

Bioinformatics
High Performance Parallel
Computer Architectures

10768_C000.indd i10768_C000.indd i 6/17/2010 7:06:26 PM6/17/2010 7:06:26 PM

Embedded Multi-Core Systems

Series Editors

Fayez Gebali and Haytham El Miligi
University of Victoria

Victoria, British Columbia

Multi-Core Embedded Systems, Georgios Kornaros

Bioinformatics: High Performance Parallel Computer Architectures, edited by
Bertil Schmidt

10768_C000.indd ii10768_C000.indd ii 6/17/2010 7:06:26 PM6/17/2010 7:06:26 PM

CRC Press is an imprint of the
Taylor & Francis Group, an informa business

Boca Raton London New York

Bioinformatics
High Performance Parallel
Computer Architectures

Edited by

Bertil Schmidt

10768_C000.indd iii10768_C000.indd iii 6/17/2010 7:06:27 PM6/17/2010 7:06:27 PM

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2011 by Taylor and Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works

Printed in the United States of America on acid-free paper
10 9 8 7 6 5 4 3 2 1

International Standard Book Number: 978-1-4398-1488-8 (Hardback)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts
have been made to publish reliable data and information, but the author and publisher cannot assume
responsibility for the validity of all materials or the consequences of their use. The authors and publishers
have attempted to trace the copyright holders of all material reproduced in this publication and apologize to
copyright holders if permission to publish in this form has not been obtained. If any copyright material has
not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmit-
ted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented,
including photocopying, microfilming, and recording, or in any information storage or retrieval system,
without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.
com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood
Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and
registration for a variety of users. For organizations that have been granted a photocopy license by the CCC,
a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used
only for identification and explanation without intent to infringe.

Library of Congress Cataloging-in-Publication Data

Bioinformatics : high performance parallel computer architectures / edited by Bertil
Schmidt.

p. cm.
Includes bibliographical references and index.
ISBN 978-1-4398-1488-8
1. Bioinformatics--Data processing. 2. Parallel processing (Electronic computers) I.

Schmidt, Bertil. II. Title.

QH324.2.B5487 2010
572.80285--dc22 2010003953

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

10768_C000.indd iv10768_C000.indd iv 6/17/2010 7:06:28 PM6/17/2010 7:06:28 PM

www.copyright.com
www.copyright.com

v

Contents

Preface .. vii
Editor..xi
Contributors ... xiii

 1 Algorithms for Bioinformatics ..1
Bertil Schmidt

 2 Introduction to GPGPUs and Massively
Threaded Programming ..29
Robert M. Farber

 3 FPGA: Architecture and Programming ...49
Douglas Maskell

 4 Parallel Algorithms for Alignments on the Cell BE 59
Abhinav Sarje and Srinivas Aluru

 5 Orchestrating the Phylogenetic Likelihood Function on
Emerging Parallel Architectures ...85
Alexandros Stamatakis

 6 Parallel Bioinformatics Algorithms for
 CUDA-Enabled GPUs .. 117

Yongchao Liu, Bertil Schmidt, and Douglas Maskell

 7 CUDA Error Correction Method for High-Throughput Short-
Read Sequencing Data ... 139
Haixiang Shi, Weiguo Liu, and Bertil Schmidt

 8 FPGA Acceleration of Seeded Similarity Searching 157
Arpith C. Jacob, Joseph M. Lancaster, Jeremy D. Buhler, and
Roger D. Chamberlain

 9 Seed-Based Parallel Protein Sequence Comparison
Combining Multithreading, GPU, and FPGA Technologies 181
Dominique Lavenier and Van-Hoa Nguyen

10 Database Searching with Profi le-Hidden Markov Models on
Reconfi gurable and Many-Core Architectures203
John Paul Walters, Vipin Chaudhary, and Bertil Schmidt

10768_C000.indd v10768_C000.indd v 6/17/2010 7:06:28 PM6/17/2010 7:06:28 PM

vi Contents

11 COPACOBANA: A Massively Parallel FPGA-Based
Computer Architecture ...223
Manfred Schimmler, Lars Wienbrandt, Tim Güneysu, and Jost Bissel

12 Accelerating String Set Matching for Bioinformatics
Using FPGA Hardware ...263
Yoginder S. Dandass

13 Reconfi gurable Neural System and Its Application to
Dimeric Protein Binding Site Identifi cation ..285
Feng Lin and Maria Stepanova

14 Parallel FPGA Search Engine for Protein Identifi cation 313
Daniel Coca, Istvan Bogdan, and Robert J. Beynon

Index ... 337

10768_C000.indd vi10768_C000.indd vi 6/17/2010 7:06:28 PM6/17/2010 7:06:28 PM

vii

Preface

High-throughput techniques for DNA sequencing and gene expression
analysis have led to a rapid growth in the amount of digital biological data.
Prominent examples are the growth of DNA sequence information in NCBI’s
GenBank database and the growth of protein sequences in the UniProtKB/
TrEMBL database. Furthermore, emerging next-generation sequencing tech-
nologies have broken many experimental barriers to genome scale sequenc-
ing, facilitating the extraction of huge quantities of sequences, which will
further promote the future growth of biological databases.

Computer scientists and biomedical researchers face the challenge of trans-
forming genomic data into biological understanding. Consequently, bioinfor-
matics tools need to be scalable; that is, they need to deal with an ever growing
amount of data. Unfortunately, the amount of publicly available sequence
data grows faster than single processor core performance (which is stagnant
at the moment). Thus, modern bioinformatics tools need to take advantage
of parallel computing, which has always been a challenging task. In par-
ticular, modern multicore and many-core architectures are revolutionizing
high- performance computing (HPC) in recent years. Incorporating multiple
processor cores into a single silicon die has been the recent trend in improv-
ing performance by means of parallelism. As more and more processor cores
are being incorporated into a single chip, the era of the many-core processor
has begun. Thus, it is expected that future mainstream processors will be
parallel systems, with their parallelism continuing to scale with Moore’s law.
The emergence of many-core architectures, such as general-purpose graphic
processors (GPGPU), especially compute unifi ed device architecture (CUDA)-
enabled GPUs, and other accelerator technologies, such as fi eld- programmable
gate arrays (FPGAs) and the Cell/BE, provides the opportunity to signifi cantly
reduce the runtime of many biological algorithms on commonly available and
inexpensive hardware with more powerful high-performance computing
power, which are generally not provided by conventional general-purpose
processors. These emerging parallel computer architectures therefore pose
new challenges to the fi eld of bioinformatics, since

New bioinformatics algorithms and applications need to take advan-•
tage of these new architectures and
Existing bioinformatics tools need to be ported effi ciently to emerg-•
ing parallel architectures.

This book consists of 14 chapters written by internationally recognized
experts. To provide necessary background, it contains three introductory
chapters on important bioinformatics algorithms, GPGPUs, and massively
threaded programming and on reconfi gurable computing with FPGAs. The

10768_C000.indd vii10768_C000.indd vii 6/17/2010 7:06:28 PM6/17/2010 7:06:28 PM

viii Preface

major part of the book, consisting of 11 chapters, compiles recent approaches
from prominent researchers in the fi eld to parallelize bioinformatics appli-
cations on a variety of modern parallel architectures. The presented tools
and algorithms include pairwise sequence alignment, multiple sequence
alignment, BLAST, motif fi nding, pattern matching, sequence assembly,
hidden Markov models, proteomics, and evolutionary tree reconstruction.
Since both parallel computing and bioinformatics are two major technolo-
gies for a traditional and broad community, we envisage this book to be
benefi cial to researchers, graduate students, engineers, and teachers, who
are actively involved in research and applications in the fi elds of HPC and
bioinformatics.

The material of this book is organized as follows: Chapter 1 provides read-
ers with background information on bioinformatics algorithms that is impor-
tant to understand the remaining chapters of this book. This chapter is at an
introductory level and suitable for readers who are new to the fi eld of bioin-
formatics. In Chapter 2, Rob Farber gives an introduction to GPGPU technol-
ogy and the associated massively threaded CUDA programming model. An
overview of FPGA architecture and programming is provided by Douglas
Maskell in Chapter 3. In Chapter 4, Sarje and Aluru present several paral-
lel algorithms for computing alignments on the Cell/BE architecture. This
includes linear-space pairwise alignment, syntenic alignment, and spliced
alignment. In Chapter 5, Stamatakis focuses on computational aspects of
phylogenetic inference. He reviews underlying concepts, current develop-
ments, and advances in orchestrating the phylogenetic likelihood func-
tion on parallel computer architectures ranging from FPGAs up to the IBM
BlueGene/L supercomputer. Chapter 6, by Liu, Schmidt, and Maskell, covers
several effective techniques to fully exploit the computing capability of many-
core CUDA-enabled GPUs to accelerate protein sequence database search-
ing, multiple sequence alignment, and motif fi nding. Second-generation
sequencing machines are able to produce a huge amount of high-throughput
short-read (HTSR) data. In Chapter 7, Shi, Liu, and Schmidt present a paral-
lel CUDA-based method for correcting sequencing base-pair errors in HTSR
data. Chapter 8, by Jacob, Lancaster, Buhler, and Chamberlain, deals with an
FPGA accelerator for BLASTN and BLASTP that exploits the characteristics
of the streaming model. In Chapter 9, Lavenier and Nguyen present a paral-
lel seed-based algorithm called PLAST for comparing protein banks, and its
instantiation into two technologies (GPU boards and reconfi gurable acceler-
ators). The algorithm has been thought to express the maximum of parallel-
ism and to be easily speeded up by specifi c hardware platforms. In Chapter
10, Walters, Chaudhary, and Schmidt show how the Viterbi algorithm for
database searching with profi le-hidden Markov models can be effi ciently
parallelized on reconfi gurable hardware (FPGAs) as well as on many-core
architectures (GPUs) with the CUDA programming model. The FPGA-based
massively parallel COPACOBANA architecture is the subject of Chapter 11.
Schimmler, Wienbrandt, Güneysu, and Bissel demonstrate how its usage,

10768_C000.indd viii10768_C000.indd viii 6/17/2010 7:06:29 PM6/17/2010 7:06:29 PM

Preface ix

originally designed for cryptanalysis, can be extended to bioinformatics
applications. In Chapter 12, Dandass describes techniques for accelerating
the performance of string set matching solutions using an implementation of
the Aho-Corasick algorithm on FPGA devices, with particular emphasis on
applications in computational proteomics. Chapter 13, by Lin and Stepanova,
is devoted to a two-phase neural system for recognition of dimeric DNA
motifs. The authors demonstrate its power by applying a hybrid system into
genome-wide identifi cation of hormone response elements on DNA. Finally,
in Chapter 14, Coca, Bogdan, and Beynon advocate the use of FPGAs as an
alternative approach to conventional HPC for protein identifi cation based on
mass spectrometry using database searching.

Last but not least, I want to gratefully thank all the authors for their valu-
able contributions.

10768_C000.indd ix10768_C000.indd ix 6/17/2010 7:06:29 PM6/17/2010 7:06:29 PM

xi

Editor

Bertil Schmidt is associate professor at the School of Computer Engineering
at Nanyang Technological University in Singapore. Earlier, he held a faculty
position at the University of New South Wales and was a senior researcher at
the University of Melbourne. He received his undergraduate degree in com-
puter science (Diplom-Informatiker) from the University of Kiel (Germany)
in 1995 and his PhD degree from Loughborough University (UK) in 1999.

Dr. Schmidt has been involved in the design and implementation of
scalable algorithms for over a decade. He has worked extensively with
fi ne-grained, coarse-grained, and hybrid parallel architectures. He has suc-
cessfully applied these technologies to various domains, including bioinfor-
matics, cryptography, computational science, and data compression. He is
currently the principal investigator (PI) of an AcRF Tier-1 project and the
GPU-enabled genomics project funded by NVIDA as well as Co-PI of an
AcRF Tier-2 project. Previously, he has successfully completed an A-Star
BMRC-funded project as well as the industry-funded hybrid computing
project. He has published extensively in premium and leading journals
such as Parallel Computing, Journal of VLSI Signal Processing, Microelectronic
Engineering, IEEE Transactions on Circuits and Systems II, IEEE Transactions on
Parallel and Distributed Systems, IEEE Transactions on IT in Biomedicine, Journal
of Parallel and Distributed Computing, Concurrency and Computation: Practice
and Experience, Future Generation Computer Systems, Bioinformatics, BMC
Bioinformatics, and Autoimmunity.

