposed approximation 
theory, the larger the value of t, the less spurious stable states the recon-
structed HNN has. For synthesis of HNNs with more than three stable states, 
a value t ≥ 10 is usually used.
 4. Compute parameters of the approximating dynamic system 

a t h F W a t h b(( 1) ) ( ( ) )+ = ⋅ ⋅ +
GG G

, namely, W and b
K
, as follows:

−
−

 
=  

 

h
k T

h
L k

e I
W U U

e I

0
0 t

 
(13.13)

−
−

 −
 =  −  

G
h

k
T

h
N k

e I
b U U E

e I

( 1) 0
1

0 ( 1) tt

t  

(13.14)

where Ik is the k × k identity matrix. The parameter 0 < h < 1 refl ects the 
asymptotic nature of the procedure, as discrete states of the neural network 
are replaced by continuous values of the dynamic system.

13.2.4 Adaptation of the HNN

In a series of preliminary tests performed using dimeric HREs, we found 
that the HNN model allows eliminating signifi cant amount of false-positive 
predictions [26]. However, the need for exact match in this approach implies 
a rigid correspondence between the input and output vector elements, which 
adds serious artifacts into the modeling process. That is, in the exact-match 
HNN (EM-HNN) we look for the recurrent convergence between the puta-
tive motif and its dimeric structure considering the input and the output 
vectors explicitly matched against each other, similarly to the exact-match 
sequence comparison. However, real biological sequences are exposed to 
short mutations including frame-shifting insertions and deletions (indels) 
that are not always critical for further interaction with proteins [27]. For 
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higher fl exibility of modeling, we incorporate short indels into the dimeric 
structure prediction.

The incitement for the model enhancement comes from the following 
observation: while single nucleotide mismatches are carefully handled 
by the HNN recurrence process, short indels can bring signifi cant distor-
tion into the model. In particular, as a result of an insertion of a random 
nucleotide into the HRE spacer (with no other changes in the rest of the 
HRE sequence), the predicted dimeric structure varies for 14% of functional 
response elements. In addition, when a single nucleotide is deleted from the 
spacer (also with no other changes), the predicted dimeric structure var-
ies for 9% of the training data. Finally, the dimeric structure predicted by 
the trained HNN is affected by a single nucleotide indel within the HRE 
spacer for 18% of functional HREs (119 out of 661 response elements used 
for tests).

These observations motivate us to consider the reliability of the recurrent 
system for sequence analysis more carefully, because from a biological point 
of view such oscillating predictions are meaningless. In particular, the lat-
tice of dimeric protein–DNA interaction is expected not to be infl uenced by 
1-bp difference in the spacer length, even though the binding affi nity may 
indeed change [28]. Thus, the necessity of developing a more fl exible model 
for dimeric structure prediction is confi rmed by the observed lack of robust-
ness when modeling the complex pattern of dimeric motifs. On the other 
hand, single nucleotide substitutions within the half-sites or spacers (1,500 
random nucleotide substitutions in 661 HRE sequences) do not cause pre-
dicted dimeric structures to vary for 99% of functional HREs.

For sequence comparison that has a similar limitation, numerous sequence 
alignment methods are proposed. Dynamic programming provides a global 
optimum for the sequence alignment problem. Although this technique is 
computationally expensive, it guarantees fi nding an optimal solution for any 
given scoring scheme. For the case of long sequences, certain heuristic opti-
mizations are used to decrease space and time complexity. However, when 
dealing with relatively short sequences like protein-binding motifs in DNA, 
we usually can afford exponential space and computational time. That is, 
this approach is particularly useful when a few short sequences need to be 
aligned accurately.

During the HNN operation, single nucleotide substitutions within motif 
sequences are successfully absorbed by the convergence process. Per contra, 
every insertion or deletion inside the sequence causes a frame shift of a half 
of the sequence on average; thus, convergence for the rest of the sequence 
becomes misleading. We overcome this exact-match limitation by inventing the 
method of recurrent dynamic programming similar to that used for sequence 
alignment.

For the problem of dimeric structure prediction by the HNN, the exact 
matching between input and output is per se implied by the weight matrix 
by the input vector multiplication procedure (refer to the Equation 13.5).
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Extending this multiplication, we have the following identity:

   

=

=

⋅ = ∑G L

i j j
j

i N

W a t w a t
4

,
1

1...

...

( ) ( )

...  

(13.15)

where the assumption of jth element of the input vector a t( )
G

 being converted 
into jth element of either SDR or SIR, or SPR or SER dimeric structure is implied 
by the multiplication i j jw a t, ( ) of the jth weight by exactly the jth element of the 
input vector for each ith neuron of the HNN. Thus, every nucleotide inser-
tion or deletion can be treated as a submission of the jth element of the input 
vector to the j shift th( )±  neuron and, therefore, can be represented in the 
form of index shifts for weight vectors for the procedure of multiplication. 
The entire procedure of establishing the best matching between the cur-
rent input sequence and its dimeric prototype is referred to as the recurrent 
alignment.

For the problem of recurrent alignment, the input vector a a a1 2=
G H G∪ ∪v  

is composed of the two half-sites a1

H
 and a2

G
 of length 4(b + 1), and a single 

nucleotide v located in the center. The elements of the half-site vectors are 
numbered starting from the internal nucleotides and, unlike the previously 
described representation of dimeric motifs, we merge two nucleotides of the 
spacer each to the nearest half-site.

The alignments with the two possible orientations of the consensus half-
site 

G
y and y

H
 are performed using predefi ned gap penalties, and the best 

alignment is then selected as a prototype for the input half-site convergence. 
For accomplishing the alignment procedure, for each a2

G
 and a1

H
, two scoring 

matrices are generated

  

y k k

y y a

y h

M k k s a y

M k k M k k g

M k k g

1 21 2

1 2 1 2

1 2

( 1, 1) ( , )
( , ) ( 1, )

( , 1)

 − − +
= − +
 − +

G

G G

G
 

(13.16)

(and similar yMH for the reverse consensus half-site y
L
), where

 

ya
k i k ii i

k k

s
s a y

otherwise
1 2

1 2

4( 1) 4( 1)1..4 1..4
0, arg max arg max

( , )
0,

− + − += =
 > == 


GG
j j

 

(13.17)

and ag 0< , hg 0<  are the gap penalties for deletion and insertion in the input 
vector, respectively.
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Vector y
GG

j  is calculated as follows:

    
y

y( )= Σj
GG G

 (13.18)

where Σ is the DNA encoding module (refer to Section 13.2.1). In Equation 
13.17, equivalence of 

i
arg max functions denotes that the two 4-vectors for 

the considered nucleotide positions have maximums at the same internal 
positions. If the two 

i
arg max functions are equal, the nucleotide element 

of the input sequence is considered as a match with the considered nucle-
otide of the dimeric structure.

In the case study of steroid HREs, the initial conditions are selected so 
that the spacer length of three base pairs is preferred to any other length, as 
it has been shown in numerous experiments for steroid hormone receptors 
[29]. Thus,

   

y

y s

y s

M
M k sp g k
M k g k

(0, 0) 0
( , 0) ( 1)
(0, )

=
= + ⋅ −
= ⋅

G

G

G
 

(13.19)

(and the same for the matrix yMH) where sp 0>  represents a positive score 
for one nucleotide insertion at the beginning of the alignment for each 
half-site. This insertion, when joined with the central nucleotide v and 
a similar insertion from the other half-site alignment, results in an 
exactly 3-bp long spacer. In addition, sg 0<  is the gap penalty for a longer 
spacer.

The resulting alignments for the input half-sites are obtained by tracking 
back the scoring matrices (one of two calculated for each half-site) that have 
the largest values of their last columns and last rows. The resulting align-
ment of the input vector constructed from the alignments of its half-sites is 
then denoted as al t( )

→
. Its length Nal holds the inequality Lal ≤ 2L where L is the 

length of the dimeric motif.
That is, instead of the exact correspondence “jth element of the input ↔ jth 

element of the output,” we obtain a dynamically adaptable correspondence 
between input sequence and its target output structure. The current output 
of the HNN is thus calculated as follows:

  

b

i j deletion j j insertion j
j

i N

W a t w a t
2 1

, 4 ( ) 4 ( )
1

1 ...

...

( ) ( )

...

+

+ +
=

=

⊗ = ∑G

 

(13.20)
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where, the operation ⊗ denotes the “aligned” multiplication; that is, multipli-
cation involving corresponding weight shifts.

Shift indices deletion( j ) and insertion( j ) for the neuron weights are calculated 
from the alignment al t( )

→
 of the input vector a t( )

G
 using the following procedure:

deletion(0) = 0;
insertion(0) = 0;
for (i = 1, i < = L, i++) {

deletion(i) = deletion(i-1);
insertion(i) = insertion(i-1);
if al(i + deletion(i-1)) == ‘deletion’

deletion(i)++;
else if al(i + deletion(i-1)) == ‘insertion’

insertion(i)++;}

In Equation 13.20, we multiply each index shift by 4, as in the one-hot nota-
tion, each nucleotide corresponds to exactly four elements of the network 
input vector.

Figure 13.1 illustrates the procedure of recurrent alignment by the exam-
ple of the right half-site of the input sequence “AAAAAAAAGTAGTTT” 
being aligned with the consensus HRE half-site “TGTTCT.” In this example, 
the insertion and deletion penalties are ga = gh = −2, the long spacer penalty 
is gs = −1, and the consensus spacer and the matching score are s = sp = 2. The 
alignment with one deletion and one insertion, in addition to one insertion 
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Recurrent alignment for HRE input sequence.
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in the expected spacer, is shown. For clarity, the nucleotide bases instead of 
the four vectors are shown. With weight shifts, after the fi rst insertion, the 
second element of the aligned right half-site, namely, T (the fi fth to eighth 
elements of the transformed vector), is an input to the fi rst quartet of neu-
rons for the given half-site (neurons 1–4). After the second insertion, the 
fourth element of the aligned right half-site, namely, T (13th–16th elements), is 
an input to the second quartet of neurons, and so on.

Thus, each HNN operation cycle is accompanied with the recurrent 
alignment procedure of the current input sequence and its targeted 
structure. This architecture provides us with a fl exible dimeric structure 
modeling scheme and is expected to result in robust and hence reliable 
predictions.

Overall, the procedure of recognizing dimeric motifs in DNA is defi ned 
as follows:

 1. Design of the two-phase neural system
 (a) The FFNN with one hidden layer of 40 neurons and the two-

neuron output layer is trained using the set of experimentally 
validated dimeric motifs and the ten-fold set of neutral DNA 
sequences. The output of this network is a two-vector with prob-
abilities of being a functional and a nonfunctional dimer for each 
input. The balance of these two probabilities for the following 
decision-making system is subject to a threshold.

 (b) Given the set of dimeric structures DR IR PR ERs s s s{ , , , }Ψ =  trans-
formed by the encoding module ( )ΨΞ = Σ Ψ , we construct the 
DP-HNN system for dimeric structure prediction. Only positive 
outputs of the previous sequence-based motif selection scheme 
returned by the FFNN are processed by the HNN (unless stated 
otherwise, for example, for speed testing purposes). The output 
of the DP-HNN system for each putative TFBS input is either one 
of four possible dimeric structures, or the “non-dimer” output.

 2. Recognition of motifs

To recognize dimeric motifs in the DNA sequence, we use a sliding 
window of a fi xed length to obtain the stream of DNA subsequences 
that are then processed by the two-phase system.

The recognition process operates as shown in Figure 13.2. First, a 
transformed DNA subsequence ( )= Σ

G G
uj  is submitted to the FFNN 

module, which returns the probability of this subsequence to be a motif 
of interest to the decision-making module. Second, the list of putative 
motifs returned as a result of operation of the FFNN is processed by 
the HNN, and for each sequence, its dimeric or nondimeric structure is 
predicted. The output of the system is either a binary answer for each 
input sequence or a list of predicted dimeric motifs with their annota-
tions if the screening of a long DNA region is performed.
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13.3 Reconfigurable DP-HNN

The bottleneck of our two-phase neural system is identifi ed in the opera-
tion of the DP-HNN. Although the FFNN is trained once and forever, and 
then its operation is a straightforward pass through the sequence of its lay-
ers, the recurrent model requires hundreds of iterations for each input vec-
tor. Software for both EM-HNN and DP-HNN was developed for the second 
phase and run on a multicore IBM server (4 × 3.16 GHz CPUs, 3.25 GB RAM, 
667 MHz system bus). It took approximately 40 minutes to screen only 1 Mb 
of DNA with four parallel threads by the HNN that consisted of 60 neurons 
without involvement of the recurrent alignment, and nearly 50 minutes when 
recurrent alignment procedure was involved. It becomes evident that the soft-
ware implementation of HNNs for genome-wide motif recognition will need 
prohibitive long running time. The dynamic adaptation in the neural opera-
tions further suggests hardware acceleration for the applicable solutions.

We mapped the DP-HNN for HRE structure prediction on an FPGA chip, 
and then used that chip as a coprocessing unit for the two-phase neural 
system. In our implementation, the FPGA coprocessor communicates with 
the host PC via the local bus. The Alpha Data Virtex-4LX160 PCI chip with 
135 168 logic elements (8 M gates) and 288 × 18 kbit RAM blocks was used. 
Alpha Data SDK 4.6.0 API was used for programming the communication 
layer between the front-end application and the on-chip HNN unit. DNA 
sequences that contains either putative motifs predicted by the FFNN mod-
ule or functional motifs from the training set were fed into the DP-HNN, 
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through the DNA encoding module Σ; the resulting vector of bit values, rep-
resenting the one-hot encoded DNA sequence, were sent to the confi gured 
FPGA board. It also obtained the output from the board, and passed these 
data to the decision-making module.

In the following subsections, we describe the technical aspects of our 
HNN circuit design addressing the methods used for effi cient data transfer 
and computations.

13.3.1 Representation of Numerical Values and Operations on FPGA

For implementation of numerical values on FPGA we adapt a fi xed-point 
representation in two’s complement notation. The values of neuron weights 
and outputs are the 32-bit numbers with one sign bit, two integer bits, and 29 
fractional bits. This representation is suffi cient to describe operation of the 
HNN with acceptable precision.

To not exhaust the limited number of logic gates, we use the 32 bit × 32 bit 
multiplications for generation of the synaptic inputs to the neurons, which 
operate in the form of fi nite state machines. Each of these machines regu-
lates the operation of two dedicated hardware 18 bit × 18 bit multiplier units. 
Henceforth, the 32-bit arithmetic operations will be referred to as an adder 
and multiplier, respectively.

13.3.2 Control and Matching Units

The control unit is used for serial processing of the input vector by the HNN 
unit. For this purpose, the control unit dispatches control signals to all other 
units. In particular, the control unit is responsible for sequential process-
ing of data fl ow. At its initial state, the network input is set up. Then, the 
recurrent alignment procedure is performed as described in Section 13.2.4. 
Resulting alignments of the two half-sites are then processed in parallel by 
the two groups of the neuron units. Each group contains four physical neu-
ron units (a neuron quartet) and performs computations for four neurons at a 
time. Each neuron quartet corresponds to a single nucleotide encoded using 
one-hot notation for the DNA alphabet, so the depth of the cycle is equal to 
the length of the half-site of interest.