10768_C000.indd xi10768_C000.indd xi 6/17/2010 7:06:29 PM6/17/2010 7:06:29 PM

xiii

Contributors

Srinivas Aluru
Department of Electrical and

Computer Engineering
State University
Ames, Iowa

Robert J. Beynon
Department of Veterinary

Preclinical Sciences
University of Liverpool
Liverpool, United Kingdom

Jost Bissel
Department of Computer Science
Christian-Albrechts-University of

Kiel
Kiel, Germany

Istvan Bogdan
Department of Automatic Control &

Systems Engineering
University of Sheffi eld
Sheffi eld, United Kingdom

Jeremy D. Buhler
Computer Science & Engineering
Washington University in St. Louis
St. Louis, Missouri

Roger D. Chamberlain
Computer Science & Engineering
Washington University in St. Louis
St. Louis, Missouri

Vipin Chaudhary
Department of Computer Science

and Engineering
University of Buffalo, SUNY
Buffalo, New York

Daniel Coca
Department of Automatic Control &

Systems Engineering
University of Sheffi eld
Sheffi eld, United Kingdom

Yoginder S. Dandass
Department of Computer Science

and Engineering
Mississippi State University
Starkville, Mississippi

Robert M. Farber
Pacifi c Northwest National

Laboratory (PNNL)
Richland, Washington

Tim Güneysu
Horst Görtz Institute for IT-Security
Ruhr University Bochum
Bochum, Germany

Arpith C. Jacob
Computer Science & Engineering
Washington University in St. Louis
St. Louis, Missouri

Joseph M. Lancaster
Computer Science & Engineering
Washington University in St. Louis
St. Louis, Missouri

Dominique Lavenier
Informatique et Télécommunication
ENS Cachan
Rennes, France

10768_C000.indd xiii10768_C000.indd xiii 6/17/2010 7:06:29 PM6/17/2010 7:06:29 PM

xiv Contributors

Feng Lin
School of Computer Engineering
Nanyang Technological University
Singapore

Weiguo Liu
School of Computer Engineering
Nanyang Technological University
Singapore

Yongchao Liu
School of Computer Engineering
Nanyang Technological University
Singapore

Douglas Maskell
School of Computer Engineering
Nanyang Technological University
Singapore

Van-Hoa Nguyen
EPI Symbiose
National Institute for Research in

Computer Science and Control
Rennes, France

Abhinav Sarje
Department of Electrical and

Computer Engineering
Iowa State University
Ames, Iowa

Manfred Schimmler
Department of Computer Science
Christian-Albrechts-University of

Kiel
Kiel, Germany

Bertil Schmidt
School of Computer Engineering
Nanyang Technological University
Singapore

Haixiang Shi
School of Computer Engineering
Nanyang Technological University
Singapore

Alexandros Stamatakis
Department of Computer Science
Technical University of Munich
Munich, Germany

Maria Stepanova
School of Computer Engineering
Nanyang Technological University
Singapore

John Paul Walters
University of Southern California

Information Sciences Institute
East

Arlington, Virginia

Lars Wienbrandt
Department of Computer Science
Christian-Albrechts-University of

Kiel
Kiel, Germany

10768_C000.indd xiv10768_C000.indd xiv 6/17/2010 7:06:29 PM6/17/2010 7:06:29 PM

1

1
Algorithms for Bioinformatics

Bertil Schmidt

1.1 Introduction ..1
1.2 Pairwise Sequence Alignment ...2

1.2.1 Defi nitions and Notations ..2
1.2.2 DP for Optimal Pairwise Alignment with Linear Gap

Penalty Function ..6
1.2.3 DP for Optimal Pairwise Alignment with Affi ne Gap

Penalty Function .. 10
1.2.4 Computing Alignments in Linear Space Using Divide and

Conquer ... 12
1.3 Multiple Sequence Alignment ... 14

1.3.1 Background ... 14
1.3.2 Progressive Alignment ... 18

1.4 Database Search and Exact Matching ...22
1.4.1 Filtration ..22
1.4.2 Suffi x Trees and Suffi x Arrays ... 24

1.5 References ... 26

1.1 Introduction

In this chapter we provide some important background on bioinformatics
algorithms that is important to understand the remaining chapters of this
book. This chapter is at an introductory level and is suitable for readers who
are new to the fi eld of bioinformatics. Attention has been paid to provide
a suffi cient number of examples and illustrations to explain concepts and
ideas.

We start with the most basic bioinformatics algorithm in Section 1.1: pair-
wise sequence alignment. This includes global and local pairwise alignment
as well as linear and affi ne gap penalties, which can all be computed in
quadratic time and space using dynamic programming (DP). Furthermore,

10768_C001.indd 110768_C001.indd 1 6/17/2010 7:22:00 PM6/17/2010 7:22:00 PM

2 Bioinformatics: High Performance Parallel Computer Architectures

Hirschberg’s divide-and-conquer approach, which reduces the space com-
plexity from quadratic to linear by just doubling the amount of computation,
is presented.

Section 1.2 explains how the pairwise alignment problem can be extended
to multiple sequence alignment (MSA). Unfortunately, the straightforward
extension of the DP approach leads to an exponential time complexity.
Therefore, heuristics are commonly used to compute multiple alignments
in practice. We fi rst present the simple star alignment heuristic and then
show how this is extended to the progressive alignment approach used in
ClustalW (which is one of the most popular multiple alignment tools with
more than 26,000 citations in the ISI web of science).

The most popular bioinformatics tool is undoubtedly the basic local align-
ment search tool (BLAST). BLAST is a sequence database search method,
where BLASTN is for DNA database search and BLASTP is for protein data-
base search. We explain the fi ltration approach that is the basis of BLAST in
Section 1.3. We further describe a number of effi cient data structure for exact
string matching, namely, the suffi x tree and the suffi x array.

Of course there are many more bioinformatics algorithms that are not dis-
cussed in this chapter. The interested reader is referred to corresponding
books [1–4].

1.2 Pairwise Sequence Alignment

1.2.1 Definitions and Notations

Consider a sequence S of length l over the alphabet Σ. We use the following
notations.

S• [i . . . j] denotes the substring of S starting at position i and ending at
position j; that is, S = S[0 . . . l−1].
S• [i] denotes the letter at position i in S.
• S denotes the length of string S; that is, S = l.
The string of length zero is called the empty string and is denoted •
as ε.
The gap symbol is denoted as −, where −• ∉Σ.

Alphabets used in bioinformatics are often the DNA alphabet with four
nucleotides (i.e., Σ = {A, C, G, T}) and the protein alphabet with the 20 standard
amino acids (i.e., Σ = {A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y}).

Given are two sequences • S0 and S1 over the alphabet Σ of length l0
and l1, respectively. We defi ne a global pairwise sequence alignment of

10768_C001.indd 210768_C001.indd 2 6/17/2010 7:22:01 PM6/17/2010 7:22:01 PM

Algorithms for Bioinformatics 3

S0 and S1 as a matrix M of size 2 × n with n ≥ max{l0, l1} with the
 following properties for all 0 ≤ k ≤ 1 and 0 ≤ i ≤ n−1.
M• [k][i] = − or M[k][i] = Sk[p] for some p ∈ {0, . . . ,lk−1}.
If • M[k][i] = − then M[1−k][i] ≠ −.
If • M[k][i] = Sk[p] and M[k][j] = Sk[q], then p < q, for all i < j.
It exists • j ∈ {0, . . . ,n−1} with M[k][j] = Sk[p] for all 0 ≤ p ≤ lk−1.

In other words, in a global pairwise alignment all letters of both sequences occur
in the corresponding row of the alignment matrix in the same order as in the
original sequence, possibly interspersed by gaps. Furthermore, it is not allowed
to have two gaps in a column of the alignment matrix. An example of two pos-
sible global alignments of a pair of DNA sequences is shown in Figure 1.1.

For a pair of given sequences there is a very large (exponential) number
of possible global alignments. Thus, we are only interested in certain align-
ments with high alignment scores. Therefore, a pairwise alignment scoring
method needs to be defi ned. A frequently used method is to score every col-
umn of an alignment independently and then add up the individual column
scores. This is known as a linear scoring scheme. Given a global pairwise align-
ment M of length n, the linear score of M is defi ned by Equation 1.1, where
δpair(M[0][i],M[1][i]) is the score of the ith alignment column in M.

,

n

i

M M i M i
1

linear pair
0

score () ([0][] [1][])δ
−

=

= ∑

(1.1)

The classifi cation of each alignment columns as

An • insertion or a deletion (or indel for short) if it includes a gap
A • match, if it consists of two equal letters
A • mismatch, if it consists of two unequal letters

can be used for a possible defi nition of δpair as shown in Equation 1.2, where
g (gap penalty), α (match score), and β (mismatch penalty) are parameters of
the scoring scheme.

T A G A C T A − G

0 1 2 3 4 5 6 7 8

− A C G T A T G

0

1

T A G A C T A G

0 1 2 3 4 5 6 7 8

A C G − − T A T G

0

1

−

M1 M2

−

−−

9

FIGURE 1.1
Two possible global alignments M1 and M2 of S0 = TAGACTAG and S1 = ACGGTATG.

10768_C001.indd 310768_C001.indd 3 6/17/2010 7:22:01 PM6/17/2010 7:22:01 PM

4 Bioinformatics: High Performance Parallel Computer Architectures

δ α
β

= − = −
= =
 ≠

g M i M i ()

M i M i M i M i ()

 M i M i ()
pair

if [0][] or [1][] indel
([0][], [1][]) if [0][] [1][] match

if [0][] [1][] mismatch

(1.2)

Typically, g and β are negative while α is positive. Using this scheme
with the parameters g = −1, α = +2, and β = −2 results in the following
scores for the alignment shown in Figure 1.1: scorelinear(M1) = +5 and
scorelinear(M2) = −3. In practice, the usage of a single score for match (α) and
mismatch (β) is often replaced by a more general substitution matrix sbt of
size Σ × Σ. The reason for using substitution matrices instead of match/
mismatch is that they can model evolutionary events more accurately (i.e.,
the mutation of one amino acid to another amino acid), since they include
individual scores for each pair of letters. An example of a frequently used
substitution matrix for amino acids is BLOSUM62 [5], which is shown in
Figure 1.2.

A R N D C Q E G H I L K M F P S T W Y V
0 −3 −3 −3 −1 −2 −2−3 −3 3 1 −2 1 −1 −2 −2 0 −3 −1 4V
−2 −2 −2 −3 −2 −1 −2−3 2 −1 −1 −2−1 3 −3 −2 −2 2 7Y
−3 −3 −4 −4 −2 −2 −3−2 −2−3 −2 −3−1 1 −4 −3 −2 11W
0 −1 0 −1 −1 −1 −1−2 −2−1 −1 −1−1 −2 −1 1 5T
1 −1 1 0 −1 0 0 0 −1−2 −2 0 −1 −2 −1 4S
−1 −2 −2 −1 −3 −1 −1−2 −2−3 −3 −1−2 −4 7P
−2 −3 −3 −3 −2 −3 −3−3 −1 0 0 −3 0 6F
−1 −1 −2 −3 −1 0 −2−3 −2 1 2 −1 5M
−1 2 0 −1 −3 1 1 −2 −1−3 −2 5K
−1 −2 −3 −4 −1 −2 −3−4 −3 2 4L
−1 −3 −3 −3 −1 −3 −3−4 −3 4I
−2 0 1 −1 −3 0 0 −2 8H
0 −2 0 −1 −3 −2 −2 6G
−1 0 0 2 −4 2 5E
−1 1 0 0 −3 5Q
0 −3 −3 −3 9C
−2 −2 1 6D
−2 0 6N
−1 5R
4A

FIGURE 1.2
The BLOSUM62 substitution matrix for amino acids. Because the matrix is symmetric, we only
show the lower triangular part (positive values are shaded).

10768_C001.indd 410768_C001.indd 4 6/17/2010 7:22:02 PM6/17/2010 7:22:02 PM

Algorithms for Bioinformatics 5

When using a substitution matrix sbt, the defi nition of δpair is modifi ed to
Equation 1.3.

g M i M i
M i M i

sbt M i M ipair

if [0][] or [1][]
([0][], [1][])

[[0][]][[1][]] otherwise
δ

= − = −
= 


(1.3)

Consider the two global alignments M3 and M4 shown in Figure 1.3. Both
alignments have an identical score under a linear scoring scheme; for exam-
ple, for g = −1, α = +2, and β = −2, scorelinear(M3) = +4 = scorelinear(M4). However,
from a biological perspective, M3 would correspond to two evolutionary
events (two indels of length two each) while M4 corresponds to only a single
event (one indel of length four). Hence, M4 should have a higher score than
M3. Biologists therefore often prefer an affi ne scoring scheme rather than the
simple linear scoring scheme used so far.

In an affi ne scoring scheme there are two values for scoring indels:

go• : the gap opening penalty, and
ge• : the gap extension penalty.

Under affi ne scoring, a continuous indel of length k is charged go + k ⋅ ge
rather than k ⋅ g (used in linear scoring). For example, using go = −3, ge = −1,
α = +2, and β = −2, scoreaffi ne(M3) = −2 and scoreaffi ne(M4) = +1. More formally,
given a global pairwise alignment M of length n, go, ge, and sbt, the affi ne
score of M is defi ned by Equation 1.4, where δpair(M[0][i], M[1][i]) is the same
as in Equation 1.2 or 1.3 with ge used for g, and the ∆ is the number of gap
openings in M; that is, (){ }i k M k i M k i i: [][] and [][1] or 0∆ = ∃ = − − ≠ − = .

n

i

M M i M i go
1

affine pair
0

score () ([0][], [1][])δ
−

=

 = − ∆ ⋅ 
 
∑

(1.4)

The linear scoring is also referred to as global pairwise alignment with
linear gap penalty function and the affi ne scoring to global pairwise alignment
with affi ne gap penalty function.

A T T T C T G

0 1 2 3 4 5 6 7

A − − T − G

0

1

M3

C

−T

A T T T C T G

0 1 2 3 4 5 6 7

A T − − T G

0

1

M4

C

−−

FIGURE 1.3
Examples of two global alignments that have the same score under a linear scoring scheme.
However, under an affi ne scoring scheme alignment M4 would be preferred.

10768_C001.indd 510768_C001.indd 5 6/17/2010 7:22:03 PM6/17/2010 7:22:03 PM

6 Bioinformatics: High Performance Parallel Computer Architectures

Another important pairwise alignment is local pairwise alignment. Given
are two sequences S0 and S1 over the alphabet Σ of length l0 and l1, respec-
tively. A local pairwise sequence alignment of S0 and S1 is a global alignment
of two substrings S0[i0 . . . j0] and S1[i1 . . . j1] of S0 and S1 for any 0 ≤ i0 ≤ j0 ≤ l0
and 0 ≤ i1 ≤ j1 ≤ l1. The score of a local alignment is the score of the associated
global substring alignment.

1.2.2 DP for Optimal Pairwise Alignment
with Linear Gap Penalty Function

In this section we describe how an optimal global pairwise alignment
(i.e., a pairwise global alignment with maximum score) under a linear
scoring scheme can be computed with a DP approach with time and space
complexity of order O(l0 ⋅ l1). Afterward, we show how this DP approach
can be easily modifi ed to compute an optimal local pairwise align-
ment. The former is also known as the Needleman–Wunsch algorithm
[6] and the latter, as the Smith–Waterman algorithm [7]. The generaliza-
tion to optimal alignment with an affi ne scoring scheme is described in
Section 1.2.3.

Given are two sequences S0 and S1 of length l0 and l1 and a linear scoring
scheme (consisting either of g and sbt or of g, α, and β). Let H[i][j] denote the
score of an optimal global pairwise alignment of the prefi xes S0[0 . . . i−1] and
S1[0 . . . j−1]. For i ≥ 1 and j ≥ 1, only the following three cases are possible for
the last column of an associated alignment.

 1. S0[i−1] and S1[j−1] are aligned.
 2. S0[i−1] is aligned with a gap.
 3. S1[j−1] is aligned with a gap.

For each case the optimal global alignment score can be computed as
follows:

 1. δ(S0[i−1],S1[j−1]) plus the optimal alignment global score of the
 prefi xes S0[0 . . . i−2] and S1[0 . . . j−2] (which is stored in H[i−1][j−1]).

 2. δ(S0[i−1],−) plus the optimal alignment global score of the prefi xes
S0[0 . . . i−2] and S1[0 . . . j−1] (which is stored in H[i−1][j]).

 3. δ(−,S1[j−1]) plus the optimal alignment global score of the prefi xes
S0[0 . . . i−1] and S1[0 . . . j−2] (which is stored in H[i][j−1]).

The optimal global alignment score is then the maximum of these three val-
ues. Thus, H[i][j] can be computed using the recurrence relation in Equation
1.5 for the linear scoring scheme given by g, α, and β.

10768_C001.indd 610768_C001.indd 6 6/17/2010 7:22:07 PM6/17/2010 7:22:07 PM

Algorithms for Bioinformatics 7

 S i S j
H i j

 S i S j

H i j H i j g i l j l

H i j g

0 1

0 1

0 1

if [1] [1]
[1][1]

if [1] [1]

[][] max [1][] , for all 1 and 1
[][1]

− = − 
− − +  − ≠ −= − + ≤ ≤ ≤ ≤

 − +


a

b

 (1.5)

For the linear scoring scheme given by g and sbt[][], the recurrence relation
for H[i][j] is given by Equation 1.6.

H i j sbt S i S j

H i j H i j g i l j l

H i j g

0 1

0 1

[1][1] [[1]][[1]]
[][] max [1][] , f or all 1 and 1

[][1]

− − + − −
= − + ≤ ≤ ≤ ≤
 − +

 (1.6)

Any value in the fi rst column of H, that is, H[0][j] for all 1 ≤ j ≥ l1, simply
refers to the optimal global alignment score for aligning the empty string
(ε = S0[0 . . . −1]) to the prefi x S1[0 . . . j−1]. There is only one possible alignment
for this case (aligning S1[0 . . . j−1] to gaps) with the score g ⋅ j. Therefore, the
initial conditions for the fi rst row and the fi rst column of H are given by
Equation 1.7.

= =
= ⋅ = >
 ⋅ > =

 i j

H i j g j i j

g i i j

0 if 0 and 0
[][] if 0 and 0

if 0 and 0

(1.7)

The complete matrix H[i][j] of size (l0 + 1) × (l1 + 1) can now be computed
(in a row major order) using the aforementioned recurrences for i = 0 . . . l0
and j = 0 . . . l1. The optimal global pairwise alignment score is then H[l0][l1].
Figure 1.4 shows all values of H[][] for the alignment of S0 = AGT and S1 =
AAGT using g = −2, α = +1, and β = −1.

So far we have computed only the optimal global alignment score, but not
the actual alignment. The actual alignment can be computed from the DP
matrix H by a trace-back procedure. The trace-back starts at the lower right
matrix cell H[l0][l1] and traverses H until it reaches the upper-left matrix cell
H[0][0]. For each matrix cell H[i][j] that the trace-back traverses, it is checked
whether the value H[i][j] has been formed from the upper-left neighbor (i.e.,
H[i][j] = H[i−1][j−1] + sbt[S0[i−1]][S1[j−1]]), the left neighbor (i.e., H[i][j] = H[i]
[j−1] + g), or the upper neighbor (i.e., H[i][j] = H[i−1][j] + g). The trace-back

10768_C001.indd 710768_C001.indd 7 6/17/2010 7:22:07 PM6/17/2010 7:22:07 PM

8 Bioinformatics: High Performance Parallel Computer Architectures

then moves to the corresponding cell. For cells in the fi rst row (column), the
trace-back always moves to the left (up). One way to implement the trace-
back procedure is to use trace-back pointers in each matrix cell H[i][j]. A
trace-back pointer can have one of three values (up-left (←), left (←), up
(↑)) depending on which neighbor the value H[i][j] has been formed from.
Note that, in case of a tie between two or three neighbors, several trace-
back pointers can be stored in a matrix cell. As a consequence, there can be
several possible trace-back paths from H[l0][l1] to H[0][0], where each dis-
tinct path corresponds to an optimal global alignment. Figure 1.5 shows all
trace-back pointers for the example shown in Figure 1.4 as well as the two
possible trace-back paths.

The actual alignment can be constructed from a trace-back path using the
following three rules for each traversed matrix cell H[i][j] and the column k
of the alignment matrix M.

If an up-left pointer is used, then • M[0][k] = S0[i] and M[0][k] = S1[j],
move to H[i−1][j−1], and move to column k−1 in M.
If a left pointer is used, then • M[0][k] = − and M[0][k] = S1[j], move to
H[i][j−1], and move to column k−1 in M.
If an up pointer is used, then • M[0][k] = S0[i] and M[0][k] = −, move to
H[i−1][j], and column k−1 in M.

1−1−2−3

−200−1

−5−3−11

−6

−4

−2

−8−6−4−20

T

G

A

TGAA

FIGURE 1.4
The matrix H[][] of size 4 × 5 for the global alignment of the input DNA sequences S0 = AGT
and S1 = AAGT using g = −2, α = +1, and β = −1. The optimal global pairwise alignment score is
H[3][4] = +1. S0[i] and S1[j] are also displayed for each row and each column.

T

T

1−1−2−3
−200−1
−5−3−11

−6
−4
−2

−8−6−4−20 0 0

A − T

0 1 2 3

A A G T

0

1

− A G T

0 1 2 3

A A G T

0

1

G

A

A A G

G

FIGURE 1.5
The matrix H with trace-back pointers for the example shown in Figure 1.4 (left). The two
possible trace-back paths from H[l0][l1] to H[0][0] (center and right). The optimal alignments
corresponding to each trace-back path are also shown.

10768_C001.indd 810768_C001.indd 8 6/17/2010 7:22:08 PM6/17/2010 7:22:08 PM

Algorithms for Bioinformatics 9

The two optimal alignments corresponding to the two trace-back paths in
Figure 1.4 are also shown in Figure 1.5.

We now modify the presented DP algorithm to the computation of optimal
local alignments. This can be done by a slight modifi cation of the defi nition
of H[i][j]. For local alignment, H[i][j] denotes the score of the best optimal
global pairwise alignment of any two suffi xes of S0[0 . . . i−1] and S1[0 . . . j−1];
that is, the maximum score from all optimal global alignments of S0[p . . . i−1]
and S1[q . . . j−1] for all 0 ≤ p ≤ i and 0 ≤ q ≤ j. The following four cases are pos-
sible for the last column of an associated alignment:

 1. S0[i−1] and S1[j−1] are aligned.
 2. S0[i−1] is aligned with a gap.
 3. S1[j−1] is aligned with a gap.
 4. Both suffi xes are empty strings (in which the alignment has no

column).

The scores for the fi rst three cases are computed in the same way as for the
global alignment recurrence relation. The score for Case 4 is always zero (i.e.,
an optimal local alignment can never have a negative score). The recurrence
relation for local alignment with the linear scoring scheme given by g, α, and
β is defi ned by Equation 1.8.

 S i S j
H i j

 S i S j

H i j H i j g i l j l

H i j g

0 1

0 1

0 1

if [1] [1]
[1][1]

if [1] [1]

[][] max [1][] , for all 1 and 1

[][1]
0

− = − 
− − +  − ≠ −= − + ≤ ≤ ≤ ≤

 − +


a

b

 (1.8)

For the linear scoring scheme given by g and sbt[][] the recurrence is
defi ned by Equation 1.9.

H i j sbt S i S j

H i j H i j g i l j l

H i j g

0 1

0 1

[1][1] [[1]][[1]]
[][] max [1][] , for all 1 and 1

[][1]
0


 − − + − −
= − + ≤ ≤ ≤ ≤
 − +


 (1.9)

The initial conditions are of H[0][0] = H[i][0] = H[0][j] = 0 for all 1 ≤ i ≤ l0 and
1 ≤ j ≤ l1. Since a local alignment considers any two substrings of S0 and S1, the

10768_C001.indd 910768_C001.indd 9 6/17/2010 7:22:09 PM6/17/2010 7:22:09 PM

10 Bioinformatics: High Performance Parallel Computer Architectures

score of the optimal local alignment is the maximum score in matrix H. Let
H[imax][jmax] be a matrix cell with a maximum score. An actual alignment can
now be found by executing a trace-back procedure, which ends at the fi rst
matrix cell with the score zero. Figure 1.6 shows an example of an optimal
local pairwise alignment computation with trace-back.

1.2.3 DP for Optimal Pairwise Alignment
with Affine Gap Penalty Function

In this section we extend the previously described DP algorithms for optimal
global and local alignment with a linear scoring scheme to an affi ne scoring
scheme. The recurrence relations for affi ne scoring need to consider whether
a gap is opened (for which the penalty is go + ge) or a gap is extended (for
which the penalty is ge). To model these two situations, three DP matrices
are used instead of only one. Given two sequences S0 and S1 of length l0 and
l1 and an affi ne scoring scheme (consisting of go, ge, sbt or of go, ge, α, β), they
are defi ned as follows for global alignment.

H• [i][j]: Score of an optimal global pairwise alignment of S0[0 . . . i−1]
and S1[0 . . . j−1].
E• [i][j]: Score of an optimal global pairwise alignment of S0[0 . . . i−1]
and S1[0 . . . j−1], which ends with S0[i−1] aligned to a gap.
F• [i][j]: Score of an optimal global pairwise alignment of S0[0 . . . i−1]
and S1[0 . . . j−1], which ends with a gap aligned to S1[j−1].

Thus, the two different gap penalties are used for the calculation of
 E[i] [j] (and F[i][j]). The value of E[i][j] ends either with a gap extension (in
which case E[i][j] = E[i−1][j] + ge) or with a gap opening (in which case

A

T

T

TGAA

A

G

0 0 0 0 0

0

0

0

0

0

0 0 0 1

0 0 0 1

1 1 0 0

1 2 0 0

0 0 3 1

A A

0 1 2

A A G

0

1

G

FIGURE 1.6
The matrix H of size 6 × 5 for the local alignment computation of sequences S0 = TTAAG and S1
= AAGT using g = −2, α = +1, and β = −1. The optimal alignment trace-back path from H[5][3]
to H[2][0] and the actual alignment are also shown.