The verifi cation unit contains an array of 20 × 60 32-bit registers, an oscilla-
tion detection module, and a counter of iterations. Current DP-HNN output, 
which is an array of sixty 32-bit fi xed-point numbers, is placed into one column 
of 20 registers in a cyclic order, so that the set of registers always stores the 
network outputs from the 20 most recent iterations. The oscillation calculation 
module thus computes the relative oscillation of the HNN output during the 
20 consecutive iterations. The HNN iterations are directed to stop by that mod-
ule when the total absolute deviation is less than 1/210 = 1/1,024 ~ 0.1% of the 
output value for all neurons, so we conclude that a stable state is reached. The 
counter of iterations signals a stop when the maximum number of iterations is 
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exceeded. After testing the network operation, we set the maximum number 
of iterations to 10,000, which is a very conservative estimation. Even without 
dynamic programming, which provides a better match and therefore faster 
convergence, we found it to be enough for the HNN to converge with majority 
of the inputs unless a specifi c pattern caused substantial oscillations in the net-
work. The stop signal produced by the verifi cation module causes the whole 
DP-HNN unit to fi nish the processing of the current input. Current output is 
then sent to the PCI bus to the awaiting front-end application, which conveys 
to it the user interface or to the decision-making scheme.

The recurrent alignment procedure is performed by the matching unit 
shown in Figure 13.3. It obtains the input vector, performs the procedure of 
alignment for its half-sites, and returns an array of weight index shifts that 
are used for further processing of the vector by proper HNN neurons. An 
input vector is preprocessed by the preprocessing unit (PPU on the fi gure), 
which defi nes the indices of maximum elements for each consecutive four 
elements (thus defi ning a particular nucleotide base encoded by them), and 
only then these indices are used.

Inside the matching unit, the two identical half-site processing modules 
perform the recurrent alignment procedure for the two consensus HRE half-
sites, each for one of its orientation, namely, the direct (left part of the fi gure) 
or the inverted (right part of the fi gure). To decrease the number of registers 
for sequence representation, consensus vectors are stored in the chip mem-
ory and never changed during the network operation. Each half-site process-
ing module uses two 6-bit addressed RAM sections. One RAM section stores 
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the alignment scoring matrix M and the other one stores the trace-back array 
D for reconstructing the resulting optimal alignment.

A fi nite state machine regulates the succession of scoring matrix calcula-
tions. Although it is possible to implement alignment score matrix in linear 
space [32], we are dealing with the iterative process so it is more important 
to minimize the time latency. That is, our implementation of the recurrent 
alignment procedure consumes space quadratic to the length of the half-site, 
as it is affordable for the case of relatively short HRE motifs. However, such 
an implementation permits simultaneous calculation of two matrix elements 
at a time: the cell (i,j) and its symmetric cell (j,i), which are contoured with 
bold in Figure 13.3. In addition, the initial matrix values, which are stored in 
its fi rst row and fi rst column, can be fi lled simultaneously if we use the gap 
penalties of degrees of two, thus avoiding costly multiplications.

The total latency of the half-site alignment procedure for an input of length 

n is therefore 
n n

n
( 1)

2 2 1
2
++ + − . Specifi cally, two sequential operations are

required for the input preprocessing, and they are parallelized with one 
operation of initialization of the scoring matrices; n n( 1)/2+  operations are 
required to compute both alignment scoring matrices of size n × n, and 2n – 2 
operations are needed to select the maximum values from their last columns 
and rows. Finally, at most 2n operations are required to reconstruct the result-
ing alignment using the trace-back matrix D. For the HRE half-site of length 
6, the latency of the alignment module is at most 52 calculation cycles.

Outputs of each half-site processing module are the best alignments of the 
half-sites and their scores. Then, a multiplexer controlled by a selector picks out 
the alignment with the highest score, and the downstream processing module 
returns the best alignment in the form of index shifts for neuron weights.

13.3.3 Neuron and Memory Units

The main part of the on-chip HNN consists of the neuron units that are con-
nected to the memory unit. The memory unit stores the neuron weights, as 
well as current and initial input and output vectors.

The neuron unit is implemented using several types of calculations, 
namely, the adder, the multiplier, and the register. Inside the neuron unit, 
two consecutive elements of the input vector and the appropriate weight val-
ues are multiplied at a time using two 32 bit × 32-bit multiplier modules oper-
ating in parallel. Thus, the latency of the neuron unit operation is half of the 
input vector length. The unit’s addressing scheme required for communica-
tion with the memory unit uses the index shifts for neuron weights returned 
by the matching unit. The computed weighted inputs for the neurons are 
stored in the memory registers, and then summed up into the synaptic input 
of the neuron. The output of the neuron is computed from its synaptic input 
using its activation function. In our implementation, we use a linear approxi-

mation of the sigmoid function 
x

x

e
F x

e0

1
( )

1

−

−

−=
+

. The approximation is used to
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avoid calculations of actual sigmoid, which requires series of multiplications 
and at least one division. Instead, we use a combination of linear curves with 
slopes of 1/2, 1/4, and 1/8. Thus, the resource-consuming multiplication and 
division operations are replaced by “cheap” register shift operations.

Four instances of the neuron unit are used in parallel in each of the two 
parts of the on-chip HNN, so the total amount of neuron units involved is 
eight. Each part of HNN processes the input half-site. Inside each part, after 
a neuron quartet is calculated (the end of calculation is reported to the con-
trol unit by a handshake signal), it is replaced by the next four of a total 24 
for each of the HRE half-sites.

The memory unit stores the weight values for the neurons and the outputs 
of the neurons. It is also used for storing the 20 recent HNN outputs used for 
oscillation measurements, the initial input, weight index shifts, and the iter-
ation counts. These data are read or written according to the commands of 
the control unit. As we have 48 neurons in the HNN, there are 48 × 48 32-bit 
weight values. Therefore, we need the 12-bit addressing scheme. Verifi cation 
unit stores 20 × 60 32-bit values and requires 11-bit addressing scheme.

13.3.4 Operation of DP-HNN

The operation of the on-chip DP-HNN system is mainly divided into three 
functional units: the matching unit, the actual HNN unit, and the verifi ca-
tion unit. Figure 13.4 shows the confi guration of the DP-HNN from the point 
of view of digital data processing.

The top-level control is performed by the counter of iterations. The top-
level control is performed by the counter of iterations, which determines the 
following:

When the counter of neurons should be reset to zero,• 
Whether a vector has to be put into the system as its initial input,• 
Which register of the verifi cation unit contains the oldest output, • 
and
Whether the maximum number of iterations is exceeded and the • 
iteration is terminated.

The counter of neurons is reset before the HNN iteration starts, and then 
it regulates the succession of neuron quartets processing, as well as decides 
which values of weights must be selected from memory using the corre-
sponding weight index shifts.

The operation of the HNN is implemented by eight identical physical neu-
ron units grouped into two sections, and the memory. The neuron unit per-
forms sum-of-products operations for calculation of neuron synaptic inputs 
at its run mode. Two groups of four input elements are processed in series. 
That is, eight physical neuron units emulate 48 neurons as required by our 

10768_C013.indd   30110768_C013.indd   301 6/17/2010   7:57:09 PM6/17/2010   7:57:09 PM



302 Bioinformatics: High Performance Parallel Computer Architectures

HNN-based HRE recognition model. The weight values, inputs, and outputs 
are read from or written to the distributed memory.

Summary of the ensued implementation for the ADM Virtex-4 chip is as 
follows:

  Logic elements:  101,696 of 135,168 (75%)
  RAM:  960 Kbit of 5,184 Kbit (19%)
  I/O pins:  101 of 960 (11%)
  DSP slices:  48 of 96 (50%)

13.4 Application to Dimeric Protein Binding Site Identification

13.4.1 The Biological Problem

Steroid hormone receptors are transcription factors that exist in the cyto-
plasm or nucleus [33]. Connection of a hormone molecule results in an 
allosteric change of conformation of the receptor (the process known as “an 
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activation of a receptor”) that raises affi nity of the receptor’s DNA-binding 
domain to DNA, thus allowing the receptor to bind to specifi c parts of DNA 
molecule inside a nucleus and to adjust transcription of cis-linked genes. 
Cellular mechanisms are described in detail for only a modest number of 
known target genes of steroid hormone receptors [34,35]. However, steroid 
hormones are clearly involved in the expression regulation of a considerable 
number of genes about which not enough is known [36].

With a few exceptions [33], DNA-binding domain of a steroid hormone 
receptor molecule interacts with an HRE that is composed of two half-sites 
separated by a short spacer. Response element’s half-sites can occur in differ-
ent orientations while interacting with zinc-fi ngers of a hormone receptor’s 
DNA-binding domain [37–39]. Consensus DNA sequence of the half-site is
known to be HREh =

G
 TGTTCT. With reference to notation from Section 13.2, 

the four possible structures of HRE are

  

HRE HREDR sp sp sp
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(13.21)

where sp sp sp1 2 3[ ]v v v  stands for the 3-bp-long spacer ( sp i, ∈ Ωv , ∀i = 1,2,3). 
These consensus HRE structures and six non-HRE sequences (taken from 
the experimental papers by Thackray et al. [40] and by Lieberman et al. [27]) 
were used as ten equilibrium points for the HNN design.

We use the on-chip implementation of DP-HNN for two different pur-
poses. First, it is used to classify functional HREs from the collected dataset 
to fi nd any interesting trends and to test the applicability of the approach 
for the general problem of modeling symmetrically structured weak TFBS 
signal. Second, the on-chip DP-HNN is used as a part of a two-phase neural 
system for TFBS recognition with the aim to estimate its ability to eliminate 
false-positive predictions.

The collection of progesterone, glucocorticoid, and androgen response ele-
ments used for the current project has been described earlier [29]. In short, it 
contains seven hundred experimentally verifi ed binding sites for androgen, 
glucocorticoid, and progesterone nuclear receptors collected from biomedi-
cal literature. For an HRE to be accepted into the collection, a convincing 
experimental evidence was required, namely, validated binding in vitro or 
confi rmed mediation of gene expression by transfection assay.

13.4.2 Dimeric Structure of HREs

When estimating predictive capabilities of the developed neural system, we 
tested both the dynamically adaptable and the exact-match versions of the 
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HNN. In addition, as the set of possible dimeric and nondimeric structures is 
predefi ned, the HNN model can be considered as a sequence classifi er; thus, 
we performed k-means classifi cation of the same set of HREs for comparison. 
Unlike the HNN classifi er with fi xed stable states, the k-means procedure 
iteratively adjusts the set of its centroids, so that the cumulative variance for 
these centroids and the points in the dataset is eventually minimized. That 
is, for the procedure of k-means classifi cation, instead of fi xing the class cen-
troids we set the possible dimeric structures as starting points for centroid 
adjustment.

The results of the three classifi cation procedures for the set of functional 
HRE sequences are shown in Table 13.1. In this table, the fi rst column is the 
total number of HREs for a given steroid hormone receptor (namely, proges-
terone, glucocorticoid, or androgen receptor). In the second column, we list 
the possible HRE dimeric structures for each of the groups. The next col-
umns show the results of dimeric structure prediction by a given classifi er 
for the HRE group.

As shown in Table 13.1, the three hormone receptors demonstrate differ-
ent preferences toward the dimeric structure of their response elements on 
DNA. The difference between the distributions of predicted HRE structures 
for ARE, PRE, and GRE is statistically signifi cant (p value < 10–4) for k-means 
clustering, and for Hopfi eld-based classifi cation as well (p value = .007). 
However, this fi nding is not unexpected, as a similar observation that AREs 
have stronger preferences toward the IR structure has already been reported 
by Reid et al. [41] and Claessens et al. [42].

To estimate the robustness of the dynamically adaptable neural model, we 
performed a series of tests where single nucleotides were inserted to or deleted 
from the spacers and half-sites of the HRE sequences. We observed that one 
indel within the HRE spacer caused variation of structure prediction returned 
by the EM-HNN for 18% of HREs, while for the DP-HNN this variation was 
3%. In addition, one indel within half-sites was critical for 7% of predictions 
made by the EM-HNN, and for 1% of predictions made by the DP-HNN.

However, in spite of these fi ndings, there still exists a small group of HREs 
that are highly different from other known HREs and cannot be robustly 
assigned with the conserved confi guration, that is, the six nucleotide repeats 
with a three nucleotides spacer, although all of them have been convincingly 
proved to be functional (reviewed in [43]). If those outlying HREs are not 
false positives, then the nature of their interaction with the hormone recep-
tor’s DNA-binding domains should be considered more carefully.

In addition, for both EM-HNN and DP-HNN, we have estimated the 
median numbers of iterations required for reaching a stable state (medi-
ans were used instead of means because absence of oscillations during the 
convergence process could not be guaranteed while the mean value would 
be heavily affected by a single instability). For the EM-HNN, the average 
median number of iterations is 480, and for the DP-HNN it is 400 for all 
experimentally validated HREs.
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13.4.3 Two-Phase Neural System for HRE Prediction

The receiver operating characteristic (ROC) curves were tracked on each step 
of HRE prediction; ten-fold cross-validation was used for estimating the pre-
diction accuracies and their variances. For the two-phase prediction and for 
the FFNN itself, the point of the ROC curve with the smallest Euclidean dis-
tance from the 100% accuracy point was selected as a cutoff where the sen-
sitivity and the specifi city values were collected. However, when the FFNN 
was used as a fi rst phase of prediction followed by the HNN, lower threshold 
values were used to enlarge the set of putative HREs for further validation. 
The results of HRE prediction tests are summarized in Table 13.2.

For HRE prediction, the fi rst phase of machine learning is awakening the 
trained FFNN that selects HRE-like sequence patterns. For the FFNN step, 
the prediction sensitivity value was found to be as high as 98% (i.e., 15 among 

TABLE 13.1

Predicted Structures for Androgen (ARE), Glucocorticoid (GRE), and Progesterone 
(PRE) Response Elements with Exact-Match Hopfi eld Neural Network (EM-HNN), 
Dynamically Adaptable Hopfi eld Network (DP-HNN), and k-Means Classifi er

EM-HNN DP-HNN k-Means

HRE Structure N % N % N %

DR 35 53.0 32 48.5 26 39.4
PRE IR 1 1.5 2 3.0 5 7.6
total: PR 24 36.4 27 40.9 20 30.3
66 ER 3 4.5 4 6.1 12 18.2

non-HRE 3 4.5 1 1.5 3 4.5

DR 225 59.7 210 55.7 134 35.5
GRE IR 3 0.8 7 1.9 26 6.9
total: PR 90 23.9 124 32.9 127 33.7
377 ER 28 7.4 22 5.8 62 16.4

non-HRE 31 8.2 14 3.7 28 7.4

DR 94 43.1 93 42.7 33 15.1
ARE IR 1 0.5 5 2.3 55 25.2
total: PR 65 29.8 67 30.7 69 31.7
218 ER 52 23.9 51 23.4 40 18.3

non-HRE 6 2.8 2 0.9 21 9.6

DR 354 53.6 335 50.7 193 29.2

∩ IR 5 0.8 14 2.1 86 13.0

total: PR 179 27.1 218 33.0 216 32.7
661 ER 83 12.6 77 11.6 114 17.2

non-HRE 40 6.1 17 2.6 52 7.9

Note: N denotes number, and % is percentage of total.
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661 HREs were always misclassifi ed), combined with the specifi city of 1:6 Kb. 
The DP-HNN allowed increasing the specifi city level to 1:7.1 Kb, while the 
sensitivity was kept at the reliably high level of 96% (6% or 9% of PREs, 37% 
or 10% of GREs, and 9% or 4% AREs, or total 52 HREs, were misclassifi ed).

Note the two interesting observations in Table 13.2. First, the area under 
curve (AUC) for HRE prediction by solely FFNN is better than that for the 
two two-phase systems. Although the AUC metric treats type-I and type-II 
errors equally, if this is the case for a particular task, the user certainly would 
prefer the approach with better AUC. However, for the TFBS prediction 
problem, a high false-positive rate is always a big challenge, so we prefer to 
consider the approach with possibly lower AUC, as it provides lower false-
positive rate, rather than a generally superior one.

Second, for HRE prediction by the neural networks, we have the AUC val-
ues that are nearly equal to the products of corresponding sensitivity and 
specifi city. That is, the ROC curves have rectangular shapes, and therefore, 
there is no actual trade-off between the type-II and type-I errors. Indeed, 
neural networks usually converge to particular answers within machine pre-
cision for most inputs, so there is little chance for any threshold-mediated 
balance. If the selection of one particular error type is of greater importance, 
then it may be reasonable to use another pattern recognition method that 
allows for more user-defi ned accuracy trade-off, such as those exploiting the 
statistic models [29].

13.4.4 Performance of the Hardware-Accelerated System

To evaluate the speedup gained because of using the FPGA-based hardware 
acceleration, we developed a software version of the same HNNs (for both its 
exact-match and dynamically adaptable versions). C applications were tested 
using a four-core IBM server. We also implemented the software versions of 
the HNNs with both one thread and four threads being processed in parallel 
by four central processing units (CPUs). The FPGA on-chip clock frequency 
was set to 100 MHz.

TABLE 13.2

Accuracy of Two-Phase Hormone Response Element Prediction Tool

Neural 
Network

Misclassifi ed 
HREs

Sensitivity, 
%

Specifi city, 
kbp–1

Prediction Rate 
on Human 

Genome (NCBI 
Genbank 

#36.2), kbps–1 AUC

FFNN 15 98 ± 4.4 5.84 ± 0.78 7.28 0.98 ± 0.04
FFNN™EM-
HNN

52 92 ± 2.3 7.29 ± 1.13 8.15 0.92 ± 0.03

FFNN™DP-
HNN

25 96 ± 2.6 7.08 ± 1.21 8.14 0.96 ± 0.03
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Table 13.3 confi rms a nearly 50× speedup of the hardware-accelerated ver-
sion versus the single-threaded software implementation, and a 10× speedup 
versus the high-performance software implementation. It is interesting to 
note that software implementation of an HNN may require less operation 
cycles to converge even though the models implemented in hardware and 
software are essentially the same. An explanation is that software imple-
mentations written in high-level programming languages exploit the 64-bit 
fl oating point numbers, although the FPGA solutions use fi xed-point number 
representation with 32 bits and thus introduce additional imprecision into the 
calculations.

13.5 Discussions

Transcription factor binding site recognition, although is conceptually a 
well-understood task, has some very challenging constraints. The typically 
short length of TFBSs poses a big problem as it signifi cantly increases their 
chances to occur randomly. Hence, high false-positive rate has always been 
a limiting factor for precise TFBS recognition. The possible solution for elim-
inating the excessive false-positive predictions is to design multiple-feature 
recognition schemes refl ecting the specifi c characteristics of a particular 
binding site or a family of those.

Special cases of structured motifs, the inverted and direct repeats, could be 
recognized by both prokaryotic [44] and eukaryotic [16] transcription factors. 
We designed and evaluated a novel computational method for prediction of 
dimeric DNA motifs and developed original hardware-accelerated imple-
mentation of the proposed two-phase neural system. Using the case study of 
steroid HREs, it has been found that random expectation of motif prediction 
by our two-phase system is at least 7.1 kbp–1 combined with 96% sensitivity. 

TABLE 13.3

Performance of HNNs Implemented with Use of Virtex-4 FPGA and 4-Way IBM PC

 Processing Time (sec) of

Hopfi eld Neural 
network Implementation

Training Set of 
661 HREs 1Mb of DNA

V-4 FPGA 0.46 485
EM-HNN C++ 4 threads 2.47 3,000

application 1 thread 10.15 10,500
V-4 FPGA 0.49 540

DP-HNN C++ 4 threads 2.81 3,400
 application 1 thread 11.36 12,500
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For real genomic sequences the prediction rate is even better, such as 8.1 
kbp–1 for the human genome [43].

Considering the extensive dataset of HRE sequences that currently has no 
analogs, our fi ndings are indeed promising. For comparison, the results of 
the TRANSFAC-based TFBS prediction experiments provided by Rahmann 
et al. [45] can be used. In that paper, the authors show that specifi city level 
higher than 99% can be achieved for only 43 TFBS profi les (i.e., 7%) among 
623 used for testing. Some profi les of high interest in practice like nuclear-
receptor binding sites are not included into the high-quality group. All other 
profi les reside below the specifi city level of 0.99, which is fairly trivial because 
the corresponding prediction rate is as low as 1 hit per 0.1 kb.

The most reliable algorithm for prediction of dimeric binding sites 
reported to date for the superfamily of vertebrate nuclear receptors is the 
nuclear hormone receptor binding site prediction (NHR)-scan. The algo-
rithm exploits hidden-Markov model specifi cally adapted for recognizing 
the dimeric structure of its input motifs [46]. The authors report a specifi city 
of one match per 5 kb versus a sensitivity of approximately 50%, and one 
match per 1 kb accompanied with a sensitivity of 85%; the former values are 
more indicative because for the problem of prediction lower false-positive 
output is usually of higher priority.

For the structure prediction by the recurrent neural network enhanced with 
dynamic adaptation, we found that it works well for most of the functional 
HREs, and provides robust results in case of short frame-shifting mutations. 
However, there exists an unsolved issue that the system may fall into oscil-
lations if a chimerical motif is encountered. For such a motif, one-half of the 
sequence half-site comes from one orientation of the consensus half-site, and 
the other half from its reverse form. We met at least two experimentally vali-
dated examples of such chimerical HREs identifi ed in the promoter regions 
of vertebrate genes: a progesterone response element with the right half-site 
AGTACT (compare with the HRE consensus TGTTCT and its reverse form 
AGAACA) is known to be involved in the regulation of rabbit uteroferrin gene 
[47], and the same androgen receptor–responsive DNA sequence acts in the 
promoter area of rat probasin gene [48]. Such cases are marked by our two-
phase system as false negatives and will require more careful investigation 
in future.

Software implementation of the HNN enhanced with dynamic program-
ming, when applied for genome-wide analysis, could cause prohibitively 
long execution time as can be seen from the performance results summa-
rized in Section 13.4. In particular, processing of 1 Mb of DNA takes hours 
with one computational thread, and nearly 1 hour with four parallel threads 
when tested on a very powerful PC. Nowadays, having gigabytes of anno-
tated DNA, running HNNs in software becomes impossible. Hardware-
accelerated implementation of the most computationally expensive phases 
of motif prediction process should help to benefi t by the trade-off between 
speed and accuracy. In particular, a well-designed parallel FPGA architecture 
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provides access to the best possible precision and reveals the potential of the 
recurrent neural solutions in full.

The main challenge of our FPGA design is fi nding the balance between 
bit and node parallelism to reach the best overall performance and keep the 
applicability to the chosen domain given the implementation constrains. 
In the current implementation, we process the input vector using eight 
physical neuron units, and each unit involves four embedded multipliers. 
However, we may trade the time effi ciency for more complex activation rules 
to improve the numerical precision. In particular, we use 29 fractional bits 
for number representation and thus obtain the imprecision of up to –10–8 per 
HNN iteration. For the case of steroid HREs, that error is not critical because 
the number of iterations does not exceed the level of 500 for most inputs. 
However, if we now consider more complex motif patterns, it may result in 
signifi cantly worse HNN convergence. In turn, longer convergence leads to 
resulting error that cannot be negligible any more.

Involving dynamic adaptation of the HNN recurrence we resolve a very 
challenging issue of motif prediction, namely, incorporation of short indels 
within the half-sites and especially within the spacer of dimeric motifs. 
Properly designed DP-HNN carefully carries short mutations including both 
indels and substitutions, thus making structure prediction more sensible.

In conclusion, we have developed a novel dynamically adaptable neural 
architecture for recognition of dimeric DNA motifs, and demonstrated its 
performance using the case study of steroid HREs. Our two-phase predic-
tion framework provides access to robust and biologically meaningful pre-
dictions, while the invented FPGA architecture guarantees the applicability 
of the proposed approach to genomic scale.
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14.1 Introduction

In the aftermath of the successful completion of the sequencing of the 
human genome, which highlighted the surprising fact that humans have 
only approximately 20,000–25,000 protein-coding genes [1], hardly enough 
to explain the complexity gap between humans and the lowly round worm 
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whose genome boasts approximately 19,000 protein-coding genes, the focus 
of biological research has rapidly shifted to the study of the encoded proteins. 
Proteins, which are the main workhorses in our cells, acting as molecular 
motors, catalysts, structural elements, signaling messengers, and defensive 
agents, are the key to understanding fundamental biological mechanisms 
in cells and tissues, from development to aging and disease. In the postge-
nomic phase of molecular biology, novel high-throughput proteomic tools 
and technologies have been developed to study proteins expressed in tis-
sues, cells, and organelles, leading to an explosive growth in the volume of 
proteomics data.

The vast diversity of proteins, dynamic range of expression, and inter-
action make the identifi cation of the entire proteome a computational 
challenge that is more complex by several orders of magnitude than the 
sequencing of the genome [2]. The advances in mass spectrometry (MS) 
technology have played a key role in the extraordinary growth of the pro-
teomics research fi eld and have revolutionized protein analysis [3]. MS, 
which started being used for biological applications in 1950s [4], is today 
a fundamental tool for protein identifi cation [3]. The state-of-the-art MS 
instruments available today, which have acquisition rates of up to 200 
spectra per second, enable scientists to carry out large-scale proteomic 
studies that routinely generate tens or even hundreds of gigabytes of com-
plex, multidimensional datasets, and allow the simultaneous identifi ca-
tion of hundreds or even thousands of proteins present in complex protein 
mixtures.

Postinstrument data processing is already a major bottleneck in proteom-
ics workfl ow and is expected to get worse given the importance of MS-based 
proteomics in modern biology. An unprecedented growth of proteomics 
data over the next decade is forecasted to escalate further the demand for 
computing power, outstripping the expansion in supply predicted by the 
celebrated Moore’s law. Conventional workstations based on low number of 
multicore processors are unlikely to deliver the speed that will be required 
to analyze such large volume of data, so high-performance computing (HPC) 
resources are essential to address the analysis bottlenecks. Grid computing 
technology could in principle help meet this challenge [5]. However, for the 
grid implementation of a proteome sequence similarity search algorithm 
using the Ensembl database of protein sequences, the performance gains 
reported—60 fold speed increase using 600 CPUs [6]—are far from spec-
tacular relative to the signifi cant power consumption, maintenance costs, 
and fl oor space used. For comparison, the implementation of Allegro, a 
computer program for multipoint linkage analysis based on hidden Markov 
models on the same grid achieved a signifi cantly better speedup: 455-fold 
for 600 grid nodes [7]. This algorithm, however, does not involve any data-
base searching. A preliminary grid-based implementation of protein iden-
tifi cation algorithms based on tandem MS data is presented in [8] but the 
study provides no information on the performance gains achieved. It is 
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worth highlighting the generic limitations of computational grids that may 
have prevented, so far, the large-scale adoption of grid solutions for protein 
identifi cation involving database searching: (1) the job submission process 
on the platform is usually complex and diffi cult to automate; (2) high paral-
lelization is hampered by resource brokering and job-scheduling time; (3) to 
maximize performance, the database has to be split and distributed across 
the nodes of the cluster, which introduces a signifi cant computational over-
head; (4) there are large variations in processing times caused by variations 
in load and network latency. In addition, processing of MS data is best per-
formed “near-instrument,” where the end user has the option of adjusting 
the search strategy according to results obtained in real time. In this context, 
relying on grid computing or dedicated computer clusters may not be the 
best solution for protein identifi cation. Equally dedicated high-performance 
computer clusters require a signifi cant amount of infrastructure to deal 
with interconnectivity and power dissipation. It has been argued [9] that 
more effi cient HPC solutions are necessary to mitigate the costs of housing 
and powering the next-generation petascale and larger high-performance 
computer systems, which are expected to be prohibitive for many institu-
tions and programs.

This work advocates the use of reconfi gurable computing, as an alterna-
tive approach to conventional HPC, for a specifi c bioinformatics problem 
in proteomics, namely, protein identifi cation based on MS, using database 
searching.

14.2 The Reconfigurable Computing Paradigm

Reconfi gurable computers consist of a standard microprocessor system 
coupled with hardware processors whose circuitry can be programmed 
(and reprogrammed) according to the algorithm that is being run. The 
idea of reconfi gurable computing originated in the 1960s [10]. In a seminal 
paper [11] Estrin proposed the concept of a computer made of a standard 
processor and an array of “reconfi gurable” hardware. The introduction of 
high-density fi eld-programmable gate arrays (FPGAs) in the 1990s made 
reconfi gurable computing possible. FPGAs are de facto the reconfi gurable 
processors in almost all current reconfi gurable computing platforms. 
Modern FPGAs can be programmed to run a custom digital hardware 
design providing the fl exibility afforded by a conventional computer pro-
gram. To fully understand the signifi cant advances made in this area the 
reader is referred to the excellent books [12, 13] that are amongst the fi rst 
comprehensive surveys and tutorials in the fi eld of FPGA-based recon-
fi gurable computing.
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Since their introduction in 1985, FPGAs have continuously expanded their 
use from being the ultimate prototyping platform and providing basic “glue 
logic” functionality to being at the heart of complex digital systems in a wide 
range of application areas ranging from telecommunication, automotive, 
aerospace, and defense to biomedical and HPC. The remarkable success of 
these devices is attributed to the inherent advantages offered by the paral-
lel programmable architecture, which allows designers to exploit algorithm 
and instruction-level parallelism to accelerate computations and to add or 
modify features and functionality provided by an existing FPGA-based sys-
tem by reconfi guring the device. The tremendous increase in gate densities 
and lowering of unit costs and the development of more sophisticated and 
user-friendly design tools have also been determining factors to skyrocket-
ing demand for FPGAs in recent years.

Because of the widening spectrum of applications for FPGA devices, mod-
ern FPGAs have evolved to include specialized programmable blocks such 
as embedded RAM, dedicated DSP structures, embedded microprocessors, 
system monitoring functions, digital clock managers, and fast serial trans-
ceivers. Moreover, to satisfy diverging user demands device manufactur-
ers such as Xilinx have followed a new strategic route of creating a family 
of FPGA platforms [14] that have been optimized for particular application 
domains.

As the static random access memory (SRAM)-based FPGA manufacturers 
are amongst the earlier adopters of new digital-CMOS manufacturing pro-
cesses, in recent years FPGAs have advanced at a faster pace than micropro-
cessors, the latest devices offering unprecedented performance and density 
gains with speeds on average 30% faster and a logic capacity 65% greater 
than previous generations. The latest devices have as many as 1.2 billion 
transistors and allow the implementation of a few thousand conventional 
microcontrollers on a single FPGA chip.