10768_C001.indd 1010768_C001.indd 10 6/17/2010 7:22:10 PM6/17/2010 7:22:10 PM

Algorithms for Bioinformatics 11

E[i] [j] = H[i−1] j] + go + ge). The calculation of F[i][j] is similar. The value of
H[i][j] is then E[i][j] (S0[i−1] is aligned with a gap), F[i][j] (S1[j−1] is aligned
with a gap), or H[i][j] + sbt[S0[i−1]][S1[j−1]] (S0[i−1] and S1[j−1] are aligned).
In summary, the recurrence relations for all 1 ≤ i ≤ l1 and 1 ≤ j ≤ l2 for
global alignment with the affi ne scoring scheme go, ge, sbt[][] are shown in
Equations 1.10.

− − + − −
= 



− + +
=  − +

− + +
=  − +

H i j sbt S i S j

H i j E i j

F i j
H i j go ge

E i j
E i j ge
H i j go ge

F i j
F i j ge

0 1[1][1] [[1]][[1]]
[][] max [][]

[][]
[1][]

[][] max
[1][]
[][1]

[][] max
[][1]

(1.10)

The recurrence relations for the scoring scheme go, ge, α, β are the same
except that H[i][j] + sbt[][] is changed to H[i][j] + α (if S0[i−1] = S1[j−1]) and
H[i][j] + β (otherwise). The initial conditions for all 1 ≤ i ≤ l1 and 1 ≤ j ≤ l2 are
given by

H• [0][0] = 0; H[i][0] = go + i ⋅ ge; H[0][j] = go + j ⋅ ge;
E• [0][0] = −∞; E[i][0] = go + i ⋅ ge; E[0][j] = −∞;
F• [0][0] = −∞; F[i][0] = −∞; F[0][j] = go + j ⋅ ge.

An example is shown in Figure 1.7.
An alignment corresponding to the optimal global alignment score can

again be found by a trace-back procedure from H[l0][l1] to H[0][0]. The rules
for the trace-back are as follows:

From • H[i][j], move to H[i−1][j−1] (if H[i][j] = H[i−1][j−1] + sbt[S0[i−1]]
[S1[j−1]]), to E[i][j] (if H[i][j] = E[i][j]), or to F[i][j] (if H[i][j] = F[i][j]).
From • E[i][j], move to E[i−1][j] (if E[i][j] = E[i−1][j] + ge), or to H[i−1][j]
(if E[i][j] = H[i−1][j] + ge + go).
From • F[i][j], move to F[i][j−1] (if F[i][j] = F[i][j−1] + ge), or to H[i][j−1]
(if F[i][j] = H[i][j−1] + ge + go).

The recurrence relations for optimal local pairwise alignment can be con-
structed by adding the term zero to the maximum computation of H[][] and
changing the initial conditions. In summary, the recurrence relations for all
1 ≤ i ≤ l1 and 1 ≤ j ≤ l2 for local alignment with the affi ne scoring scheme go, ge,
sbt[][] are given by Equations 1.11.

10768_C001.indd 1110768_C001.indd 11 6/17/2010 7:22:11 PM6/17/2010 7:22:11 PM

12 Bioinformatics: High Performance Parallel Computer Architectures

 − − + − −


= 




− + +
=  − +

− + +
=  − +

H i j sbt S i S j

E i jH i j
F i j

H i j go ge
E i j

E i j ge
H i j go ge

F i j
F i j ge

0 1[1][1] [[1]][[1]]

[][][][] max
[][]

0

[1][]
[][] max

[1][]
[][1]

[][] max
[][1]

(1.11)

The initial conditions are H[0][0] = H[i][0] = H[0][j] = 0; E[0][0] = −∞; E[i][0] =
go + i ⋅ ge; E[0][j] = −∞; F[0][0] = −∞; F[i][0] = −∞; F[0][j] = go + j ⋅ ge; for 1 ≤ i ≤ l1
and 1 ≤ j ≤ l2.

1.2.4 Computing Alignments in Linear Space Using Divide and Conquer

A critical resource in the described DP alignment algorithm is memory.
Assume we want to align two sequences of length one million each. Then the
DP matrix would have one trillion entries, leading to a memory requirement
of four terabytes (assuming four bytes per matrix cell). An important improve-
ment is therefore the space-saving divide-and-conquer method that was fi rst

−∞
−∞

−∞
−11−10−9−8

0

−12

−11 −12

−16

−10
−9
−8

−10−9−8

−∞

−10
−9
−8

−∞−∞−∞−∞−∞ −∞

2

−16

−6

−17 −18 −19 −20

−6 −7 −8 −9

−7 −8 −9

−17 −14 −7 −8 −9

−6
−7

−6 −14 −15 −16 −17

1 −4 −8 −9

−18 −15 −15 −8 −9

−7 −7 −12 −16 −17

−7 0 −5 −6

H[][]

E[][]

F[][]

V S −

0 1 2 3

V L S P

0

1

− A

4

A

V − S

0 1 2 3

V L S P

0

1

− A

4

A

V

V L S P A

V L S P A

V L S P A

S
A

V
S
A

V
S
A

FIGURE 1.7
Matrices H[][], E[][], and F[][] for global pairwise alignment of S0 = VSA and S1 = VLSPA using
the affi ne scoring scheme α = +2, β = −1, go = −7, and ge = −1. The two trace-back paths from
H[3][5] to H[0][0] for the two optimal alignments shown on the right are also indicated by trace-
back pointers.

10768_C001.indd 1210768_C001.indd 12 6/17/2010 7:22:11 PM6/17/2010 7:22:11 PM

Algorithms for Bioinformatics 13

introduced by Hirschberg [8] and later applied to bioinformatics by Myers and
Miller [9]. The method reduced the required memory from quadratic to linear;
that is, for the aforementioned example we would need only a few megabytes
instead of a few terabytes. The linear-space method is described for optimal
global pairwise alignment with linear scoring in the following text.

We fi rst note that the optimal alignment score can easily be computed in linear
space. Consider two input sequences S0 and S1 of length l0 and l1. For the com-
putation of the matrix cell H[i][j], only the values H[i−1][j−1], H[i][j−1], and H[i−1]
[j] are required. When iteratively computing H[][] in row-major order, only the
values H[i−1][j−1] to H[i−1][l1] and H[i][0] to H[i][j−1] need to be kept at any point
(i, j) in the iteration. After the calculation of H[i][j], the H[i−1][j−1] is not required
anymore. Thus, instead of using a two-dimensional DP matrix H of size (l0 +
1) × (l1 + 1), it suffi ces to use a one-dimensional vector of size (l1 + 2) for score-only
computation. Figure 1.8 illustrates the linear–space score-only computation.

However, to get an actual optimal alignment and not just the score, a trace-
back path needs to be established. If we want to use only linear space, the trace-
back procedure described in the previous section has to be modifi ed. Let us
assume that together with the linear–space score-only alignment matrix com-
putation we can identify an optimal midpoint in the middle row l0/2, denoted
as om(l0/2). In general, om(i), an optimal midpoint in row i, is defi ned as an
intersection of the trace-back path with row i; that is, the trace-back path of an
optimal global alignment goes through the cell H[i][om(i)]. The identifi ed opti-
mal midpoint om(l0/2) divides the DP matrix H into four quadrants:

 A. [0 . . . l0/2][0 . . . om(i)].
 B. [0 . . . l0/2][om(i) . . . l1].
 C. [l0/2 . . . l0][0 . . . om(i)].
 D. [l0/2 . . . l0][om(i) . . . l1].

Owing to the trace-back path properties (only left, up, or up-left), we know that
the path can pass through only quadrants A and D. Therefore, quadrants II and
III can be eliminated from further consideration. The procedure is then applied
to identify om(l0/4) in quadrant A and om(3 ⋅ l0/4) in quadrant D, resulting in

i

j

i

j+1

FIGURE 1.8
Linear–space score-only alignment computation. The values stored in the one-dimensional
vector HH at iteration step (i,j) are shaded (left); that is, HH[k] = H[i][k] for 0 ≤ k ≤ j−1 and HH[k
+ 1] = H[i−1][k] for j−1 ≤ k ≤ l1. Afterward, step (i,j + 1) is performed.

10768_C001.indd 1310768_C001.indd 13 6/17/2010 7:22:12 PM6/17/2010 7:22:12 PM

14 Bioinformatics: High Performance Parallel Computer Architectures

the four quadrants A1, A4, D1, and D4, which the optimal alignment traverses
(see Figure 1.9). It is recursively applied until the resulting quadrants are small
enough to compute an actual alignment in quadratic in quadratic space.

It remains to be shown how to fi nd an optimal midpoint in linear space.
For the two given sequences S0 and S1 of length l0 and l1, an optimal mid-
point om(l0/2) can be found by calculating score(i) for all 0 ≤ i ≤ l1, where
score(i) is defi ned as the score of the best global alignment of S0 and S1 passing
through the matrix cell [l0/2][i]. An optimal midpoint can then be found by
om(l0/2) = argmax0≤i≤l1

{score(i)}. We can calculate the score(i) values by score(i) =
upper(i) + lower(i); where upper(i) is the optimal global alignment score of
S0[0 . . . l0/2−1] and S1[0 . . . i−1] and lower(i) is the optimal global alignment score
of S0

R[l0/2 . . . l0−1] and S1
R[i . . . l1−1] (where S0

R and S1
R denote reverse sequences).

The values upper(i) (lower[i]) can simply be computed by executing the linear–
space score-only alignment computation for S0[0 . . . l0/2−1] and S1[0 . . . l1−1] (for
S0

R[l0/2 . . . l0−1] and S1
R[0 . . . l1−1]). The concept is illustrated in Figure 1.10.

Overall, the linear-space divide-and-conquer method needs to compute
double the amount of DP-matrix cells compared with to the square-space
method. However, the massive saving of space clearly outweighs this draw-
back. The presented linear-space method can also be extended to local align-
ment as well as to affi ne scoring schemes. The details are omitted here and
the interested reader is referred to literature [3, 9].

1.3 Multiple Sequence Alignment

1.3.1 Background

In this subsection, the defi nitions and scoring schemes for pairwise align-
ment are generalized for MSA. Afterward, we describe how DP can be used

l0/2

om (l0/2) om(l0/4)

3l0/4

l0/4

[0][0]

[l0][l1]

[0][0]

[l0][l1]om(3l0/4)

A1A B

C D

A2

A3 A4
D1 D2

D3 D4

FIGURE 1.9
Two steps of the divide-and-conquer algorithm to fi nd an optimal global alignment in linear
space.

10768_C001.indd 1410768_C001.indd 14 6/17/2010 7:22:15 PM6/17/2010 7:22:15 PM

Algorithms for Bioinformatics 15

to compute optimal global MSAs. Unfortunately, this approach leads to an
exponential runtime in terms of the number of input sequences and is there-
fore unpractical. Consequently, heuristic approaches that run in polynomial
time are used in practice. A very popular heuristic is the progressive align-
ment approach, which is described in the following subsection.

Given is a set � = {S0, . . . ,St−1} of t sequences over the alphabet Σ with
Si = li for i ∈ {0, . . . ,t−1}. We defi ne a global MSA of these sequences as a
matrix M[][] of size t × n with n ≥ max{l0, . . . , lt−1} that has the following prop-
erties for all 0 ≤ k ≤ t−1.

M• [k][i] = − or M[k][i] = Sk[p] for some p ∈ {0, . . . ,lk−1} for all 0 ≤ i ≤ n−1.
For all 0 ≤ • i ≤ n−1, exists r ∈ {0, . . . ,t−1} with M[r][i] ≠ −.
If • M[k][i] = Sk[p] and M[k][j] = Sk[q], then p < q, for all 0 ≤ i < j ≤ n−1.
It exists • i ∈ {0, . . . ,n−1} with M[k][i] = Sk[p] for all 0 ≤ p ≤ lk−1.

In other words, in a global MSA all letters of each sequence occur in the cor-
responding row of the alignment matrix in the same order as in the original
sequence, possibly interspersed by gaps. Furthermore, it is not allowed to have
only gaps in any alignment column. An example of a global MSA of four pro-
tein sequences is shown in Figure 1.11. A local MSA of � = {S0, . . . ,St−1} is a global
MSA of k substrings Sk[ik . . . jk] for any 0 ≤ ik ≤ jk ≤ lk and for each k ∈ {0, . . . ,t−1}.

We now need to defi ne how a MSA can be scored. Given a global MSA M of a
set of t sequences with n columns, the score of M is defi ned by Equation 1.12.

δ
−

=

= −∑
n

i

score M M i M t i
1

obj
0

() ([0][], ..., [1][])

(1.12)

In Equation 1.12, δobj(M[0][i], . . . ,M[t−1][i]) is the score of the ith alignment
column in the matrix M. The function δobj is called the objective function.

++++ ++

score(i) = lower(i) + upper(i)

0

l0/2

upper (i)

0

l0/2 l0/2

l0

lower(i)

0 l1

0 l1

0 l1

FIGURE 1.10
Optimal midpoint computation in linear space. The rows upper(i) and lower(i) are computed
by executing the score-only linear-space algorithm for the upper half and the lower half of the
DP matrix. Then, the row score(i) = lower(i) + upper(i) is calculated, which is used to identify an
optimal midpoint.

10768_C001.indd 1510768_C001.indd 15 6/17/2010 7:22:16 PM6/17/2010 7:22:16 PM

16 Bioinformatics: High Performance Parallel Computer Architectures

Several types of objective functions for MSA have been used. Two popular
objective functions are

Sum-of-pairs function, and•
Consensus function.•

Given is an associated linear pairwise alignment scoring scheme δpair. The
sum-of-pairs score of the ith alignment column is defi ned by Equation 1.13.

δ δ
− −

= = +

− = ∑ ∑
k k

r s r

M i M t i M r i M s i
2 1

obj pair
0 1

([0][], ..., [1][]) ([][], [][])

(1.13)

For example, for the pairwise scoring scheme α = +1, β = −1, and g = −2,
the sum-of-pairs-score of the MSA M3 shown in Figure 1.11 is score(M3) = 6
+ 0 − 6 − 4 − 9 − 6 − 6 − 3 − 4 − 4 + 6 + 6 = −24. An important feature of the
sum-of-pairs score of an MSA is that it is equal to the sum of all pairwise
global alignments induced by the given MSA. A global MSA of t sequences
induces a global pairwise alignment for each pair of sequences i, j; that is,
t ⋅ (t−1)/2 in total. The pairwise alignment of the sequences Si, Sj ∈ �, with i < j,
is defi ned as the pairwise alignment matrix given by taking the rows i and
j in the given MSA matrix and removing all columns containing two gaps.
Figure 1.12 shows all induced pairwise alignments for the example shown
in Figure 1.11. Using the pairwise scoring scheme α = +1, β = −1, and g = −2,
it can be seen that the sum of all induced pairwise alignments is: 2 − 4 − 9 +
1 − 7 − 7 = −24. Please note that an induced pairwise global alignment is not
necessarily also an optimal pairwise global alignment.

Given is an associated linear pairwise alignment scoring scheme δpair. The
consensus score of the ith alignment column of the MSA matrix M is defi ned by
Equation 1.14, where cons(i) is the consensus character for column i.

()δ δ
−

=

− = ∑
k

r

M i M t i M r i cons i
1

obj pair
0

([0][], ..., [1][]) [][], ()

(1.14)

M3

0 1 2 3 4 5 6 7 8 9 01 11

0 P Y R F T − − − I K S M

1 P Y K F − − − S I K S M

2 P Y M Y − − − S S E S M

3 P M D D N P F S F Q S M

FIGURE 1.11
A global MSA of S = {PYRFTIKSM, PYKFSIKSM, PYMYSSESM, PMDDNPFSFQSM}.

10768_C001.indd 1610768_C001.indd 16 6/17/2010 7:22:17 PM6/17/2010 7:22:17 PM

Algorithms for Bioinformatics 17

The consensus character is defi ned as the character from ∑ ∪ {−} that maxi-
mizes the overall similarity for column i (see Equation 1.15).

k

c r

cons i M r i c
1

pair
{ } 0

() arg max ([][],)δ
−

∈Σ∪ − =

 =  
 
∑

(1.15)

For the pairwise scoring scheme α = +1, β = −1, and g = −2, the consensus
sequence of the MSA M3 (see Figure 1.11) consisting of the consensus charac-
ters of each column is PYKF–SIKSM. The corresponding consensus score is
then score(M3) = 4 + 2 − 2 + 0 − 4 − 2 − 2 + 1 + 0 + 0 + 4 + 4 = +5.

For a given set of three sequences � = {S0, S1, S2} of length l0, l1, l2 and an
objective δobj, the optimal global MSA score can be computed by a straightfor-
ward extension of the pairwise DP approach. Let H[i][j][k] denote the score of
an optimal global MSA of the prefi xes S0[0 . . . i−1], S1[0 . . . j−1], and S2[0 . . . k−1].
For i ≥ 1, j ≥ 1, and k ≥ 1 only the following seven cases are possible for the last
column of an associated alignment.

 1. S0[i−1], S1[j−1], and S2[k−1] are aligned.
 2. S0[i−1], S1[j−1], and gap are aligned.
 3. S0[i−1], gap, and S2[k−1] are aligned.
 4. gap, S1[j−1], and S2[k−1] are aligned.
 5. S0[i−1], gap, and gap are aligned.
 6. gap, S1[j−1], and gap are aligned.
 7. gap, gap, and S2[k−1] are aligned.

For each case the optimal global alignment score can be computed by
the recurrence relation shown in Equation 1.16 for all 1 ≤ i ≤ l0, 1 ≤ j ≤ l1, and
1 ≤ k ≤ l2.

P Y R F T - I K S M
P Y K F - S I K S M

M0,1
P Y R F T - I K S M
P Y M Y - S S E S M

P Y R F T - - - I K S M
P M D D N P F S F Q S M

P Y K F S I K S M
P Y M Y S S E S M

P Y K F - - - S I K S M
P M D D N P F S F Q S M

M0,2 M0,3

M M1,3
P Y M Y - - - S S E S M
P M D D N P F S F Q S M

M2,3

FIGURE 1.12
The six global pairwise alignments induced by M3 (see Figure 1.11). Mi,j denotes the induced
pairwise alignment for Si and Sj.

10768_C001.indd 1710768_C001.indd 17 6/17/2010 7:22:20 PM6/17/2010 7:22:20 PM

18 Bioinformatics: High Performance Parallel Computer Architectures

H i j k S i S j S k

H i j k S i S j

H i j k S i S k

H i j k S j S kH i j k
H i j k S i

H i j k

obj 0 1 2

obj 0 1

obj 0 2

obj 1 2

obj 0

ob

[1][1][1] ([], [], [])
[1][1][] ([], [],)
[1][][1] ([], , [])
[][1][1] (, [], [])[][][] max
[1][][] ([], ,)
[][1][]

δ
δ
δ
δ

δ
δ

− − − +
− − + −
− − + −

− − + −=
− + − −

− + S j

H i j k S k
j 1

obj 2

(, [],)
[[][1] (, , [])δ










− −
 − + − −

(1.16)

Initial conditions are given by Equation 1.17.

⋅ = = ≥
= ⋅ = > =
 ⋅ > = =

g k i , j k

H i j k g j i , j k

g i i , j k

if 0 0, 0
[][][] if 0 0, 0

if 0 0, 0

(1.17)

Obviously, the DP matrix for three sequences has l0 ⋅ l1 ⋅ l2 cells. In general,
the DP approach to MSA for k input sequences requires O(lk

ave) DP matrix
cells, where lave is the average sequence length. Furthermore, each inner cell
depends on O(2k) other cells. Assuming that δobj for a single cell can be cal-
culated in O(k) time, this leads to an overall complexity of O(k ⋅ 2k ⋅ lk

ave), where
lave is the average sequence length. Obviously, this complexity leads to pro-
hibitive runtimes even for small values of k. The Carillo–Lipman bound [10]
allows to reduce the number of computed in the DP matrix by determining
areas where the optimal alignment path cannot pass through. Even though
this technique reduces the time and space complexity somewhat, overall
runtimes still remain prohibitive in practice. As a consequence, heuristic
methods that are suboptimal but run in polynomial time (usually between
O(k2 ⋅ lave) and O(k2 ⋅ l2

ave)) are used for MSA. We describe the popular progres-
sive alignment approach in the next subsection.

1.3.2 Progressive Alignment

The main idea of the star alignment approach to global MSA is to compute the
optimal global alignments for each pair of sequences. They are then used to
determine a center sequence, which is the sequence with the largest overall
similarity. The MSA is then built by combining all optimal pairwise align-
ments to the center sequence. Obviously, this method is suboptimal since the
pairwise alignments induced by the constructed MSA from two sequences
different from the center sequence can be incompatible. Figure 1.13 gives an
example of the MSA computation by the star method.

The star alignment method uses a star topology to progressively align
sequences to a growing multiple alignment. This can be generalized to pro-
gressively aligning to a growing multiple alignment along a so-called guided

10768_C001.indd 1810768_C001.indd 18 6/17/2010 7:22:21 PM6/17/2010 7:22:21 PM

Algorithms for Bioinformatics 19

tree. The guided tree is a rooted tree with each leaf node labeled by a unique
sequence from the input set.

Figure 1.14 shows an example of a guided tree for fi ve input sequences.
The internal nodes are labeled 1–4. Each internal corresponds to one of the
following three cases:

S0 S1 S2 S3 S4 Sum
S0 +1 +2 +1 −1 +3
S1 +1 −1 +2 −2 0
S2 +2 −1 +1 0 +2
S3 +1 +2 +1 0 +4
S4 −1 −2 0 0 −−3

+4

CTAG

S3

-CTAG
TCTACS0

CTAG
TTAG

S1

CTAG-
CTACC

S2

C-TAG-
CAT-GC S4

-C-TAG-
TC-TAC-
-T-TAG-
-C-TACC
-CAT-GC

FIGURE 1.13
Star alignment using the input sequence S0 = TCTAC, S1 = TTAG, S2 = CTACC, S3 = CTAG, S4
= CATGC and the scoring scheme α = +1, β = −1, and g = −1. Top: The matrix with the optimal
global alignment scores for each pair of sequences. The sequence with the highest sum of all
pairwise scores for each sequence is taken as the center (i.e., S3). Middle: All optimal global
pairwise alignments to the center (S3) are taken to get the fi nal MSA (bottom).

S0

S4

S2

S1

S3

1

2

3

4

FIGURE 1.14
A guided tree for fi ve input sequences S0, . . ., S4.

10768_C001.indd 1910768_C001.indd 19 6/17/2010 7:22:21 PM6/17/2010 7:22:21 PM

20 Bioinformatics: High Performance Parallel Computer Architectures

A pairwise sequence alignment (e.g., internal node 1 and 2 corre-•
sponding to the alignment of S0–S4 and S1–S3, respectively). This
results in an alignment profi le, which we denote as prof(A,B) (e.g.,
nodes 1 and 2 represent prof(S0,S4) and prof(S1,S3)).
A pairwise sequence–profi le alignment (e.g., internal node 3 corre-•
sponds to the alignment of S2 to prof(S0,S4)).
A pairwise profi le–profi le alignment (e.g., internal node 4 corre-•
sponds to the alignment of prof(prof(S0,S4),S2) to prof(S1,S3)).

The guided tree in Figure 1.14 therefore produces the fi nal MSA
prof(prof(prof(S0,S4),S2), prof(S1,S3)).

The guided tree is usually computed using a distance-based clustering
method like UPGMA [11] or neighbor-joining (NJ) [12, 13]. In the following
section we describe the NJ method, which is used in the popular ClustalW tool
[14]. Input to NJ is a distance matrix D of size k × k for a set of k input sequences
� = {S0, . . . ,Sk−1}, where the value D[i][j] denotes the distance between Si and
Sj. There are many ways to compute a distance value between two sequences.
For example, ClustalW computes the distance between two protein sequences
by the number of exact matches in optimal local alignment trace-back path of
Si and Sj divided by min{li,lj}. NJ then iteratively selects an entry in D. The cor-
responding two sequences are then connected with a node in the guided tree.
The corresponding two rows in D are then merged to produce a new smaller
matrix for the next iteration step. Iterations consist of the following steps:

 1. Compute the rate-corrected distance matrix DR from D for all i≠j
using Equation 1.18.

 ()
−

=

= − + =
− ∑

k

p

DR i j D i j r i r j r q D q p
k

1

0

1
[][] [][] [] [] with [] [][]

2 (1.18)

 2. Find the minimum entry DR[imin][jmin] in DR.
 3. Create a new node N in the guided tree that joins the two entries cor-

responding to imin and jmin and calculate all distances to N as shown
in Equations 1.19.

min min min min min

min min min min

min min min min min min

[][] [][] [] []

[][] [][] [][]

[][] [][] [][] [][], for all {0,..., 1} \{ , }

D i N D i j r i r j
D j N D i j D i N

D x N D i x D j x D i j x k i j

= + −
= −
= + − ∈ −

 (1.19)

 4. Replace the rows and columns imin and jmin in D by a new row and col-
umn representing the distances to N. The resulting distance matrix
is used for the next iteration step.

Figure 1.15 shows an example of a single iteration step of NJ. An iteration of
NJ has the complexity O(k2). Therefore, the overall NJ complexity is O(k3).