Despite the availability of high-level design software, the diffi culties of 
mapping an algorithm in hardware are still considerable, as FPGA develop-
ment tools were designed for electronics hardware engineers and require 
in-depth knowledge of hardware design languages (VHDL, Verilog) and 
digital electronics. The emerging high-level design tools, whilst offering a 
great level of abstraction, still require a fair amount of manual optimization; 
hence low-level design knowledge is still essential. Moreover, because there 
is no standard RC architecture, most common design tools do not target spe-
cifi c FPGA boards and as a result designs have to be mapped manually on 
the chosen RC platform. This cannot be achieved without a detailed under-
standing of the architecture of the hardware system.

In biocomputation, early applications of FPGA devices addressed the gene 
sequence analysis problem [15] and have been successfully employed to 
speedup DNA sequencing algorithms [16–21]. FPGAs were also used in the 
attempt to accelerate search of substrings similar to a template in a proteome 
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[22]. A multiple sequence alignment solution has been implemented in FPGA 
hardware by [23] and FPGAs have been used to accelerate sequence database 
searches with MS/MS-derived query peptides [24]. FPGA-accelerated basic 
local alignment search tool (BLAST) search algorithms have been developed 
and used, for example, to perform expressed sequence tag (EST) sequencing 
[25]. More recently, the Aho-Chorasick string set matching algorithm was 
implemented in FPGA hardware and used for matching peptide sequences 
against a genome translated in six reading frames [26].

14.3 Protein Identification by Sequence Database 
Searching Using Mass Spectral Fingerprints

14.3.1 Overview of the Approach

MS is a powerful technique for chemical characterization, which has become 
the central tool of proteomics [3]. In protein identifi cation, mass spectrom-
eters do not deal with intact proteins but with their constituent peptides gen-
erated by proteolytic digestion. The mass spectrometer ionizes the peptides 
in the experimental sample producing charged ions that are directed to the 
mass analyzer where they are separated according to their mass-to-charge 
ratio (m/z) and ultimately detected.

Proteolytic enzymes with site-specifi c cleavage properties are used to pro-
duce a subset of predictable peptide fragments. The resulting peptide mix-
ture is typically analyzed by matrix-assisted laser desorption/ionization 
time-of-fl ight (MALDI-TOF) mass spectrometer. The resulting spectral map 
is used to perform protein identifi cation.

Peptide mass fi ngerprinting (PMF) is an established protein identifi cation 
technique that is predicated on the assumption that the detected pattern of 
proteolytic peptide masses provides a quasi-unique signature for every pro-
tein in the database. The computations associated with the PMF approach 
can be divided into two distinct stages:
 (a) Process the raw MALDI-TOF MS data to extract a spectral peptide 

fi ngerprint, which is a subset of the experimentally generated “peak 
list.”

 (b) Find the best matching protein by correlating the experimental 
mass fi ngerprint with theoretical peptide maps generated by in silico 
digestion of protein sequences from a database of known proteins.

Both stages of computation have been implemented as dedicated hardware 
processors [27–30].
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14.3.2 Abstract Computational Model

Proteins can be modeled mathematically using the concept of weighted 
strings [31–33].

Let Σ = {A,C,D,E,F,G,H,I,K,L,M,N,P,Q,R,S,T,V,W,Y} be the 20-letter alphabet 
corresponding to the naturally occurring amino acids. Let μ:Σ→IR be a func-
tion assigning to each character s∈Σ its mass or weight μ(s). The pair (Σ,μ) 
is called a weighted alphabet with character mass function μ. The letters of 
the alphabet Σ “spell out” peptide or protein “words.” A peptide or protein 
can be represented as length-n weighted strings sS s( , )=m m  over (Σ,μ) where 

( )is s= s is( )=m m , i = 1, . . . ,n. Polypeptides of specifi c sequence for which n > 
50 amino acid residues are usually known as proteins.

The mass of a peptide or protein of length n is given by

     i
i

m S s
1

( ) ( )
=

= ∑m m  (14.1)

After a protein has been synthesized by the cell, it often suffers further “nat-
ural” chemical (so-called posttranslational) modifi cations, such as phosphor-
ylation and glycosylation, that often have functional roles. There are also 
“accidental” modifi cations, such as oxidation or modifi cations carried out 
deliberately during experiment phase. These modifi cations typically result 
in changes of the amino acid masses.

A modifi cation that is applied universally, to every instance of the speci-
fi ed amino acid for example, is known as a fi xed modifi cation. Fixed modifi ca-
tion can be described in terms of modifi ed weighted alphabets (Σ, mK), where 
mK is the modifi ed mass function corresponding to the K-type modifi cation.

In reality, however, it is possible that not every instance of an amino acid 
has suffered a modifi cation. This can be described by considering a modi-
fi ed weighted alphabet (Σ, mK) where mK:Σ × Γ→ IR is a probabilistic function 
that assigns to every character s in Σ a random variable mK(s,γ), where γ∈Γ is 
a possible outcome and P(γ) denotes the probability associated with the ele-
mentary events. For example, if we consider a single modifi cation, γ = 1 if the 
amino acid residue is “modifi ed” or γ = 0 if “unmodifi ed.”

14.3.3 Cleavage Rules

Proteolytic enzymes or proteases will break down a protein by cleaving 
the peptide at specifi c points, for example, after the occurrence of a spe-
cifi c amino acid residue. Each proteolytic enzyme can be associated with 
a set of cleavage rules. Table 14.1 shows examples of cleavage site rules for 
some of the most commonly used proteases. In this table, the amino acid 
residues of the N-terminal side of the scissile bond are noted as P1,  P2  and 
the residues of the C-terminal side are noted as P P' '

1 2,  (Figure 14.1) in line 
with the Schechter and Berger nomenclature for the description of the pro-
tease subsites [34].
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Trypsin is by far the most commonly used enzyme in MS studies because 
each proteolytic fragment contains a basic arginine (R) or lysine (K) amino 
acid residue that is abundant and well distributed, yielding peptides of 
molecular weights that can be analyzed by MS. A model for the cleavage 
behavior of a proteolytic enzyme E has been proposed in [33]. As an alter-
native model, more suitable in the present context, we introduce a cleavage 
function defi ned on the space of three-letter substrings i i i i is s s s, 2 1 2+ + +=  of s , 
over the alphabet Σ, such that

    i i E
E i i

i i E

     s J R
c s

i      s R

3
, 2

, 2
, 2

0 if \
( )

if
+

+
+

 ∈=  ∈
 (14.2)

where zero means that no cleavage occurs, i indicates that the cleavage 
occurs after character si, J3 is the set of all possible three-character strings 
over the alphabet Σ, and RE⊂J3 is the subset of cleavage patterns associated 
with enzyme E.

The application of the cleavage function (2) to a string S = s1 . . . sn of length n, 
produces an ordered set of all possible cleavage points

n n

E E i i E i i
i i

C S l k l k c s l k l k l k k c s
2 2

, 2 , 2
1 1

( ) ( ) ( ) { ( )}, ( ) ( 1), ( ) 0, 1, ..., { ( )} 1
− −

+ +
= =

 = ∈ < + ≠ = − 
 

∪ ∪m

 
        (14.3)

Scissile bond

C-Terminal
P2 P1 P1’ P2’

N-Terminal

FIGURE 14.1
Illustration of the notation used to for cleavage sites.

TABLE 14.1

Examples of Cleavage Site Rules 

Enzyme P1 P1’ P2’ 

Arg-C R X X 
Asp-N X D X 
Chymotrypsin 1 F,Y,W X X 
Chymotrypsin 2 A,L,M,F,Y,W X X 
Glu-C 1
Glu-C 2
Lys-C
Trypsin
Thermolysin
CNBr
Formic acid 

E
D,E
K
R, K
X
M
D 

X
X
X
not P
A,I,L,M,F,V
X
P 

X
X
X
X
not P
X
X 
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The “digestion” of the string S generates the following fragmentation set 
(peptide map):

{ } { }k l k l k
l k l kE l k l k E ES F S s l(k), l(k ) C S k C S   ( ), ( 1)
( ) 1, ( 1)( ) 1, ( 1)( ) ( , ) 1 ( ), 1,..., ( ) 1+

+ ++ += = = + ∈ = −m m mF  
 (14.4)

where l k l ks s ...s( ) ( 1)+=  denotes the k-th fragment of s  (i.e., a substring s of 
between two successive cleavage points).

In practice, if enzymatic cleavage is not complete, not all adjacent peptides 
may separate. Assuming that one missed cleavage site has occurred, the cor-
responding fragmentation set is given by,

 
{ }l k l k

E E ES S l(k), l(k ) C S k C S -1   ( ), ( 1)
,1( ) 1 ( ), 1, ..., ( )+= + ∈ = ∪m m mF

  { }l k l k
E ES l(k), l(k ) C S k C S -2( ), ( 2) 2 ( ), 1, ..., ( )+ + ∈ =m m m  (14.5)

Typically, when searching the database, up to two missed cleavage sites 
are allowed but, for best results, one missed cleavage site seems to be the 
optimal choice. Each additional missed cleavage in the search increases 
the search space and reduces the signifi cance level of the matches found as 
the probability of getting random matches increases. Using more than the 
two cleavage sites implies that the quality of the enzymatic digestion was 
really poor and really begs the question of whether the experiment should 
be repeated.

Assuming no PTMs- and p-missed cleavage sites to the fragmentation set 
of a protein string Sm digested with an enzyme E we can associate the follow-
ing set of corresponding fragment masses (the peptide mass map):

  { }k j k j
E p E pM S m F F S j p, ,

, ,( ) ( ) ( ), 0, ...,= ∈ =Fm m m m  (14.6)

If fi xed modifi cations are specifi ed, the peptide map is computed using

   
n

K
i

i

m S s
1

( ) ( , ), 1
=

= =∑m m g g   (14.7)

In this case, we still have KE p E pS M S, ,( ) ( )=F m m ; that is, the size of mass set 
equals the number of protein fragments.

However, if a modifi cation is assumed to be variable (may or may not be 
present at a particular location), the mass of a peptide is a random variable, 
so that all possible arrangements of that modifi cation have to be considered, 
during searching, for every peptide fragment. For example, if an amino acid 
s ∈ Σ is assumed to undergo a variable modifi cation, for a peptide km F( )m
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of length l containing three s residues, the following masses have to be 
computed:

l
k

i
i

m F s
1

( , 0) ( )
=

= ∑m m

k k K km F m F s s m F s( ,1) ( , 0) ( ( ) ( ,1)) ( , 0) ( )= − − = − ∆m m mm m m

k k K km F m F s s m F s( , 2) ( , 0) 2( ( ) ( ,1)) ( , 0) 2 ( )= − − = − ∆m m mm m m

  
k k K km F m F s s m F s( , 3) ( , 0) 3( ( ) ( ,1)) ( , 0) 3 ( )= − − = − ∆m m mm m m  (14.8)

These correspond to the cases in which we have 0, 1, 2, or 3 modifi ed res-
idues. As a consequence, the size of the theoretical peptide masses corre-
sponding to a single protein can increase dramatically, especially if more 
than one variable modifi cation is specifi ed.

14.3.4 Protein Identification by Spectral Matching

Protein mass fi ngerprinting involves comparing an experimental peptide 
mass fi ngerprint; that is, a list of r mass queries X = {x1, . . . ,xr}, with the theo-
retical peptide mass map ME(Sμ) computed in silico for every protein Sμ,j string 
in the database.

All algorithms used to perform the protein identifi cation task implement 
in essence a Bayes statistical decision rule with the goal to minimize/max-
imize the cost/benefi t of incorrect/correct classifi cation. A Bayes classifi er 
may assign an unknown peptide mass fi ngerprint pattern X to a protein if

  , , , ,

1 1

( | ) ( | ),
= =

<∑ ∑m m

N N

i j i i k k
i i

P S X P S X� �  ∀k≠j (14.9)

where N is the total number of proteins in the database and ξj,k is the cost 
of wrongly assigning a mass fi ngerprint of a protein Sj to a protein Sk. For 
simplicity ξi,k can be assumed to be 1 for all k ≠ i and 0 when k = i. A practical 
score or discriminator function can be defi ned by approximating the proba-
bility functions iP S X,( | )m  for all proteins in the database.

A rough approximation is given by the number of theoretical peptide 
masses in a protein that match the experimental mass fi ngerprint. An exact 
match between xi is found km F( )µ

 if

    
k

ix m F( )= m  (14.10)
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If we take into account mass accuracy R (expressed in ppm) of the instru-
ment, an approximate match is found if

   
L k H
i ix m F x( )≤ ≤m  (14.11)

where L
ix  and H

ix  are positive lower and upper tolerances

   L H
i i i i

R
x x x x

R R

6

6 6

(1 2 /10 ) 1
;

(1 /10 ) (1 /10 )
−= =
− −

 (14.12)

The basic score provides a distorted approximation of iP S X,( | )m . Specifi cally, 
it does not take into account the frequency of occurrence of each peptide in 
the database; the measurement accuracy; the individual properties of each 
protein searched Si, such as theoretical number of peptides generated by frag-
mentation and the total mass of the protein; or the fact that the sample that 
is analyzed may be a mixture of two or more proteins. Whilst the MOWSE 
[35] or MASCOT [36] scoring schemes, which incorporate information about 
the frequency of peptides from all proteins in the database within a molec-
ular weight range, are superior to the naïve scoring scheme, it still does not 
account for the individual properties of the proteins analyzed. A compre-
hensive Bayesian scoring approach, which accounts for all factors listed ear-
lier, can deal with protein mixtures and can incorporate additional a priori 
information about the experimentally observed peptides, is implemented by 
ProFound (http://prowl.rockefeller.edu/prowl-cgi/profound.exe). The algo-
rithm used by ProFound is described in detail in the paper by Zhang and 
Chait [37].

Whilst the basic score alone is not ideal, it has to be computed to implement 
more sensitive scoring functions. To decide the most likely protein match, the 
score has to be computed for all proteins in the sequence database. To have 
an idea of the computational challenge, it is worth mentioning that UniProt, 
the largest protein database in the world, currently holds a total of almost 9 
million sequence entries covering 204,373 species, with the largest known 
protein consisting of 34,350 amino acids.

14.4 Reconfigurable Computing Platform

The hardware processors described in this paper were implemented on a 
commercial off-the-shelf (COTS) multi-FPGA reconfi gurable hardware plat-
form, consisting of a BenNuey motherboard and a BenDATA DIME-II mod-
ule from Nallatech Ltd. (www.nallatech.com).
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The BenNUEY board is a full-length PCI DIME-II motherboard that  houses 
a Xilinx Virtex-II XC2V8000 FPGA and 4 Mbytes on-board RAM, providing 
substantial on-board FPGA resource for processing and system manage-
ment. In our application, this FPGA has been used to implement the mass 
spectra processor that is described elsewhere [28].

The communication between the PC server and the FPGA system, via a 
standard PCI interface (32 bits, 33 MHz), is handled by a second, smaller 
FPGA (Xilinx Spartan-II) on the motherboard. The motherboard has three 
DIME-II expansion slots, which allow users to confi gure additional system 
resources to meet processing, memory, and input/output (I/O) require-
ments. The BenDATA DIME-II module has one user FPGA device (Virtex-II 
XC2V8000) and 1 GB of DDR SDRAM memory organized in four banks with 
a 64-bit wide data bus each. The total data bus width is 256 bits. Each module 
is connected with the motherboard FPGA and with the other two modules 
via a 64-bit, 40-MHz local bus. This architecture enables the implementation 
of parallel searches at FPGA level as well as across modules. The block dia-
gram of the FPGA system is shown in Figure 14.2.