10768_C001.indd 2010768_C001.indd 20 6/17/2010 7:22:23 PM6/17/2010 7:22:23 PM

Algorithms for Bioinformatics 21

As mentioned earlier, sequence–profi le alignments and profi le–profi le
alignments are frequently used in progressive alignment to build up an
MSA. In the following section we briefl y describe how a sequence can be
aligned to a profi le using DP. Profi le–profi le alignment is then a straightfor-
ward extension of the sequence–profi le alignment. Given are a sequence S of
length l, an MSA matrix M of size k × n, and a linear scoring scheme (e.g., α, β,
and g). For each column 0 ≤ j ≤ n − 1 in M, and each letter c ∈ ∑ ∪ {−}, we now
build a letter frequency matrix P as shown in Equation 1.20.

{ }i M i j c
P c j

k

[][]
[][]

=
=

(1.20)

On the basis of the letter frequency matrix, we can now defi ne the score of
a letter c ∈ ∑ ∪ {−} with profi le column j in Equation 1.21.

b c

b

P c j P b j g P j c
t c j

g P b j c
\{ }

[][] [][] [][] if
(,)

[][] if

α β
∈Σ

∈Σ

 ⋅ + ⋅ + ⋅ − ≠ −
= 

⋅ = −


∑
∑

(1.21)

0 3 6 9 12
3 0 5 9 11
6 5 0 10 13
9 9 10 0 19

12 11 13 19 0

D [][] r[]
10
9.3
11.3
15.7
18.3

0
−16.3 0
−15.3 −15.7 0
−16.7 −16.0 −−17.0 0
−16.3 −16.7 −16.7 −15.0 0

DR [][]

2.8

7.2

C

D

B

E

N

A

A
B
C
D
E

0 3 2.5 12
3 0 2 11

2.5 2 0 11
12 11 11 0

D[][]
A
B
N
C

FIGURE 1.15
Single NJ iteration step. Starting from the matrix D on the upper left, the rate-corrected matrix
DR is calculated using the vector r. The minimum in DR is detected and the corresponding
nodes C and D are joined in the guided tree by the newly created node N. All distances to N are
calculated, resulting in an updated smaller matrix D.

10768_C001.indd 2110768_C001.indd 21 6/17/2010 7:22:23 PM6/17/2010 7:22:23 PM

22 Bioinformatics: High Performance Parallel Computer Architectures

The score of a sequence–profi le alignment is then simply the sum of all
column scores. An example of a letter frequency matrix for a given MSA and
the score of a sequence–profi le alignment is shown in Figure 1.16.

The optimal global sequence–profi le alignment can be computed by DP
using the recurrence relation in Equation 1.22.

H i j t S i j

H i j H i j g i l j n

H i j t j

0[1][1] ([1], 1)
[][] max [1][] , for all 1 and 1

[][1] (, 1)

− − + − −
= − + ≤ ≤ ≤ ≤
 − + − − (1.22)

The initial conditions are H[i][0] = i ⋅ g for 0 ≤ i ≤ l and H[0][j] = H[0][j−1] +
t(−,j−1) for 0 ≤ j ≤ n. The time complexity of the sequence–profi le DP algorithm
is O(l ⋅ n ⋅ ∑). The four steps of the ClustalW progressive alignment method
can be summarized as follows:

 1. Distance matrix calculation using pairwise alignments.
 2. Guided tree computation using neighbor-joining.
 3. Rooting the guided tree and calculating sequence weights.
 4. Progressively building the MSA following the branching order of

the rooted guided tree.

1.4 Database Search and Exact Matching

1.4.1 Filtration

Given a query sequence S of length l0 and a sequence D of length l1, where
D is constructed by concatenating all sequences of a sequence database,

A- C G A
A G A G A
- G C T A
C G- G C

A 57.0 00.0 52.0 00.0 05.0
C 52.0 0.00 05.0 00.0 52.0
G 00.0 0.75 00.0 57.0 00.0
T 00.0 52.0 00.0 00.0 00.0
− 00.0 00.0 52.0 52.0 52.0

M1 P
C G- CA A
5 4 3 2- 1

M2

(erocs M2 =) t +)1,A(g + t +)2,C(t(− +)3, t +)4,G(t)5,C(
2(= ⋅ 57.0 − 3⋅ (+)52.0 − (+)1 −3⋅ (+))53.0+57.0(−1⋅ 2(+))57.0+52.0(⋅ 57.0 − 1⋅ +)52.0
2(⋅ 52.0 − 3⋅ 5.0 − 1⋅ =)52.0 − 5784.3

FIGURE 1.16
A sequence–profi le alignment M2 of the DNA sequence AACGC to the letter frequency matrix P
of the MSA M1. The score of M2 is −3.4875 using the scoring scheme α = +3, β = −3, and g = −1.

10768_C001.indd 2210768_C001.indd 22 6/17/2010 7:22:24 PM6/17/2010 7:22:24 PM

Algorithms for Bioinformatics 23

the task of a database search tool is to fi nd all signifi cant local alignments
between S and D. Using a DP-only approach for this problem would lead to a
complexity of O(l0 ⋅ l1). Unfortunately, this would lead to prohibitive runtimes
for large databases such as GenBank.

The basic idea for fast sequence database search is therefore fi ltration.
Filtration assumes that good alignments usually contain short exact matches.
Such matches can be quickly computed by using data structures such as
lookup tables. Identifi ed matches are then used as seeds for further detailed
analysis. The analysis pipeline of the popular BLAST algorithm [15, 16] is
shown in Figure 1.17.

We briefl y describe each step of the pipeline for BLASTP, which is the ver-
sion of BLAST for searching protein sequence databases.

Stage 1:• This stage identifi es hits (or seeds). Each hit is defi ned as
an offset pair (i,j) for which w

k
sbt Q i k D j k T

1

0
([], [])

−

=
+ + ≥∑ , where

sbt is a amino acid substitution matrix, w is the user-defi ned word
length, and T is a user-defi ned threshold. BLASTP implements
this stage by preprocessing Q as follows. For each position i of Q
the neighborhood N(Q[i . . . i + w − 1],T) is computed consisting of all
w-mers p for which w

k
sbt Q i k p k T

1

0
([], [])

−

=
+ ≥∑ . The complete neigh-

borhood of a query is typically stored in an effi cient data structure
(e.g., lookup table, fi nite-state automaton, or keyword tree). Default
parameter values are w = 3 and T = 11.
Stage 2• : Stage 2 outputs high-scoring segment pairs (HSPs). HSPs
are identifi ed by performing an ungapped extension on a diagonal
d that contains a nonoverlapping hit pair (i1,j1), (i2,j2) within a win-
dow A; that is, d = i1 − j1 = i2 − j2 and w ≤ i2 − i1 ≤ A. The identifi cation

Word matchingStage 1

Database

Hits

Ungapped extensionStage 2

HSPs

Gapped extensionStage 3

Trace-back & displayStage 4

HSAs

FIGURE 1.17
Stages of the BLAST pipeline.

10768_C001.indd 2310768_C001.indd 23 6/17/2010 7:22:25 PM6/17/2010 7:22:25 PM

24 Bioinformatics: High Performance Parallel Computer Architectures

of pairs is also known as the two-hit algorithm. If the resulting
ungapped alignment scores above a certain threshold it is passed
to Stage 3.
Stage 3:• This stage outputs HSAs. HSAs are identifi ed by performing
a seeded banded gapped pairwise DP alignment algorithm using the
previously identifi ed HSPs as seeds. Alignments that score above a
certain threshold are then passed to the fi nal stage.
Stage 4: • The fi nal alignments of the highest-scoring sequences are
calculated and displayed to the user. This requires the computation
of the trace-back path using the local pairwise DP approach in linear
space.

Note that each stage of the pipeline progressively reduces the search
space in the database for signifi cant alignment. In addition, the compu-
tational cost associated with each stage and the sensitivity also progres-
sively increases. However, since the amount of input data is becoming
signifi cantly smaller for each stage, the actual runtimes generally do not
increase.

A notable difference of BLASTN (for searching DNA databases) com-
pared to BLASTP is that the length of hits identifi ed in Stage 1 is signifi -
cantly longer (e.g., w = 7, 11, or 15). The PatternHunter [17] database search
tool introduced the concept of spaced seeds. A spaced seed is similar to a hit
in Stage 1 of BLASTN, but allows that it is interspersed by mismatches at
certain positions.

It should also be mentioned that the size of the hits in Stage 1 (i.e., w in
BLAST) affects sensitivity and runtime of a fi ltration method. In the case
of BLASTP, a small value of w (e.g., w = 2) leads to more hits in Stages 1 and
2. This in turn leads to higher sensitivity, since less signifi cant alignment
might be missed. However, it also increases the runtime, since more data
needs to be processed in Stages 2 and 3. On the other hand, a large value
of w (e.g., w = 4) leads to less hits in Stages 1 and 2, which in turn leads
to lower sensitivity due to the fact that signifi cant alignment might be
missed. On the positive, it reduces the runtime since less data is processed
in Stages 2 and 3.

1.4.2 Suffix Trees and Suffix Arrays

Many sequence analysis tools in bioinformatics (such as database search-
ing or read mapping) require some form of exact pattern matching. In the
exact pattern matching problem, we are given a sequence T (called the text)
of length n and a sequence P (called the pattern) of length m. We are required
to fi nd all exact occurrences of P in T; that is, all i ∈ {0, . . . ,n−m} with T[i . . . i +
m − 1] = P. Performing this task very fast is crucial to many bioinformatics

10768_C001.indd 2410768_C001.indd 24 6/17/2010 7:22:25 PM6/17/2010 7:22:25 PM

Algorithms for Bioinformatics 25

tools, with examples including BLAST [15, 16], MUMmer [18], and Bowtie [19].
Approaches for exact matching can be classifi ed into

 1. Hashing
 2. Preprocessing of the pattern(s) (e.g., with a keyword tree [19])
 3. Preprocessing of the text (e.g., with a suffi x tree or a suffi x array).

The third approach is particularly interesting, since the text is usually a
database or a genome. Thus, in many situations the text can be preprocessed
offl ine in a suffi x tree or a suffi x array data structure. This preprocessing
only takes O(n) time; for example, by using Ukkonen’s linear-time suffi x tree
construction algorithm [20]. Afterward, the actual pattern matching can be
done in time O(m). This approach is very effi cient, since m is usually much
smaller than n. In the following section we briefl y describe how exact match-
ing with a suffi x tree and a suffi x array can be done. More details can be
found in the books by Gusfi eld [3] and Aluru [1].

The suffi x tree of sequence T of length m has the following features:

It has a rooted directed tree with exactly • m leaves numbered from 0
to m−1.
Each internal node, other than the root, has at least two children.•
Each edge is labeled with a nonempty substring of • T.

No two edges out of the same node have edge labels beginning with •
the same letter.
For any leaf • i, the concatenation of edge labels on the path from the
root to leaf i exactly spells out the suffi x T[i . . . m−1].

The suffi x tree of the sequence T = TACTA$ is shown in Figure 1.18. Note
that a unique termination symbol is commonly appended to the input
sequence to guarantee that every suffi x ends in a leaf.

T A C T A $ 1

2

A
C

T
A

$3

C
T

A
$

$
4$

5

$

6

6 5 2 3 4 1

FIGURE 1.18
Suffi x tree and suffi x array of the T = TACTA$.

10768_C001.indd 2510768_C001.indd 25 6/17/2010 7:22:25 PM6/17/2010 7:22:25 PM

26 Bioinformatics: High Performance Parallel Computer Architectures

All exact occurrences of the pattern P in the text T can be found using the
suffi x tree of T by matching P against the suffi x tree starting at the root. If
P can be completely matched, then every number of all leaf nodes below the
fi nal matching position in the tree is a starting position of occurrences of P in
T. If P cannot be completely matched, then P does not occur in T. Figure 1.19
illustrates an example.

Besides exact pattern matching, suffi x trees can also be used for the effi -
cient solution of other string-based problems. Examples of problems include
the maximal computation of repeat problems, longest common substrings,
all-pairs suffi x-prefi x matching, Ziv–Lempel decomposition, common sub-
strings of multiple sequences, exact set matching, and matching statistics
[3]. To solve some of these problems, the suffi x tree might be traversed top-
down, bottom-up, or with suffi x links.

Because of space and cache effi ciency reasons, suffi x arrays are sometimes
preferred to suffi x trees. A suffi x array of a string T of length n is defi ned as
an array of integer n specifying the lexicographical order of the m suffi xes
of T. The suffi x array of T = TACTA$ is also shown in Figure 1.18, where we
assume that $ is the lexicographically smallest letter. Suffi x arrays can also be
constructed effi ciently [21]. Most string problems that can be effi ciently solved
with suffi x trees can also be effi ciently implemented using a suffi x array [22].

1.5 References

 1. Aluru, S. 2006. Handbook of Computational Molecular Biology. Chapman & Hall/
CRC Press.

 2 Durbin, R., Eddy, S., Krogh, A. and Mitchison, G. 1998. Biological Sequence Analysis:
Probabilistic Models of Protein and Nucleic Acids. Cambridge University Press.