An important factor that has to be considered when choosing an FPGA 
platform is the communication overhead associated with data transfer 
between PC and device, which should represent only a fraction of the 
actual execution time. For a known reconfi gurable computing platform it is 
possible to evaluate at this stage the actual communication costs incurred 
by transferring data between hardware and software. This aspect is a 
major decision factor in the selection of the FPGA system best suited for 
an application.

The reconfi gurable computing platform adopted in this work is well suited 
for this particular bioinformatics application. More specifi cally

 (a) The FPGA module used to implement the database search engine 
(BenData DD) provided suffi cient on-board memory to hold the 
entire database, allowing the entire database that is to be searched 
to be stored in local memory, resulting in very low communication 
overhead.

 (b) The architecture of the module allowed data transfers between 
memory and FPGA on a 256-bit-wide channel at 100 MHz so that 
multiple proteins could be streamed out from the memory and pro-
cessed in parallel by individual search processors programmed on 
the FPGA fabric.

 (c) The hardware system offers the fl exibility to implement distributed 
search strategies by adding additional modules.

The code selected to run in hardware should ideally have low data depen-
dency, to facilitate parallel implementation. Fingerprint matching, for exam-
ple, can be performed in parallel on different database partitions. Because the 
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number of proteins in the database is very large, the potential for speedup is 
huge, given the right FPGA platform.

The design of the present implementation of the database search engine 
has been optimized to exploit this particular RC hardware architecture. In 
particular, the implementation is scalable so that the system performance 
can be easily increased by incorporating additional search modules and dis-
tributing the database across different modules.

Basically, a motherboard equipped with three search modules is able to 
deliver a match three times faster than a single module motherboard. Each 
system (box) can be scaled up easier by adding up additional FPGA mother-
boards (two to four motherboards per “box” for example). Furthermore, for 
the ultimate performance, a FPGA “cluster” could be set up by interconnect-
ing two or more FPGA computing boxes. Considering the fact that single 
database search module can deliver the performance of hundreds or even 
thousand of conventional single-core microprocessors, a “cluster” FPGA 
protein identifi cation system could easily deliver more computational power 
than even some of the largest HPC in operation today.

The complete FPGA-hardware solution for PMF, which incorporates a raw 
mass spectra processor and a parallel search engine, is presented in the fol-
lowing sections.

14.5 Protein Sequence Database FPGA Search Engine

The database search engine [28] traces the peptide fi ngerprint back to the 
originating peptide by matching it against the expected (theoretical) peptide 
masses obtained by digesting in silico—on the fl y—all protein sequences in 
the database.

To maximize database search speed, the initial search engine has been con-
fi gured as a set of 48 identical search processors that can process database 
records (encoded protein streams) in parallel. The search processors operate 
at a clock rate of 100 MHz, which is dictated by clock frequency of the 1-GB 
on-board DDR SDRAM.

14.5.1 Database Encoding

The protein sequence databases such as MSDB, the database used in this 
study, are in fact fl at text fi les. To fully exploit the benefi ts of FPGA acceler-
ation, the entire MSDB database was encoded using 28 symbols coded on 
fi ve-bit words. Of the 28 symbols, 20 symbols were required to encode the 
constituent amino acids, 6 were additional standard symbols adopted in 
the FASTA format, and 2 symbols were used to mark the end of a protein 
sequence and the end of the database. By encoding the database using only 
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fi ve-bit “characters,” the database size was reduced by approximately 40%. 
The encoded database occupies approximately 680 MB of the total 1-GB DDR 
SDRAM memory installed on the module.

The encoded database was loaded on the local on-board memory of the 
BenDATA module in a format that facilitates fast parallel searches. The data-
base was divided into 4 × 12 = 48 data streams of consecutive records for par-
allel processing. Each data stream contains a variable number of complete 
protein sequences and the unused memory locations, which could not hold 
an entire protein sequence, were padded with zeroes (Figure 14.3). In this 
format, each memory module can supply synchronously 12 × 5-bit wide data 
streams to 12 search processors that connect to the output of that random 
access memory (RAM) bank.

Storing the database in the local module memory eliminates a signifi cant 
memory access bottleneck that would be caused, if the protein database 
were stored in the computer memory, by the relatively slow PCI interface.

However, the most signifi cant reason for encoding and storing the protein 
database in the local memory is that it enables parallel processing of pro-
tein sequences. In the current implementation there are 48 protein sequences 
that are streamed out, in parallel, from the memory as shown in Figure 14.4. 
Each protein sequence is processed sequentially by a search processor imple-
mented in the module’s FPGA.

14.5.2 Database Search Processor

Each search processor has two major functional blocks, an in silico protein 
digestion unit and a scoring module. These blocks perform the following 
basic operations:

 (a) The digestion unit computes the theoretical peptide masses [5] for 
every protein in the database by in silico digestion [2].

 (b) The scoring unit compares the user supplied experimental masses 
with the theoretical peptide masses [10, 11] generated by the diges-
tion unit, computing for each protein the matching score; that is, the 
number of matched peptide masses.

14.5.2.1 Digestion Unit

Each search processor reads a fi ve-bit code every clock cycle from the corre-
sponding memory column and passes it to the digestion unit. The digestion 
unit is responsible for calculating the peptide masses according to the user-
defi ned digestion rule/parameter (Figure 14.5).

For every clock cycle, the digestion unit calculates the cumulative mass 
of the amino acids received from the database until it encounters a cleavage 
pattern [2], a protein sequence delimiter or the end-of-database marker. The 
theoretical masses of individual amino acids, used to compute the peptide 
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masses, are stored in a lookup table as 32-bit (12 bits after the radix point) 
fi xed-point numbers. In this implementation, fi xed PTM rules are handled 
implicitly. The lookup table is loaded with the modifi ed amino acid residue 
masses, according to the PTMs specifi ed by the user.

14.5.2.2 Variable Modifi cations

To deal with variable modifi cations, the current design has additional regis-
ters and control logic compared with the original design [28].

One additional register stores the codes of the amino acids that are modifi ed. 
Another register is used to store the corresponding s( )∆m values [7]. If a var-
iable modifi cation is specifi ed, when a processor encounters a cleavage point, 
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FIGURE 14.3
Structure of the encoded database stored in one DDR SDRAM memory bank.
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the input FIFO is disabled and no more data is streamed out from it, until the 
digestion unit that encountered the cleavage point computes the additional 
masses required [7]. The number of additional clock cycles inserted equals 
the number of possible distinct modifi cations that have to be evaluated; that 
is, the number of affected amino acid residues in that peptide.

Because of the increased complexity of the design, only 36 processors that 
implement variable modifi cations could be fi tted on the FPGA. From a com-
putational point of view, variable modifi cations are costly, as the parallel 
computation fl ow is broken every time a cleavage site is encountered. This 
problem can be signifi cantly alleviated by distributing the database across 
different search modules.

14.5.2.3 Scoring Unit

The scoring unit calculates the number of peptide masses in the peptide mass 
fi ngerprint that are matched for every digested protein in the database. The 
user can specify the matching error tolerance R (ppm) in [11], which refl ects 
the accuracy of the mass spectrometer and other known sources of errors.
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When the digestion unit detects a cleavage point, the computed theoretical 
mass km F( )m  of a peptide fragment is transferred to a bank of comparators.

The theoretical peptide map is compared in parallel with the experimental pep-
tide mass fi ngerprint X = {x1, x2,  . . . , xr), generated by the mass spectra processor.

For the implementation evaluated here r=13. However, the design could 
be easily modifi ed to increase the number of m/z query values, at the 
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expense of increasing the complexity of the design of individual search 
processors that will consume more FPGA resources. Effectively, the num-
ber of processors that can be allocated on current FPGA device (Xilinx 
XC2V8000) will be smaller. However, as the logic capacity of the latest 
FPGA devices (e.g., Xilinx Virtex 5 family) has increased dramatically 
compared with the device used in this implementation. In this situation, 
the complexity of the design can be increased without compromising on 
performance. Moreover, because of the parallel nature of the computa-
tions, the entire database can be divided into distinct subsets and loaded 
on separate BenDATA modules.

If a match is found, the score counter is incremented by one. The position 
of a match is also recorded in an n-bit match index word. When the end of a 
record is found, the record index counter, the score counter, and the match 
index register outputs are stored in intermediate registers.

Each search processor has four outputs: (1) the index of the matched pro-
tein, (2) the corresponding protein score, (3) a fl ag indicating that the index 
and score output can be written in the output FIFO, and (4) a fl ag that indi-
cates that the processor has reached the end of the corresponding database 
segment. The user can specify a score threshold τs so that the record and 
match indexes are stored in the output FIFO only if the score is higher than 
the specifi ed threshold τs.

Results of the 48 search processor are collected in dual port RAM devices 
organized as FIFO structures of 64 words of 38 bits each. When all search 
processors reached the end of the database segment, a global fl ag indicating 
that the search engine has completed processing is set and the results are 
transferred on the PC server side.

The basic score is normally used to implement more sensitive scoring schemes 
that account for peptide frequency distributions such as MOWSE [35], PIUMS 
[38], or more comprehensive Bayesian scoring approaches that also account 
for the individual properties of the proteins analyzed such as ProFound [37]. 
Because of the low speedup gain expected from a hardware implementation, 
these scoring methods have been implemented in software and run on the 
PC server post-FPGA processing. The externalization of the scoring statistics 
means that the output of the search can be rapidly evaluated using different 
scores and even developed into a consensus score validation scheme.

The design includes all necessary control and FIFO structures that imple-
ments a 64-bit wide data transfer between the FPGA devices at a rate of 320 
MB/s. In general, the development of a complete reconfi gurable computing 
solution involves signifi cant low-level programming for designing control 
and synchronization modules to manage data transfers between the hard-
ware processors running on different FPGAs, between the FPGA system and 
the host PC, and between FPGAs and the on-board memory modules.

The 48-processor search engine occupies 99% of the FPGA’s logic resources, 
99% of the FPGA’s internal RAM resources, and 53% of the FPGA’s I/O 
resources.
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14.6 Performance Evaluation

Performance evaluations of the FPGA implementation were carried out using 
both single and dual (single core) 3.06 GHz Xeon processor servers with 4-GB 
RAM under Windows XP Professional [28]. In this study, the performance 
of the 48-processor database search engine is compared with that of a dual 
quad 3.16 GHz Intel Xeon server with 4 GB of RAM running Windows 2003 
Server operating system.

The MSDB database was encoded and loaded in the local 1-GB DDR 
SDRAM module memory. The database contains 3,239,079 records with 
1,079,594,700 effective code letters. If the additional separator codes are 
included the encoded database requires 1,082,833 779 symbols. It is impor-
tant to emphasize that the MSDB database used here is no longer actively 
maintained, being last updated on August 8, 2006. It now contains only a 
fraction of the currently known proteins.

Performance evaluation was carried out using a reference C program that 
models the exact computational fl ow implemented by the hardware design. 
In tests, the output results of both the software and FPGA implementation 
of the database search engine were identical. For the current comparative 
study, the C program was run on a Dual Quad Core 3.16 GHz Intel Xeon PC 
server as well as on a single (single core) 3.06 GHz Xeon server.

The performance of both software and hardware (FPGA) designs were 
assessed using randomly selected database records that were digested in 
silico using trypsin digestion rules. In each case, the search was carried out 
using 13 query peptides (m/z values) selected randomly from the theoret-
ical protein digests. The processing time for the software implementation 
accounts only for the main computational loop after all variables have been 
initialized.

The FPGA system performs a complete database search in 240(±0.02) ms 
while the completed average processing time for the C implementation is 
approximately 3.92 minutes.

As seen in Figure 14.6, the speed gain of the FPGA over the C software 
implementation running on a dual quad processor server is still signifi cant. 
Figure 14.7 shows comparatively the speed gains relative to single and dual 
quad processor systems. The average speed gain on the dual quad processor 
system is 982.77 (standard deviation = 14.9). This compares with an aver-
age of 1,805 (standard deviation = 50.66) when the software was run on the 
single-core processor system.

The results show that the latest multiprocessor systems have narrowed 
the performance gap but, although the number of cores has increased 
from one to eight, the dual system manages to be only twice as fast as the 
single-core machine. Moreover, the comparison is somehow “unfair” as 
the FPGA platform used in this study is based on very “old” 2004 Virtex-II 
technology.

10768_C014.indd   33110768_C014.indd   331 6/17/2010   7:57:52 PM6/17/2010   7:57:52 PM



332 Bioinformatics: High Performance Parallel Computer Architectures

1030

1020

1010

1000

990

980

970

960

950
0 5 10 15 20 25

Simulations

Sp
ee

d 
ga

in

30 35 40 45 50

FIGURE 14.6
Speed gains of FPGA versus C implementation.

2000

1800

1600

1400

Sp
ee

d 
ga

in

Simulations

1200

1000

800
0 5 10 15 20 25 30 35 40

Single 3.60 GHz Intel Xeon server
Dual Quad Core 3.16 GHz Intel Xeon server

45 50

FIGURE 14.7
Speed gains of FPGA versus C implementation run on single/dual quad processor servers.

10768_C014.indd   33210768_C014.indd   332 6/17/2010   7:57:52 PM6/17/2010   7:57:52 PM



Parallel FPGA Search Engine for Protein Identifi cation 333

Acknowledgments

The authors gratefully acknowledge that this work was funded by BBSRC. 
The authors are also grateful for the support received from Xilinx Inc. who 
donated the devices and design tools used in this study.

14.7 References

 1. Stein L. D. (2004), Human genome: End of the beginning, Nature 431, 915–916.
 2.  Naaby-Hansen S., Waterfi eld M.D., Cramer R. (2001),  Proteomics—Post-genomic 

cartography to understand gene function, Trends in Pharmacological Sciences, 22, 
376–384.

 3. Hugh L., Arthur J.W. (2008), Computational methods for protein identifi cation 
from mass spectrometry data, PLoS Computational Biology, 4, 1553–7358.

 4. Beynon J.H. (1956), The use of the mass spectrometer for the identifi cation of 
organic compounds, Microchimica Acta, 44, 437–453.

 5. Krishnan A. (2004), A survey of life sciences applications on the grid, New 
Generation Computing, 22, 111–126.

 6. Andrade T., Berglund L., Uhlén M., Odeberg J. (2006), Using Grid technology 
for computationally intensive applied bioinformatics analyses, In Silico Biology, 
6, 495–504.

 7. Andrade J., Andersen M., Sillen A., Graff C., Odeberg J. (2007), The use of grid 
computing to drive data-intensive genetic research, European Journal of Human 
Genetics, 15, 694–702.

 8. Quandt A., Hernandez P., Kunzst P., Pautasso C., Tuloup M., Hernandez C., 
Appel R.D. (2007), Grid-based analysis of tandem mass spectrometry data in 
clinical proteomics, Studies in Health Technology and Informatics, 126, 13–22.

 9. El-Ghazawi T., Bennett D., Poznanovic D., Cantle A., Underwood K., 
Pennington R., Buell D., George A., Kindratenko V. (2006), Is high-performance 
reconfi gurable computing the next supercomputing paradigm? Proceedings of 
the 2006 ACM/IEEE Conference on Supercomputing, Tampa, Florida. doi:10.1109/
SC.2006.38.

 10. Estrin G. (1960), Organization of computer systems—The fi xed plus variable 
structure computer, Proc. Western Joint Computer Conf., New York, pp. 33–40.

 11. Estrin G. (2002), Reconfi gurable computer origins: The UCLA fi xed-plus-variable 
(F+V) structure computer, IEEE Ann. Hist. Comput, 24, 3–9.

 12. Gokhale M.B., Graham P.S. (2005), Reconfi gurable computing: Accelerating compu-
tation with Field-Programmable Gate Arrays, Springer.

 13. Hauck S., Dehon A. (2008), Reconfi gurable computing: The theory and practice of 
FPGA-Based Computation, Elsevier.

 14. Xilinx. (2009), Virtex 5 family overview. DS100, Xilinx Inc.
 15. Fagin B., Watt J.G., Gross R. (1993), A special-purpose processor for gene 

sequence analysis, Computer Applications in the Biosciences, 9, 221–226.

10768_C014.indd   33310768_C014.indd   333 6/17/2010   7:57:53 PM6/17/2010   7:57:53 PM



334 Bioinformatics: High Performance Parallel Computer Architectures

 16. Hughey R. (1996), Parallel hardware for sequence comparison and alignment, 
Computer Applications in the Biosciences, 12, 473–479.

 17. Wozniak A. (1997), Using video-oriented instructions to speed up sequence 
comparison, Comput Applied Bioinformatics, 13, 145–150.

 18. Guerdoux-Jamet P., Lavenier D. (1997), SAMBA: hardware accelerator for 
biological sequence comparison, Computer Applications in the Biosciences, 13, 
609–615.

 19. Lavenier D. (1998), Speeding up genome computations with systolic accelerator, 
SIAM News 31, 1–8.

 20. Guccione A.S., Keller E. (2002), Gene matching using Jbits, Proceedings of the 
Reconfi gurable Computing Is Going Mainstream, 12th International Conference on 
Field-Programmable Logic and Applications, 1168–1171.

 21. Simmler H., Singpiel H., Männer R. (2004), Real-time primer design for DNA 
chips, Interscience Concurr. Comput.: Pract. Exper. 16, 855–872.

 22. Marongiu A., Palazzari P., Rosato V. (2003), Designing hardware for protein 
sequence analysis, Bioinformatics, 19, 1739–1740.

 23. Oliver T., Schmidt B., Nathan D., Clemens R., Maskell D. (2005), Using recon-
fi gurable hardware to accelerate multiple sequence alignment with ClustaIW, 
Bioinformatics, 21, 3431–3432.

 24. Anish T.A., Dumontier M., Rose J.S., Hogue C.W.V. (2005), Hardware-accelerated 
protein identifi cation for mass spectrometry, Rapid Communications in Mass 
Spectrometry, 19, 833–837.

 25. Panitz F. et al. (2007), SNP mining porcine ESTs with MAVIANT, a novel tool for 
SNP evaluation and annotation, Bioinformatics, 23, 387–391.

 26. Dandass Y.S., Burgess S.C., Lawrence M., Bridges S.M. (2008), Accelerating string 
set matching in FPGA hardware for bioinformatics research, BMC Bioinformatics, 
9, doi: 10.1186/1471–2105-9–197.

 27. Bogdan I.A., Coca D., Rivers J., Beynon J.R. (2007), Hardware acceleration of 
 processing of mass spectrometric data for proteomics, Bioinformatics, 23, 724–731.

 28. Bogdan I.A., Rivers J., Beynon J.R., Coca D. (2008), High-performance hardware 
implementation of a parallel database search engine for real-time peptide mass 
fi ngerprinting, Bioinformatics, 24, 1498–1502.

 29. Bogdan I.A., Coca D., Beynon J.R. (2009), Peptide mass fi ngerprinting using 
fi eld-programmable gate arrays, IEEE Transactions on Biomedical Circuits and 
Systems, 3, 142–149.

 30. Coca D., Bogdan I.A., Beynon R.J. (2009), A high-performance reconfi gurable 
computing solution for peptide mass fi ngerprinting, In Proteome Bioinformatics, 
Series: Methods in Molecular Biology, 604, Hubbard, Simon J.; Jones, Andrew R. 
(Eds.), Humana Press.

 31. Edwards N., Lippert R. (2002), Generating peptide candidates from amino-acid 
sequence databases for protein identication via mass spectrometry. In Proc. of the 
2nd International Workshop on Algorithms in Bioinformatics (WABI), 68–81.

 32. Cieliebak M., Erlebach T., Liptak Z., Stoye J., Welzl E. (2004), Algorithmic com-
plexity of protein identifi cation: combinatorics of weighted strings, Discrete 
Applied Mathematics, 137 (1), 27–46.

 33. Kaltenbach H.M., Sudek H., Böcker S., Rahmann S. (2005), Statistics of cleav-
age fragments in random weighted strings. Tech. Rep. TR-2005–06, Technische 
Fakultät der Universität Bielefeld, Abteilung Informationstechnik, http://
bieson.ub.unibielefeld.de/volltexte/2006/900/.

10768_C014.indd   33410768_C014.indd   334 6/17/2010   7:57:53 PM6/17/2010   7:57:53 PM



Parallel FPGA Search Engine for Protein Identifi cation 335

 34. Schechter I., Berger A. (1967), On the size of the active site in proteases. 
Biochemical and Biophysical Research Communications, 27, 157–162.

 35. Pappin D.J., Hojrup P., Bleasby A.J. (1993), Rapid identifi cation of proteins by 
peptide-mass fi ngerprinting, Current Biology, 3, 327–332.

 36. Perkins D.N., Pappin D.J.C., Creasy D.M., Cottrell J.S. (1999), Probability-based 
protein identifi cation by searching sequence databases using mass spectrome-
try data, Electrophoresis, 20, 3551–3567.

 37. Zhang W., Chait B.T. (2000), ProFound: An expert system for protein identi-
fi cation using mass spectrometric peptide mapping information, Analytical 
Chemistry, 72, 2482–2489.

 38. Samuelsson J., Dalevi D., Levander F., Rögnvaldsson T. (2004), Modular, script-
able and automated analysis tools for high-throughput peptide mass fi nger-
printing, Bioinformatics, 20, 3628–3635.

10768_C014.indd   33510768_C014.indd   335 6/17/2010   7:57:53 PM6/17/2010   7:57:53 PM





Index 

Note: Italicized page numbers refer to figures and tables. 

ABYSS, 140 
Affine gap penalty function 

computing alignments, 61-62 
and DP for optimal pairwise 

alignment, 10-12 
global pairwise alignment with, 5 

Affine scoring scheme, 5 
Agility, hardware description language 

(HDL) tools, 56 
Aho-Corasick algorithm (ACA) 

operating frequencies of, 279 
utilization of 

preprocessing phase, 266-267 
string set matching, 266 

Aho-Corasick preprocessing phase, 
266-267 

DFA construction, 268-269 
failure links addition , 267-268 
keyword tree data organization, 

266-267 
Aho-Corasick tile 

architecture of 275 
implementation with k tiles, 275, 

276 
Aligning longer sequences, parallel 

communication scheme 
tiling scheme for, 65-66 

direct memory access (DMA) 
transfers under, 66 

Alignment, meaning of, 161 
Alignment algorithms, 207 

basic local alignment search tool 
[BLAST], 2,56,143,158,183, 
249,317 

Needleman-Wunsch algorithm, 6 
Smith-Waterman algorithm, 56,60, 

63,157,158,162,164,194,249, 
250, 251,252 

ALLPATHS, 140 
Altera Excalibur, commercial hybrid 

platforms, 52 
Altera FPGAs, 274 

ANSI X9.9,235 
banking systems, possible attacks on, 

238-239 
challenge-response authentication, 

based on, 236 
cryptanalysis of, 237-238 

cost-performance figures, for 
attacking, 241 

Application programming interface 
(API), 229 

CUDA C-language compiler, 32 
Application-specific integrated circuit 

(ASIC) design, 50,264 
Architecture and Programming, FPGA, 

49-50 
computing, need for, 50-51 
computing architecture, 52-54 
developmental tools, 54-56 

Area under the curve (AUC), 306 
Artificial neural networks (ANNs), 286 
ATA disk drives, 280 
Automated EDA tools, 54 

B 

"Badly shaped" datasets, 88 
devising new algorithmic concepts, 

challenges in, 110 
vs. "wellshaped" datasets, 88 

Bank indexing process, parallel seed-
based algorithm, 186-188 

subset seed AcGL in, 187 
Basic and straightforward grid mapping 

method, 125 
Basic linear algebra subprograms 

(BLAS) package, levels of, 
40-41 

Basic local alignment search tool 
(BLAST), 249,317 

algorithm 
query and reference sequence, 

160,161 
as replacement of Smith-

Waterman algorithm, 158 

A 



338 Index 

Basic local alignment search tool 
(BLAST), (Cont.) 

bioinformatics tool, 2 
stages of, 23 

dynamic programming methods 
and, 183 

FPGA implementations of, 56 
and PLAST, 197-198 
position-independent scoring 

parameters and, 207 
Basic local alignment search tool 

for deoxyribonucleic acid 
(BLASTN), 143,162,165,166, 
176-177 

comparison with BLASTP, 24,162, 
165.174 

DNA database search, 2 
gapped extension in, 164,165 
hardware and software comparison, 

174-175 
protein-to-protein sequence 

comparison, 162 
results of, 176-177 
seed generation in, 165 
single Virtex-II FPGA for, 176 
stages, two-hit algorithm, 23-24 

Basic local alignment search tool for 
protein (BLASTP), 160,162,165, 
166.175 

vs. BLASTN, 24,162,165-166,174 
in gapped extension, 172 
protein database search, 2 
in protein seed generation, 168 
protein-to-protein sequence 

comparison, 162,166 
results of, 175 
word length and neighborhood 

threshold, increase in, 168 
word matching in, 165 

Bayesian trees and graphs, 285 
BEAST, 87,108 
BenDATADD,323 
BenDATA DIME-II module, 322,323 
BenNuey motherboard, 322 
Bidirectional asynchronous PCIe data 

transfers, CUDA 2.2 release, 
38-39 

Binary classification test, CUDA-EC 
approach, 152 

Bioinformatics, and FPGA computing, 
56 

Bioinformatics algorithms 
to CUDA programming model, 

mapping, 119 
database search and exact matching, 

22-26 
filtration, 22-24 
suffix trees and suffix arrays, 

24-26 
multiple sequence alignment (MSA), 

2,14-22 
background of, 14-18 
progressive alignment, 18-22 

pairwise sequence alignment, 
2-14 

affine gap penalty function, 
DP for optimal pairwise 
alignment with, 10-12 

definitions and notations, 2-6 
linear gap penalty function, 

DP for optimal pairwise 
alignment with, 6-10 

linear space using divide 
and conquer, computing 
alignments in, 12-14 

Bioinformatics application and 
COPACOBANA 5000 

future work of, 259 
motif finding, 252-253 

BMA algorithm, 253 
BMA implementation, 253-255 
BMA in hardware, parallelization 

of, 255-257 
BMA performance results, 

257-259 
sequence alignment, 249 

hardware implementation, 
250-251 

performance on, 251-252 
Smith-Waterman alignment, 

249-250 
Biological database search, coalesced 

subject sequence arrangement 
and, 120 

Biosequence databases, 157 
Bit-split DFA 

architecture of, 274 
bioinformatics applications, 63 



Index 339 

computation, stages of, 161 
tables, implementation of, 273-276 

Blocks of random access memory 
(BRAM) 

amino acid sequence set matching 
engines, 264 

Bloom filter 
BLASTN implementation and, 176 
definition of, 143 
in FPGA device, 166 
hash lookup architecture in, 167-168 
matching query words by, 166-167 
programs and queries, 143-145 

Bloom filter data structure 
in bioinformatics, 143 
and spectrum computation, 143-145 

basic local alignment search 
tool deoxyribonucleic acid 
(BLASTN), 143 

BLOSUM45, use in SW Database Search, 
122 

Boolean matrix algorithm (BMA), 253 
algorithm, 253 
in hardware, parallelization of, 

255-257 
implementation of, 253-255 
performance results of, 257-259 

Bootstrap replicates, parallel 
architectures, 107 

Bowtie, bioinformatics tools, 25-26 
Branch prediction, microarchitectural 

changes, 50 
BrookGPU, pre-CUDA era and, 108 

C 

Caching, microarchitectural changes, 50 
Car-Parrinello quantum chemistry 

applications, FFT-intensive 
calculations, 41 

Catapult C, commercial HLL to HDL 
tools, 56 

C compilers, GPU computing, 33 
Cell BE alignments on, parallel 

algorithms 
cell processor, sequence alignments 

on, 63 
computing alignments, 61-62 

affine gap penalty function, 61-62 

and computational biology, 60 
constant gap penalty function, 

use of, 62 
hybrid parallel algorithm, 68-76 

Hirschberg's technique, 
subproblem alignment phase 
and, 72-73 

hybrid algorithm, performance 
of, 74-76 

prefix computations, parallel 
alignment scheme and, 68-70 

space usage, 74 
vectorization and memory 

management, 73-74 
wavefront scheme, problem 

decomposition and, 70-71 
parallel communication scheme, 

63-67 
aligning longer sequences, tiling 

scheme for, 65-66 
tiling scheme, computing optimal 

alignment score by, 66-67 
specialized alignments, algorithms 

for, 76-81 
parallel spliced alignment 

algorithm, performance of, 
78-79 

parallel synthetic alignment 
algorithm, performance of, 
80-81 

spliced alignments, 76-78 
synthetic alignments, 79-80 

Cell block division method, many-core 
GPUs, 121 

Cell Broadband Engine (CBE), parallel 
algorithms, 60 

deriving space-saving local 
alignment on, 73 

hybrid parallel alignment algorithm 
on, 69 

and parallel communication strategy, 
63 

Cell processor, sequence alignments 
on, 63 

CHAOS algorithm, 264 
CHIMAERA, 52 
Ciphertext registers, 233, 234,240 

and plaintext, 234,237, 238 
32-bit register, 236, 239 



340 Index 

C-language subroutine call vs. CUDA 
kernel, 35-36 

ClawHMMER GPU implementation, 
219,220 

Cleavage rule, for proteolytic enzyme, 
318 

ClustalW tool, 2,20,123,124 
bioinformatics applications, 63 
in multiple sequence alignment 

(MSA), 20,22,123,124, 265 
progressive alignment method, 22 
sequence alignment on cell 

processor, 63 
speedups of MSA-CUDA, 129 

Cluster platforms 
vs. FPGA,183 

Clusters, 158-159 
cooling solutions, need for, 159 

Coalesced global memory access, 
many-core GPUs, 120-121 

Coalesced memory operation, massive 
multithreading, 32 

Coalesced subject sequence 
arrangement, many-core GPUs, 
120 

Collision tables, hash lookup 
architecture, 168 

Commercial off-the-shelf (COTS) 
multi-FPGA reconfigurable 
hardware platform, 322-325 

Complexity, history of, 224-225 
Complex programmable logic devices 

(CPLD),49 
Computational biology, computing 

alignments and, 60 
Compute unified device architecture 

(CUDA), see CUDA (compute 
unified device architecture) 