 3. Gusfi eld, D. 1999. Algorithms on Trees, Strings, and Sequences. Cambridge
University Press.

A C G A C
$ 12 $

T A C T
CGAC

T AC T

3
$

G
A

C

T

A
C

T

4
$

T
A

C
T

5
$

T

A
C

T

6
$
T

A
C

T

$

7

$
8

9
$

$

10

P1: occurrences in Tat 1, 4, 7
P2: no occurrences in T

FIGURE 1.19
Matching the two patterns P1 = AC and P2 = CA against the suffi x tree of T = ACGACTACT$.

10768_C001.indd 2610768_C001.indd 26 6/17/2010 7:22:26 PM6/17/2010 7:22:26 PM

Algorithms for Bioinformatics 27

 4. Jones, N.C. and Pevzner, P.A. An Introduction to Bioinformatics Algorithms. MIT
Press, 2004.

 5. Henikoff, S. and Henikoff, J.G. 1992. Amino acid substitution matrices from
protein blocks. Proceedings of the National Academy of Science of the USA 89(22),
10915–10919.

 6. Needleman, S.B. and Wunsch, C.D. 1970. A general method applicable to the
search for similarities in the amino acid sequence of two proteins. Journal of
Molecular Biology 48(3), 443–453.

 7. Smith, T.F. and Waterman, M.S. 1981. Identifi cation of common molecular sub-
sequences. Journal of Molecular Biology 147(1), 195–197.

 8. Hirschberg, D.S. 1975. A linear-space algorithm for computing maximal com-
mon subsequences. Communication of the ACM 18(6), 341–342.

 9. Myers, E.W. and Miller, W. 1988. Optimal alignment in linear space. Computer
Applications in the Biosciences 4(1), 11–17.

 10. Carillo, H. and Lipman, D. 1988. The multiple sequence alignment problem in
biology. SIAM Journal on Applied Mathematics 48(5), 1073–1082.

 11. Michener, C.D. and Sokal, R.R. 1957. A quantitative approach to a problem of
classifi cation. Evolution 11, 130–162.

 12. Saitou, N. and Nei, M. 1987. The neighbor-joining method: a new method
for reconstructing phylogenetic trees. Molecular Biology and Evolution 4(4),
406–425.7.

 13. Studier, J.A. and Keppler, K.J. 1988. A note on the neighbor-joining algorithm of
Saitou and Nei. Molecular Biology and Evolution 5(6), 729–731.

 14. Thompson, J.D., Higgins, D.G. and Gibson T.J. 1994. CLUSTAL W: improving
the sensitivity of progressive multiple sequence alignment through sequence
weighting, position-specifi c gap penalties and weight matrix choice. Nucleic
Acids Research 11(22), 4673–4680.

 15. Altschul, S.F., Gish, W., Miller, W., Myers, E.W. and Lipman, D.J. 1990. Basic
local alignment search tool. Journal of Molecular Biology 215(3), 403–410.

 16. Altschul, S.F., Madden, T.L., Schäffer, A.A., Zhang, J., Zhang, Z., Miller, W. and
Lipman, D.J. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein
database search programs. Nucleic Acids Research 25(17), 3389–3402.

 17. Ma, B., Tromp, J. and Li, M. 2002. PatternHunter: faster and more sensitive
homology search. Bioinformatics 18(3), 440–445.

 18. Kurtz, S., Phillippy, A., Delcher, A.L., Smoot, M., Shumway, M., Antonescu, C.
and Salzberg, S.L. 2004. Versatile and open software for comparing large
genomes. Genome Biology 5, R12.

 19. Langmead, B., Trapnell, C., Pop, M. and Salzberg, S.L. 2009. Ultrafast and mem-
ory-effi cient alignment of short DNA sequences to the human genome. Genome
Biology 10, R25.

 20. Aho, A.V. and Corasick, M.J. 1975. Effi cient string matching: an aid to biblio-
graphic search. Communications of the ACM 18(6), 333–340.

 21. Ukkonen, E. 1995. On-line construction of suffi x trees. Algorithmica 14(3),
249–260.

 22. Puglisi, S.J., Smyth, W.F. and Turpin, A. 2007. A taxonomy of suffi x array con-
struction algorithms. ACM Computing Surveys 39(2), 1–31.

 23. Abouelhoda, M.I., Kurtz, S. and Ohlebusch, E. 2004. Replacing suffi x trees with
enhanced suffi x arrays. Journal of Discrete Algorithms 2(1), 53–86.

10768_C001.indd 2710768_C001.indd 27 6/17/2010 7:22:26 PM6/17/2010 7:22:26 PM

29

2
Introduction to GPGPUs and
Massively Threaded Programming

Robert M. Farber

2.1 Introduction .. 29
2.2 Massive Multithreading Is the Key ... 31
2.3 CUDA Simplifi es the Creation of Massively Threaded Software35

2.3.1 Step 1: Getting (and Keeping) the Data on the GPU38
2.3.2 Step 2: Maximizing the Amount of Work Performed per

Call to the GPU... 39
2.3.3 Step 3: Exploiting Internal Resources on the GPU 41

2.3.3.1 Register and Shared Memory..42
2.3.3.2 Constant Memory ...43
2.3.3.3 Texture Memory ..43
2.3.3.4 Global Memory ..44
2.3.3.5 Local Memory ..45

2.4 Visualization ...45
2.5 Conclusion ..46
2.6 References ... 47

2.1 Introduction

Today, science and technology are inextricably linked. Human insight in bio-
informatics, in particular, is driven by the vast amounts of data that can be
collected with automated instruments coupled with suffi cient computational
capability to extract, analyze, model, and visualize results.

As they say, “the proof of the pudding is in the tasting,” and computation-
ally driven advances are very enticing. For example, the Harvard Connectome
project is in the process of creating a complete “wiring-diagram” of a rat
brain at a 3 nm/pixel resolution using automated slicing and data collection
instruments [1]. Just as with the invention of the microscope, projects such

10768_C002.indd 2910768_C002.indd 29 6/17/2010 7:23:14 PM6/17/2010 7:23:14 PM

30 Bioinformatics: High Performance Parallel Computer Architectures

as this will let biologists see into the structure of the brain and potentially
revolutionize the entire fi eld of study.

Of course any recipe for success can fail because of the lack of any single
ingredient. Unfortunately, many important problems have remained intrac-
table because there were no computers powerful enough or because scientists
simply could not afford to access machines with the necessary capabilities.

Remarkably, the current revolution in scientifi c computation is happen-
ing because intense competition in computer graphics, mainly driven by the
computer gaming industry, has evolved graphics processors into extremely
capable yet low-cost general-purpose computational platforms. These gener-
al-purpose graphics processor units (GPGPUs) are C-language programma-
ble computers that are capable of delivering well over a terafl op (a terafl op
represents one trillion fl oating-point operations per second) of fl oating-point
performance.

NVIDIA coined the phrase “supercomputing for the masses” to convey the
catalytic effect generally available massively threaded GPGPU technology
has had on high-performance computing.

To put this in perspective, Sandia National Laboratory in Albuquerque,
NM, announced in December 1996 that their ASCI Red supercomputer was
the fi rst to exceed a trillion fl oating-point operations per second. It is truly
amazing that roughly 10 years later any student or scientist could go to his
or her favorite electronics store and purchase a terafl op capable graphics pro-
cessing unit (GPU) for a nominal amount.

This computational bonanza is starting to bear fruit, as the scientifi c and
technical literature over the past couple of years contains an explosion of
GPGPU-enabled applications and algorithms in an astounding number of
algorithmic and scientifi c application areas. In other words, it is clear that
many scientists and programmers, using existing tools, are able to achieve
one to two orders of magnitude, 10×–100×, of performance increase over con-
ventional hardware when running their applications on GPGPUs. (Some
researchers have even reported three orders of magnitude, or 1,000×, of faster
performance when running algorithms that heavily utilize the NVIDIA GPU
special processing units for transcendental functions.)

In comparing commodity processors versus graphics processors, I noted in
my Scientifi c Computing column “GPGPUs: Neat Idea or Disruptive Technology?”
[2] that newer dual- and quad-processor commodity workstations provided
incremental 2×–4× performance gains. While this level of performance increase
is nice, it does not fundamentally change how people work.

A 10× performance increase is a signifi cant advance but does not necessar-
ily represent a fundamental change. Machines with this level of performance
make the computational workfl ow more interactive because computational
tasks that previously took hours now take minutes and extended computa-
tional work that previously took days can now occur overnight.

Computer hardware that delivers 100× of faster performance is disrup-
tive and has the potential to fundamentally affect scientifi c research by

10768_C002.indd 3010768_C002.indd 30 6/17/2010 7:23:14 PM6/17/2010 7:23:14 PM

Introduction to GPGPUs and Massively Threaded Programming 31

removing time-to-discovery barriers. Algorithms and computational tasks
that previously would have required a year to complete can fi nish in days
on the new hardware. Better scientifi c insight becomes possible because sci-
entists can work with more data; utilize more accurate yet computationally
expensive approximations; and work with larger, more realistic simulations
and systems of equations. For the experimentalist, the results of newer high-
throughput instruments (or collections of many instruments) can be utilized
to create higher resolution and more informative pictures of what is occur-
ring in nature. It’s like transitioning from light-based microscopy to a power-
ful new electron microscope that allows one to see more and in much greater
detail.

2.2 Massive Multithreading Is the Key

Massive multithreading (using hundreds to thousands of simultaneous
threads) is the key to harnessing computational power of GPGPUs because it
provides a common paradigm that both programmers and hardware design-
ers can exploit to attain the highest possible performance.

Essentially threads are individual pieces of the same program that can exe-
cute simultaneously. For example, the vector multiply shown in Example 2.1
can be broken into N separate threads, where each thread simultaneously
calculates vector c for each element index i.

Example 2.1: A Simple Vector Multiply

for(i = 0; i < N; i++) c[i] = a[i] * b[i]

This example also illustrates the importance of fl oating-point performance
relative to memory bandwidth, as three memory operations are required
for every fl oating-point multiply. Assuming that single-precision (32 bit or
4 byte) fl oating-point values are being used, the memory subsystem of a
terafl op capable computer would need to provide 12 terabytes per second
of memory bandwidth for this vector multiply example to run at full speed!
This is roughly 50×–100× the capability of current GPU technology and
roughly 375× more than the latest generation of high-end commodity pro-
cessors. When the extra precision of 64-bit (8-byte) fl oating-point arithmetic
is required, the reader can double these numbers (or halve the effective com-
putational rate).

Massive multithreading (coupled with other architectural features of
GPGPU hardware) permits graphics processors to achieve extremely high
fl oating-point performance because the latency of memory accesses can be
hidden and the full bandwidth of the memory subsystem can be utilized. An

10768_C002.indd 3110768_C002.indd 31 6/17/2010 7:23:14 PM6/17/2010 7:23:14 PM

32 Bioinformatics: High Performance Parallel Computer Architectures

extremely low-latency hardware thread scheduler is an essential ingredient
in this recipe for success.

Roughly speaking, graphics processors can be considered “streaming
processors” because best performance is achieved when coalesced memory
operations are used to simultaneously stream data from all of the on-board
graphics memory banks. (A coalesced memory operation combines simultane-
ous memory accesses by multiple threads into a single memory transaction.
This is in contrast to a bank confl ict, which occurs when multiple memory
requests fall in the same memory bank and causes the competing accesses
to be serialized.)

It is easy to see that a linear increase in memory bandwidth can be achieved
by simultaneously fetching data from multiple memory banks (or chips).
From our simple vector multiply example, we can see that tying together two
memory banks will double both memory bandwidth and fl oating-point per-
formance. Similarly, tying together four banks of memory would result in a
4× speedup, and so on. Progressive generations of both graphics and conven-
tional processors have used this technique to increase memory bandwidth.

Programming with a large number of threads allows the hardware thread
scheduler to fully utilize the capabilities of the GPU because it can pick and
choose amongst the active threads to

Fully utilize all the internal resources of the hardware (fl oating-•
point, integer, or special function units) by scheduling those threads
that do not have to wait on the memory subsystem to use whatever
internal resources that happen to be available at that moment.
Maximize the memory bandwidth of the memory subsystem by •
working together with internal coalescing units to stream data to/
from all the memory banks at the highest possible data rate.
Minimize the time taken. From a programmer’s point of view, this •
thread scheduling occurs so quickly that it effectively takes no time
and happens for free.

Now comes the important part: teaching scientists and programmers how
to write (or rewrite) portions of their software to exploit the remarkable capa-
bilities possible because of massive multithreading. C-language programmers
utilizing NVIDIA’s compute unifi ed device architecture (CUDA) in particular
should fi nd the transition straightforward as they only need to understand a
few key concepts and the mechanics of some simple additions (e.g., keywords
and pragmas) to the C-language. In this way they can exploit the superb per-
formance and scaling behavior that GPGPUs can deliver to advance scientifi c
discovery.