Computing alignments, 61-62 
affine gap penalty function, 61-62 
and computational biology, 60 
constant gap penalty function, use 

of, 62 
Configurable I/O blocks (IOB), logic cell 

array, 49 
Configurable logic blocks (CLB), logic 

cell array, 49 
schematic layout of, 50 

CONSENSUS, 253 

Consensus function, multiple sequence 
alignment (MSA), 16 

Constant memory, GPU, 43,122,216, 
217,218 

Control unit, in HNN unit, 298-300 
COPACOBANA1000,226-227,227 

application development, 230-231 
backplane, 228-229 
FPGA module, 227-228 
interface controller, 229-230 

COPACOBANA 1000, cryptanalysis 
with, 231-232 

and COPACOBANA 5000, 
differences with, 256-257 

DES, exhaustive key search on, 
233-235 

DES breaking, previous work on, 
232-233 

DES-based crypto tokens, breaking 
of, 235 

ANSI X9.9-based challenge-
response authentication, 
237-238 

banking systems, possible attack 
scenarios in, 238-239 

token attack on COPACOBANA, 
implementing of, 239-241 

token based basic authentication, 
basics of, 235-237 

COPACOBANA 5000,242 
application in bioinformatics, 

248-249 
sequence alignment, 249-250 

architecture of, 243 
application development, 

247-248 
bus concept and backplane, 

243-244 
FPGA module, 244-245 
interface controller, 246 
power supply and cooling 

mechanism, 246-247 
and COPACOBANA 1000, differences 

between, 256-257 
new application, direction toward, 

242 
requirements, 242-243 

COPACOBANA series, basic idea of, 
225-226 



Index 341 

Cost optimal parallel code breaker 
(COPACOBANA), 225-226 

token attack on, implementing of, 
239-241 

CRYPTO'93, 233 
C-to-hardware, commercial HLL to 

HDL tools, 56 
CUDA (compute unified device 

architecture) 
on massively threaded software, 

35-45 
data maintenance, 38-39 
graphics, interoperability with, 46 
memory types, 43 
pthreads, thread library, 35 

CUDA-EC approach, HTSR data and, 
139-155 

error correction, spectral alignment 
approach (SAP) to, 141-143 

implementation steps for, 147-149 
introduction to, 139-141 

Human Genome Project, 
challenges to, 139 

second-generation sequencers, 
output of, 140 

parallel error correction with, 
143-149 

Bloom filter data structure and 
spectrum computation, 143-145 

error correction, parallel CUDA 
algorithm for, 145-147 

execution example, 147-149 
performance evaluation of, 149-154 

accuracy, 152 
real datasets, summary of, 150 
sensitivity and specificity 

measures, 152-153 
simulated input datasets, features 

of, 149-150 
speedups, 151-152 

SAP-based error correction, parallel 
error correction using, 145-147 

CUDA parallelization, 145-147 
maximum number of thread 

blocks per multiprocessor 
(MTBPM), 147 

SAP voting procedure, 145 
CUDA-EC approach 

and NVIDIA GeForce GTX 280,150 

CUDA-enabled GPUs, parallel 
bioinformatics algorithms for, 
117-137 

conclusion on, 135-136 
introduction to, 117-118 

unified device architecture 
(CUDA)-enabled GPUs, 118 

many-core GPUs, techniques for, 
118-121 

cell block division method, 121 
coalesced global memory access, 

120-121 
coalesced subject sequence 

arrangement, 120 
hybrid computing framework, 

118-119 
intertask and intratask 

parallelization, 119 
motif discovery, 130-134 

MEME (multiple expectation 
maximization [EM] for motif 
elicitation), 130 

multistart search, stages of, 131 
multiple sequence alignment, 

123-130 
basic and straightforward grid 

mapping method, 225 
distance matrix computation, 

ClustalW runtime behavior 
and, 123,124 

guided tree, ClustalW runtime 
behavior and, 123 

MSA-CUDA, parallelization 
strategy of, 128-130 

progressive alignment, ClustalW 
runtime behavior and, 124, 
127 

SW database search, 121-123 
constant memory, exploitation of, 

122 
CudaMalloc(), GPU memory allocation, 

38 
CudaMemcpyToSy mbol(),CU DA 

runtime method, 43 
CUDA-MEME, CUDA-enabled GPUs, 

118,136 
GTX 280 graphics card and, 134 

CUDA occupancy calculator tool, 
147 
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CUDASW++, CUDA-enabled GPUs, 118 
for protein sequence database search, 

121-123 
BLOSUM50, scoring matrices, 123 
performance comparison of, 

122-123 
stages of, 122 

CudaSynchronizeThreads(), CUDA 
runtime, 41 

CUFFT library, GPU data transfer, 41 

Database encoding, 325-326 
structure of, 327 

Database FPGA search engine, protein 
sequence, 325-330 

block diagram of, 328 
Database search and exact matching, 

bioin forma tics algorithms, 
22-26 

filtration, 22-24 
DP-only approach and, 23 

suffix trees and suffix arrays, 24-26 
string-based problems, 26 

Database search processor, 326 
block diagram of, 329 
output of, 330 

Database search tasks, profile-hidden 
Markov models (HMMs) and, 
204 

and efficiency, 207-208 
Database sequence, in Smith-Waterman 

algorithm, 249-250 
Data encryption standard (DES) 

breaking based on crypto tokens, 
235 

ANSI X9.9-based challenge-
response authentication, 
237-238 

banking systems, possible attack 
scenarios in, 238-239 

token attack on COPACOBANA, 
implementing of, 239-241 

token based basic authentication, 
basics of, 235-237 

exhaustive key search on, 233-235 
previous work on, 232-233 

Data maintenance, GPU 

bidirectional asynchronous PCIe 
data transfers, CUDA 2.2 
release, 38-39 

CUDA runtime and, 38-39 
cudaMemcpy(), 38 
CUFFT library, GPU data transfer, 41 
explicit programmer-initiated data 

transfers, data maintenance on 
GPU, 38 

regression testing, data maintenance 
on GPU, 39 

streams runtime API, CUDA, 38 
Data parallelism, definition of, 160 
de Bruijn graph-based approaches, 

HTSR data assembler, 140 
Deep Crack, 233 
Deterministic finite automaton (DFA) 

FPGA implementation of string set 
matching, 269-270 

bit-split DFA architecture, 
270-273 

bit-split DFA tables, 
implementation of, 273-276 

table-oriented represendtation of, 
270 

storage utilization efficiency, 276 
Digestion unit, 326-327 
Digital signal processing (DSP) blocks, 

50 
impact of FPGA on, 56 

Dime-C, commercial HLL to HDL tools, 
56 

Dimeric motif, of DNS 
recognition of, 296 
representation of, 288 

Dimeric protein binding site 
identification, application to 

biological problem, 302-303 
hardware-accelerated system, 

performance of, 306-307 
HRE, dimeric structure of, 303-305 
HRE prediction, two-phase neural 

system for, 305-306 
DIN 41612 connector, 228-229,230 
Distance matrix computation, 20,124 
Distributed RAM, see Blocks of random 

access memory (BRAM) 
Divide-and-conquer approach, 

Hirschberg, 2 
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computing alignments in linear 
space using, 12-14 

linear-space score-only 
computation, 13 

optimal midpoint, 13 
trace-back path properties, 13-14 

linear space, optimal midpoint 
computation in, 15 

DNA fragment assembly, tools for, 140 
DNA sequence 

multiple sequence alignment of, 87 
numerical representation of, 287-288 
sequencing problem 

and Human Genome Project, 139 
technologies, second-generation, 139 

throughput of, 139-140 
Double precision floating point 

arithmetics, 95-97 
Dual-processor commodity 

workstations, 30 
Dynamically programmed HNN 

(DP-HNN), reconfigurable, 
297-298 

control and matching units, 298-300 
FPGA, representation of numerical 

values and operations on, 298 
hardware-accelerated system, 

performance of, 306-307 
neuron and memory units, 300-301 
operation of, 301-302 

Dynamic instruction set computer 
(DISC), 52 

Dynamic programming (DP) 
bioinformatics algorithms, 1, 2 
computing pairwise alignments, 60 
and field-programmable gate array 

(FPGA), 183 
and gap extension procedure, 

seed-based parallel protein 
sequence comparison, 189 

E 

E5 CSoC families, commercial hybrid 
platforms, 52 

Emission and transition storage, PE 
design features, 212 

Ensembl database, of protein sequence, 
314 

ePassport, 232; see also Machine 
Readable Travel Documents 

Ethernet, 226,229 
gigabit interfaces, 230, 242,243, 246, 

248,280 
Euler-SR, de Bruijn graph-based 

approaches, 140 
Exact-match HNN (EM-HNN), 291,297, 

304,305,307 
Explicit programmer-initiated data 

transfers, data maintenance on 
GPU, 38 

Exploiting internal resources, GPU, 37 
constant memory, 43 
global memory, 44-45 
local memory, 45 
register and shared memory, 42-43 
texture memory, 43-44 

Fabrication techniques, transistors and, 
33 

FASTA 
bioinformatics applications, 63 
and concept of seeds, 200 
in database encoding, 325 
dynamic programming methods 

and, 183 
Fast Fourier transform (FFT) library, 

GPU data transfer, 41 
Feed-forward neural network (FFNN), 

286,288,297 
Felsenstein pruning algorithm, 89-90 
Fermi GPUs, latest 20-series, 34,36,37 

global memory, advantages related 
to, 45 

Field programmable gate array (FPGA), 
225 

in academic research and 
commercial domain, 53 

architectures of, 52-54 
commercial cores under, 52-53 
FPGA accelerators, development 

of, 53-54 
front side bus, 54 
hybrid platforms under, 52 

in bioinformatics domain, 56 
block diagram of, 324 
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Field programmable gate array (FPGA), 
(Cont.) 

vs. cluster platforms, 183 
COPACOBANA 1000 

architecture of, 240 
module of, 227-228 

COPACOBANA 5000 
architecture of, 245 
design of, 246 
module of, 244-245 

vs. CPU, 52 
design, challenge of, 309 
development tools of, 54-56 

automated EDA tools, 54,56 
bitstream, configuration data, 54 
system-level tool chains, 

availability of, 55 
digital signal processor (DSPs) on, 

107 
discussion about, 56 
first FPGA, 49 
and GPU, PLAST implementation, 

183,194-197 
high-computational density 

architectures and, 159 
introduction to, 49-50 

intellectual property (IP) soft 
cores, 50 

logic cell array, 49 
platform FPGA, 50 

need for, 50-51 
central processing unit 

-optimized Cortex Ml processor, 
ARM, 52 

orchestrating phylogenetic 
likelihood function (PLF) on, 
86,107 

parallelization and profile-HMMs 
and, 209-215 

performance evaluation, 213-215 
system design, 109-213 

performance evaluation of, 331-332 
pipeline parallelism, exploitation of, 

160 
search engine, database encoding, 

325-326 
search engine, database search 

processor, 326 
digestion unit, 326-327 

scoring unit, 328-330 
variable modifications, 327-328 

and seed-based parallel protein 
sequence comparison, 
architecture principles, 193 

Smith-Waterman algorithm, 
implementations of, 251-252 

string set matching use in, 265-266 
use, in computational biology, 265 

Fine-grained implementation 
and field-programmable gate array 

(FPGA), 183 
Fine-grain parallelization, 98-103 

coarse-grain approach, multigrain 
parallelism, 109 

phylogenetic likelihood function 
(PLF), library for, 101-102 

application programming 
interface (API), 102 

scalability issues in, 102-103,110 
FIPS 113,235 
Fixed modification, 318 
Floating-point performance, massive 

multithreading, 31-32 
Flynn's taxonomy, computer 

architectures, 35 
FORTRAN compilers, GPU computing, 

33 
Forward algorithm, database search 

tasks and, 204 
Functional dimers, 286,287, 289 
"Future-proofing" applications, massive 

multithreading, 33 

Gapped extension 
BLAST computation stages, 161, 

161-162,164 
Smith-Waterman recurrence, use 

of, 164 
in Mercury BLAST, 172-174, 273 
parallel seed-based algorithm, 

188-189 
GARLI, ML phylogeny programs, 91 

OpenMP parallelization in, 109 
single precision (SP) arithmetics and, 

96 
Gate array technology, 49 
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GenBank, growth of, 182 
GenBank Non-Redundant DNA 

database, 158,159 
Gene expression data analysis, 285 
General-purpose graphics processor 

unit (GPGPU) 
emergence of, 117-118 
mapping threads to, 42 

execution configuration, 35-36 
and massively threaded 

programming, scientific 
computation, 29-47 

compute unified device 
architecture (CUDA), 35-45 

conclusion of, 46-47 
introduction of, 29-31 
NVIDIA GPU special processing 

units, 30 
OpenGL constructs, 46 
visualization, 45-46 

and PLF, emerging parallel 
architectures, 107-108 

Genomic sequence comparison 
algorithms 

bioinformatics and, 181-182 
Global alignment 

genomic alignment, 60, 61 
parallel algorithm for 

computation of, 68 
and sequential dynamic 

programming algorithm, 61 
pairwise sequence alignment, 2,3 

Global memory, GPU, 44-45 
Global MSA, 15,16,17 

star alignment approach to, 18 
Global ocean sampling (GOS) 

expedition, 204 
"Glue logic" functionality, 316 
GP-HNN, on-chip implementation of, 

303 
GPU (graphics processing unit), 30 

C and FORTRAN compilers, GPU 
computing, 33 

CUBLAS, GPU library, 40 
cudaMalloc(), GPU memory 

allocation, 38 
exploiting internal resources, 41-45 

constant memory, 43 
global memory, 44-45 

local memory, 45 
register and shared memory, 

42-43 
texture memory, 43-44 

Fermi GPUs, latest 20-series, 34,36, 
37 

global memory, advantages 
related to, 45 

and fine-grained implementation, 
183 

and FPGA technologies, PLAST 
implementation, 183,194-197 

and massive multithreading, 32,33 
and NVIDIA C870 Tesla boards, 

implementation process, 
196-197 

and NVIDIA GT200 graphics 
processors, impact of, 39-40 

phylogenetic analysis and, 85, 
107-108 

phylogenomic analysis and, 85, 
107-108 

SP-DP performance gap on, 96 
writing or porting software to, 37-45 

exploiting internal resources, 
41-45 

GPU, data maintenance on, 38-39 
maximizing work performance, 

39-41 
GPU, work maximization, 39-41 

exploiting internal resources, 41-45 
constant memory, 43 
global memory, 44-45 
local memory, 45 
register and shared memory, 

42-43 
texture memory, 43-44 

GPU/FPGA technologies, comparison 
of, 183,194-197 

execution times, comparison of, 
195-196 

RCC-TPLASTN and NCBI 
TBLASTN, FPGA platform, 196 

64 PEs vs. 128 PEs, 199 
FPGA implementation, 197 
FPGA platform, 194-195 
GPU implementation, 196-197 
GPU platform, 194 
software and dataset, 195 



346 Index 

GPU boards, and seed-based parallel 
protein sequence comparison, 
183 

GPU-CPU computation, hybrid 
computing framework, 118,119 

GPU parallelization and results, 
profile-hidden Markov models 
(HMMs) database searching 

CUDA hardware, 216 
results, 216-220 

database sorting, 217 
host optimizations, 219-220 
memory hierarchy optimizations, 

218 
memory layout optimizations, 

217-218 
Graphics processors 

and massive multithreading, 31-32 
GSM A5/1 stream cipher, 232 
Guided tree, 21 

and ClustalW runtime behavior, 123 
computation, using neighbor-joining, 

22 
for five-point sequences, 19-20 
by NJ method, example of, 227,128, 

130 

H 

Half-site alignment procedure, 294, 300 
Handel-C, hardware description 

language (HDL) tools, 56 
Hardware accelerated BLASTN 

compared to baseline system, 
execution time, 176,177 

Hardware accelerated BLASTP, 273,175 
compared to baseline system, 

execution time, 275,177 
Hardware accelerated system, 53 

performance of, 306-307 
Hardware description language (HDL) 

tools,FPGA,54,56 
commercial HLL to, 56 

Hardware-software partitioning, FPGA, 
51 

Harvard Connectome project, 29 
Hashing, 25,141 

spectrum list into Bloom filters, 148, 
154 

spectrum membership test, 143 
using on-chip resources, 168 

Hash lookup architecture, 167-168 
Helicobacter acinonychis, sequencing of, 150 
Hidden-Markov model (HMM), 178,308 

PE design features, 213 
High-computing framework, 134,135, 

136 
basic structure of, 229 
for many-core GPUs, 118-119 
using CUDA, 132-133 

High-level languages (HLL) tools, 56 
to hardware design flow, 55 

High-performance computing (HPC), 314 
resources, 95 

High-throughput comparison, genomic 
sequence, 157 

High-throughput short-read (HTSR) 
data, second-generation 
sequencers output, 140 

High-throughput short-read sequencing 
data (HTSR), CUDA-EC(error 
correction) approach for, 
139-155 

conclusion of, 154 
CUDA, parallel error correction with, 

143-149 
Bloom filter data structure and 

spectrum computation, 143-145 
error correction, parallel CUDA 

algorithm for, 145-147 
execution example, 147-149 

error correction, spectral alignment 
approach (SAP) to, 141-143 

introduction to, 139-141 
Human Genome Project, 

challenges to, 139 
second-generation sequencers, 

output of, 140 
performance evaluation of, 149-154 

Hirschberg's technique 
space-saving technique-based global 

alignment algorithm, 74 
subproblem alignment phase and, 

72-73 
sequential recursive space-saving 

scheme in, 72 
HMM., see Hidden-Markov model 

(HMM) 
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HMMER software, 206, 225 
and acceleration, 221 
and Pfam construction, 207 
Viterbi function of, 217 

HMPP compiler, massive 
multithreading, 33 

HNN learning, 290-291 
Hopfield neural network (HNN), 286 

adaptation of, 291-297 
in neural system, design of, 289-291 
performance of, 307 

Hormone response elements (HREs) 
dimeric structure of, 303-305 
prediction of, two-phase neural 

system for, 305-306 
Host interface, PE design features, 213 
Human chromosome 22 and entire 

mouse genome, BLASTN 
implementation, 176 

Hybrid computing approach, 52 
Hybrid parallel algorithm, 68-76 

Hirschberg's technique, subproblem 
alignment phase and, 72-73 

sequential recursive space-saving 
scheme in, 72 

hybrid algorithm, performance of, 
74-76 

prefix computations, parallel 
alignment scheme and, 68-70 

problem decomposition phase 
under, 68 

space usage, 74 
vectorization and memory 

management, 73-74 
wavefront scheme, problem 

decomposition and, 70-71 

I 

IBM BlueGene/L, supercomputer, 86 
speed ups of, 110 

Illumina Genome Analyzer IIx (IGA-
IIx), DNA sequencing, 139,150 

Impulse C, commercial HLL to HDL 
tools, 56 

Input datasets, phylogenomic, 110-111 
Intel processors, 53 
Intermediate value storage (IVS), PE 

design features, 212,213 

Intertask parallelization, 119 
for CUDA-enabled GPUs, 135-136 
motif discovery and, 133 

Intratask parallelization, 119 
for CUDA-enabled GPUs, 135-136 
motif discovery and, 133 

IQPNNI, ML phylogeny programs, 87 
OpenMP for SMP systems, 

parallelization, 109-110 
Iterative generation of matrices (IGOM), 

253 

K 

Kernel, CUDA, 35,148 
in CUBA parallelization of, 145 
on GPU, 36,39 
host code, call from, 35-36 
in hybrid computing framework, 

basic structure of, 119 
NVIDIA GT200 graphics processors, 

impact of, 39-40 
in UNGAP parallelization of GPU, 

191 

Larrabee architecture, parallel computer 
architectures 102,108,110 

Legacy hard disk encryption, breaking 
of, 232 

LEON SPARC, 53 
Likelihood-based Bayesian programs, 

87 
Metropolis-Coupled Markov-

Chain Monte-Carlo (MCMC) 
approach and, 95-96,106 

Linear gap penalty function 
DP for optimal pairwise alignment 

with, 6-10 
global pairwise alignment with, 5 

Local alignment, genomic alignment, 
60,62 

Local memory, GPU, 45 

M 

Machine Readable Travel Documents, 
232 
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Many-core GPUs, techniques for, 
118-121 

cell block division method, 121 
coalesced global memory access, 

120-121 
coalesced subject sequence 

arrangement, 120 
hybrid computing framework, 

118-119 
CPU and GPU, overlapping 

computation of, 118,119 
intertask and intratask 

parallelization, 119 
Mapped memory data transfers, data 

maintenance on GPU, 38 
Markov Chain Monte Carlo (MCMC) 

proposal mechanism, 95-96, 
106 

fine-grain parallelism vs., 107 
MASCOT scoring schemes, 322 
Massive multithreading 

coalesced memory operation, 32 
CUDA, impact of, 35-45 
floating-point performance, 31-32 
hardware thread scheduler, 32 
multiprocessor, hardware 

standpoint, 34 
programmable shaders, advent of, 34 
simple vector multiply, 31 
single instruction multiple data 

fashion (SIMD) execution, 
34-35 

Mass spectrometry (MS), 314 
in peptide identification, 263 
in protein identification, 317 
in proteomic research field, 314 
in scoring unit, 328-329 

Matching unit, 298-300 
for recurrent alignment procedure, 

299 
Matrix-assisted laser desorption/ 

ionization time-of-flight 
(MALDI-TOF) 

for analyzing peptide mixture, 317 
Medical and biological research 

in computational biology, 265 
phylogenetic trees, importance of, 87 
in protein identification, 317 

MemcmpO, GPU, 39 

Memec Virtex-4 FX12 Mini Module, 230 
Memory bottleneck issue, and 

microprocessor, 50 
"MemoryTest" application, 226, 231,248 
Memory unit, 300-301 
Mercury BLAST 

architecture of, 165-174 
gapped extension, 172-174 
seed generation, 166-170 
ungapped extension and, 170-172 

and seed generation, 166-170 
nucleotide seed generation 

architecture, 166-168 
protein seed generation, 168-170 

Message passing interface (MPI), 
massive multithreading, 33 

Metagenomics, 158,182,204 
Metropolis-Coupled Markov-Chain 

Monte-Carlo approach, 95-96, 
106 

Microprocessor and memory bottleneck 
issue, performance gap, 50 

Mitrion-C, commercial HLL to HDL 
tools, 56 

ML (maximum likelihood) phylogeny 
programs, 87 

memory requirements for, 94-95 
Molecular sequencing techniques, 85, 

111 
Moore's law, 117,136, 200,314 
MOWSE scoring schemes, 322,330 
MrBayes 

likelihood-based Bayesian programs, 
87 

memory savings and single 
precision, 95 

ML phylogeny programs, 91 
single-precision implementation, 

advantages of, 95 
mRNA sequence, 60, 79 
MSA-CUDA, 124,128,129,136 

in comparison with ClustalW, 229 
CUDA-enabled GPUs, 118 

Multicore and many-core technologies, 
CPU designers, 50-52 

Multicore processors, switching to, 33, 
34 

Multigene or phylogenomic alignments, 
87 
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Multiple sequence alignment (MSA) 
background of, 14-18 
bioinformatics algorithms, 2,14-22 
objective functions for, 15-16 
and profile-HMMs, 203,204 
progressive alignment, 18-22 

Multiple sequence alignment 
stages of ClustalW pipeline for, 

parallelization, 123-130 
task under, 119 

MUMmer, bioinformatics tools, 25-26 
guided tree, 18-20 
optimal global sequence-profile 

alignment, 22 
star alignment approach, 18,19 

N 

National Human Genome Research 
Institute, 158 

NCBI BLAST 
BLAST FPGA accelerator, integration 

of, 174 
and protein database search, 122, 

223,189 
query and reference sequence 

comparison, 161 
NCBI TBLASTN, 197,198 

and GPUTPLASTN, GPU platform, 
196 

Needleman-Wunsch algorithm, 6 
position-independent scoring 

parameters and, 207 
Neighbor-joining (NJ) step, computing 

guided tree, 20,21 
Neural system, design of, 287 

DNA sequence, numeric 
representation of, 287-288 

FFNN, 288 
HNN, 289-291 

adaptation of, 291-297 
Neuron unit, 300-301 
New technology file system (NTFS), 280 
Newton-Raphson method, 91,101,105, 

206 
Next-generation sequencing (NGS) 

technology, 182 
Nondeterministic finite automata (NFA) 

in string matching, 266 

Norton Diskreet, 232 
Nuclear hormone receptor binding site 

prediction (NHR)-scan, 308 
Nucleotide seed generation 

architecture, 166-168 
Bloom filter and, 166-168 

hash lookup architecture, 167-168 
NVIDIA CUDA 

enabled 
graphics processors, 33 
GPUs,41 

zone, 47 
NVIDIA documentation, massive 

multithreading, 36 
NVIDIA GeForce GTX 280 

and CUDA-EC approach, time 
efficiency, 150 

NVIDIA GT200 graphics processors, 
39-40 

NVIDIA Telsa C870 Board and NVIDIA 
GTX-280 Board, 198 

O 

One occurrence per sequence (OOPS), 
motif search methods, 130, 235 

OpenCL, massive multithreading, 33 
Opencores OpenRISC, 53 
OpenMP 

drawback of, 98 
fine-grain parallelism in the PLF, 

exploitation of, 109 
for SMP systems, IQPNNI, 109-110 

Opteron processor-based platforms, 
AMD, 53,54 

Optimal alignment score and tiling, 
66-67 

Optimal global pairwise alignment 
with affine gap penalty function, 10-12 

trace-back procedure, rules for, 11 
linear-space method for, 13 
with linear gap penalty function, 

6-10 
Needleman-Wunsch algorithm, 6 
trace-back procedure, 7,10 

Out-of-order execution, 
microarchitectural changes, 50 

Overlap graph-based approaches, HTSR 
data assembler, 140 
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Pairwise sequence alignment, 
bioinformatics algorithms, 2-14 

afftne gap penalty function, DP for 
optimal pairwise alignment 
with, 10-12 

definitions and notations, 2-6 
BLOSUM62, substitution matrix, 4 
empty string, 2 
linear scoring scheme, 3 
local pairwise alignment, 6 

linear gap penalty function, DP for 
optimal pairwise alignment 
with, 6-10 

linear space using divide and conquer, 
computing alignments in, 12-14 

PAML, ML phylogeny programs, $7 
Parallel communication scheme 

aligning longer sequences, tiling 
scheme for, 65-66 

for computing global alignments, 
phases in, 68 

tiling scheme, computing optimal 
alignment score by, 66-67 

direct memory access (DMA) 
transfers under, 67 

Parallel computer architectures 
adaptations to, 107-110 

fine-grain and coarse-grain 
approach, use of, 109 

production level implementation, 
107,109,110 

vector-like processor architecture, 
107 

future directions of, 110-111 
Larrabee architecture, 110 

parallel ization strategies, 97-106 
general fine-grain parallelization, 

98-103 
load balance issues in, 103-106 
parallel programming paradigms 

under, 98 
phylogenetic inference, 86-88 
phylogenetic likelihood function 

(PFL) on, 88-97 
avoiding numerical underflow, 

92-94,110 
memory requirements, 94-95 

single or double precision floating 
point arithmetics, perspectives 
on, 95-97 

Parallel disk arrays, 280 
Parallelization scheme, PL AST 

and cluster platforms, bioinformatics, 
182 

FPGA 
UNGAP parallelization on, 

191-193 
GPU 

SMALL GAP parallelization on, 
193-194 

UNGAP parallelization on, 191 
hardware accelerators and, 183 

Parallelization strategies, 97-106 
general fine-grain parallelization, 

98-103 
load balance issues in, 103-106 

branch length optimization, 
considerations regarding, 101 

per-partition branch length 
estimate, rationale for using, 
105 

parallel programming paradigms 
under, 98 

Parallel local alignment search tool 
(PLAST) algorithm, 184-185 

and BLAST, 197-198 
generic hardware implementation of, 

189-190 
overview of, 184-185 
parallel multithreaded version of, 

185-186 
Parallel-prefix based special columns 

technique, 70 
Parallel seed-based algorithm 

and generic hardware 
implementation, 189-190 

protein sequence comparison, 181-200 
conclusion of, 197-200 
GPU/FPGA technologies, 

comparison of, 183,194-197 
introduction to, 181-184 
parallelization, 190-194 
principles of, 184-190 

Parallel spliced alignment algorithm, 
performance of, 78-79 

for phytoene synthase gene, 79 
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Parallel synthetic alignment algorithm, 
performance of, 80-81 

Partitioned-based spatial-merge (PBSM) 
usage, 147 

Partitioned phylogenomic analyses, 
load balance issues in, 103-106 

gappy phylogenomic alignment, 
schematic representation of, 
105 

Newton-Raphson procedure, 106 
PAUP, ML phylogeny programs, 87 
Peptide mass fingerprinting (PMF), 265, 

317,321,328,329 
PhyloBayes, likelihood-based Bayesian 

programs, 87 
Phylogenetic footprintings, 285 
Phylogenetic inference 

goal of, 86 
to medical and biological research, 

application of, 86-88 
multigene or phylogenomic 

alignments, 87 
Playstation III and, 109 
"wellshaped" vs. "badly shaped" 

datasets, 88 
Phylogenetic likelihood function (PLF), 

85,86,88-97 
acceleration and parallelization of, 

86 
application programming interface 

(API) for, 102 
avoiding numerical underflow, 92-94 
computational issues in, 91 
Felsenstein pruning model, 89-90 
fine-grain parallelization scheme for, 

98-103,99 
parallel partial tree traversal, 100 
partial traversal, 99 
traversal descriptor, 98-99 

on FPGAs, 107 
general time reversible (GTR) model, 

89 
GPGPUs and, 107-108 
implementation issues in, 91-92 
library for, 101-102 
manual vectorization and, 109 
memory requirements, 94-95 
OpenMP-based PLF 

implementations, 98,109 

single or double precision floating 
point arithmetics, perspectives 
on, 95-97 

Eigenvector/Eigenvalue 
decomposition, 96 

Phylogenies 
future, tacking fundamental 

problems of, 88 
load balance issues and, 103-106 
use of, 87-88 

PHYML, ML phylogeny programs, 87, 
91 

Pipeline parallelism, 160,177 
Pipelining, microarchitectural changes, 

50 
"Placing and routing" synthesis, 280 
Plaintext registers, 234,240 

and ciphertext, 234,237,238 
64-bit register, 239 

Plan7 architecture, 206,207 
algorithm, 208 

Plan7 Viterbi algorithm, 212-213 
Position-independent scoring 

parameters, 207 
Position-specific scoring matrix (PSSM), 

178 
Posttranslational modifications, 318 
PowerPC processing element (PPE), 

sequence alignment, 63 
Primary tables, hash lookup 

architecture, 168 
probasin gene, in rat, 308 
Problem decomposition phase, parallel 
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