While the concepts discussed in this chapter are general, specifi c capa-
bilities provided by the runtime application programming interface (API) of
the massively threaded CUDA C-language compiler, libraries, and software

10768_C002.indd 3210768_C002.indd 32 6/17/2010 7:23:15 PM6/17/2010 7:23:15 PM

Introduction to GPGPUs and Massively Threaded Programming 33

development kit (SDK) will be used as examples. This software can be freely
downloaded off the NVIDIA web site and can be used on all NVIDIA CUDA-
enabled graphics processors or run in emulation mode on conventional pro-
cessors [3]. Please note that the CUDA emulator is not optimized for speed.

Other development platforms exist aside from CUDA that can be used to
create programs for heterogeneous platforms consisting of CPUs, GPUs from
multiple vendors, and other processors. OpenCL is a new technology that
holds promise.

Several companies are developing C and FORTRAN compilers to sup-
port GPU computing. The Portland Group is one such company. Another
company, CAPS Enterprise, is taking the innovative approach of generat-
ing hardware-specifi c codelets for C and FORTRAN code through the use of
compiler directives. These codelets can then be used as is to run on GPUs and
other architectures or they can be hand optimized to deliver the best possi-
ble performance. Their HMPP compiler also supports the ubiquitous mes-
sage passing interface (MPI) that is heavily utilized in distributed scientifi c
computing.

Many will also discover that structuring code to effi ciently run on a mas-
sively threaded GPGPU has the added bonus of increasing performance and
scalability on existing multicore processors. This can be an important step in
“future-proofi ng” applications because multicore workstations (using four to
eight processing cores) will have to become many-core systems (containing
tens to hundreds of cores) to compete in the future.

This trend appears to be inevitable because manufacturers must now add
cores to their processor chips rather than increase clock speed to remain
competitive. In the past, manufacturers could introduce new generations of
single-core processors with higher clock speeds, which in turn would entice
customers to upgrade. If they could, manufacturers would be delighted to
continue with this same business model. Switching to multicore processors
affects the entire computer industry: it is disruptive to customers, requires
that customers change how they design their programs, and forces existing
software to be rewritten to use the extra processing cores.

Dennard’s scaling laws are at the heart of the change. Effectively they say
that power density will remain constant even as the number of transistors
and their switching speed increases. For that relationship to hold, voltages
need to be reduced in proportion to the linear dimensions of the transistor.
Fabrication techniques have reduced the size of transistors to the point that
manufacturers are no longer able to lower operating voltages suffi ciently to
match the performance gains that can be achieved by simply adding more
computational cores to the processor chip. In a competitive market, minor
changes in processor performance do not translate into increased sales for
CPU manufacturers—so we now have multicore processors. Many in the
computing industry believe that this trend will continue and the number of
cores per processor will increase.

10768_C002.indd 3310768_C002.indd 33 6/17/2010 7:23:15 PM6/17/2010 7:23:15 PM

34 Bioinformatics: High Performance Parallel Computer Architectures

GPGPUs on the other hand evolved in a large and competitive market
where massive parallelism is the evolutionary pathway to success because
computer graphics operations that “push pixels” are inherently parallel.
Simply stated, manufacturers were able to increase performance by adding
pipelines and shaders to meet the intense market need for ever faster photo-
realistic games and imaging software.

The advent of programmable shaders allowed each pixel or vertex to be
processed by a short program. With the addition of fl oating-point math
and looping capability, GPU hardware effectively evolved into single
program multiple data (SPMD) massively parallel computers with hun-
dreds of processing cores. CUDA was created to take advantage of this
GPGPU technology by enabling the development of higher-level language
(e.g., C-language) programs for this massively multithreaded hardware
environment.

From a hardware standpoint, massively parallel multithreading is achieved
through the use of a common architectural building block called a multipro-
cessor that can be replicated as required to provide the largest number of pro-
cessing cores for a given price point. This massive replication can be seen in
Figure 2.1 in the block diagram of the latest 20-series Fermi GPUs. NVIDIA
generally bundles 32 threads into a warp, which runs single instruction mul-
tiple data fashion (SIMD) on each multiprocessor. SIMD execution allows
instructions to be broadcast inexpensively and quickly within the multipro-
cessor but requires that all parallel processing happen in lock-step. SIMD
execution is very effi cient, but be aware that conditionals (if statements) can

FIGURE 2.1
Block diagram showing 16 multiprocessors each with 32 threads. (From NVIDIA, Tesla Fermi
launch—FINAL (press kit), p. 4, 2009. With permission.)

10768_C002.indd 3410768_C002.indd 34 6/17/2010 7:23:15 PM6/17/2010 7:23:15 PM

Introduction to GPGPUs and Massively Threaded Programming 35

degrade performance because the multiprocessor must evaluate each branch
of every conditional operation. Because GPGPUs are built with many mul-
tiprocessing units, they are considered SPMD rather than SIMD computers.
Look to Flynn’s taxonomy for a better understanding of the classifi cation of
computer architectures.

2.3 CUDA Simplifies the Creation of
Massively Threaded Software

Writing massively threaded applications is greatly simplifi ed because CUDA
and the GPGPU hardware work together to manage threads for the program-
mer. Instead of explicitly creating threads as one would do on a conventional
processor using a thread library such as pthreads, a CUDA developer writes
a kernel that will run on the GPU. In reality, a kernel is nothing more that
a C-language subroutine that runs and utilizes variables that reside on the
GPU. In addition to the parameters, a call to a kernel includes the specifi ca-
tion of an execution confi guration that defi nes how the threads will be mapped
to the GPGPU hardware.

Syntactically, the call to a CUDA kernel looks like a C-language subroutine
call except the execution confi guration is added between triple angle brack-
ets “<<<” and “>>>” as is seen in Example 2.2.

Example 2.2: Example CUDA Kernel Call from the Host Code

cudaKernel <<< nBlocks,nThreadsPerBlock >>> (a_d, b_d, c_d)

The fi rst two parameters between the angle brackets defi ne the number
of thread blocks, nBlocks, and the number of threads within a thread block,
nThreadsPerBlock. The total number of simultaneously running threads for
a given kernel is the product of these two parameters.

A key feature of a thread block, defi ned in the previous example by
nThreads PerBlock, is that only threads within the block can communicate
with each other via high-speed shared memory. Otherwise threads cannot
effectively communicate with each other outside their thread block unless
the programmer is willing to pay a signifi cant performance penalty to use
global memory. Without going into further detail, other parameters in the
execution confi guration can be used to defi ne 2D and 3D topologies and
shared-memory allocations.

Unlike a C-language subroutine call, kernels are launched asynchronously,
which means that the host processor merely queues the kernel in a pipe-
line to be launched when the hardware is ready. By changing the execution

10768_C002.indd 3510768_C002.indd 35 6/17/2010 7:23:17 PM6/17/2010 7:23:17 PM

36 Bioinformatics: High Performance Parallel Computer Architectures

confi guration, the programmer can easily specify a few or many thousands
of threads. When not resource constrained, the NVIDIA documentation
recommends using a large numbers of threads—on order of thousands—to
future proof your code to maintain high performance on future generations
of GPU products.

From the programmer’s point of view, the CUDA kernel running on the
GPU acts as if it were contained within the scope of a loop over the total
number of threads—except each loop iteration runs in a separate thread
of execution. Within each thread, the programmer has all the information
needed to distinguish each thread from all other threads such as thread id
within a thread block, the number of thread blocks, and coordinates within
the execution confi guration grid. With this information, the developer can
then program each thread to perform the appropriate work and with the
relevant data.

Arguably, we are watching an example of convergent evolution in com-
puter technology as both GPUs and conventional processors adapt accord-
ing to market pressures and technology constraints to become many-core
processors. At this time, GPGPUs are currently the price and performance
leader in this evolutionary race that delivers hardware platforms with hun-
dreds of processing cores (currently 512 at the high end) and terafl ops of per-
formance at prices most scientists and students can afford.

Regardless of the process, the end result is clear and massively multi-
threaded programming models will remain an essential part of developing
software for these evolving hardware platforms.

Physically, the current high-end graphics processors are peripheral cards
that plug into a host computer via an industry standard PCI express (PCIe)
slot. Figure 2.2 shows an example of the latest Fermi C2050 GPU. Many host
computers can support multiple cards. Using four of the current high-end
NVIDIA GTX 295 GPU cards that cost less that $500 each, for example, it
is possible to give a student a dedicated workstation that can deliver over 7
terafl ops of single-precision fl oating-point capability. In contrast the MPP2
supercomputer recently decommissioned in December 2008 was shared by
the entire user community at Pacifi c Northwest National Laboratory. Built
with Itanium processors, it occupied a large computer room and was only
rated at 11.8 terafl ops.

As can be seen in Table 2.1, there is a signifi cant performance difference
between the memory bandwidth of global memory (the main memory of
the GPU) and the PCIe bus. For this reason, many people refer to the PCIe
bus as a “PCIe straw” because accessing data across the bus is much like
sipping through a very small straw—it is not possible to move much data
quickly through the straw. Because of the relatively poor performance of
the PCIe bus, it is essential from a performance standpoint to get the data
into the memory space (and onto the memory subsystem) of the graphics
processor.

10768_C002.indd 3610768_C002.indd 36 6/17/2010 7:23:17 PM6/17/2010 7:23:17 PM

Introduction to GPGPUs and Massively Threaded Programming 37

Experience has shown that writing or porting software to graphics proces-
sors consists of three steps:

 1. Getting (and keeping) the data on the GPU to eliminate the PCIe
memory bandwidth bottleneck

 2. Maximizing the amount of work performed per call to the GPU to
eliminate the latency incurred when passing even short commands
and small amounts of data to the GPU over the PCIe bus

 3. Exploiting internal resources on the GPU (such as registers, shared
memory, etc.) to bypass internal memory bottlenecks and maximize
performance.

While the concepts and methods discussed in the remainder of this chap-
ter are generally applicable, references to the CUDA runtime API will be
used to illustrate many of the points.

Figure 2.2
An NVIDIA C2050 GPU. (From NVIDIA, 2009. With permission.)

TABLE 2.1

Transfer Speeds

Data Subsystem Gigabytes Per Second (GiB/s)

NVIDIA GTX 295 Global Memory Bandwidth 223.8

PCIe ×16 version 2.0 8 unidirectional/16 bidirectional

10768_C002.indd 3710768_C002.indd 37 6/17/2010 7:23:17 PM6/17/2010 7:23:17 PM

38 Bioinformatics: High Performance Parallel Computer Architectures

2.3.1 Step 1: Getting (and Keeping) the Data on the GPU

The CUDA runtime provides two main methods for transferring data
between the host memory space and the graphics processor:

 1. Explicit programmer-initiated data transfers
 2. Mapped memory data transfers

Explicit transfers can be initiated through the use of cudaMemcpy(). As can
be seen in Table 2.2, the CUDA runtime methods to transfer data between
the host, graphics processor, and internally within the GPU are straightfor-
ward and closely resemble the C-language memcpy() routine. By convention,
the variables a_d and b_d are assumed to reside on the GPU device and a_h
is assumed to reside in the memory of the host computer.

C-programmers will also fi nd the method used to allocate memory on the
GPU, cudaMalloc(), is as familiar to use as the standard malloc() routine. When
allocating regions of memory that will primarily be used to transfer data to/
from the GPU, it is best to use pinned memory (meaning the memory cannot
be swapped out on a virtual memory machine) allocated with cudaHostAlloc()
so PCIe transfers can occur at the highest possible speed.

Transfers initiated with cudaMemcpy() are synchronous, meaning the call
blocks until the data transfer is complete. Asynchronous data movement is
important for speed because computation and communication can be over-
lapped so more work per unit time can be performed. Applications in CUDA
manage concurrent data movement with the streams runtime API. Please
consult the CUDA documentation for more information.

Program initiated transfers via mapped, pinned memory is a relatively
new feature introduced in the CUDA 2.2 release. It provides an important
(and convenient) capability to keep data synchronized between the host and
GPU memory spaces via bidirectional asynchronous PCIe data transfers.

Having transparently synchronized memory eases the work involved in
rewriting the computationally intensive portions of an application to run on
the GPU. Essentially, the developer:

 1. Profi les the existing code to fi nd the computationally intensive
routines.

TABLE 2.2

Examples Showing Data Movement with CUDAMemcpy()

PCIe Transfer CUDA Runtime Call

Host to Device cudaMemcpy(a_d, a_h, nBytes, cudaMemcpyHostToDevice)
Device to Device cudaMemcpy(b_d, a_d, nBytes, cudaMemcpyDeviceToDevice)
Device to Host cudaMemcpy(a_h, b_d, nBytes, cudaMemcpyDeviceToHost)

10768_C002.indd 3810768_C002.indd 38 6/17/2010 7:23:23 PM6/17/2010 7:23:23 PM

Introduction to GPGPUs and Massively Threaded Programming 39

 2. Maps all the variables used by the computationally intensive sec-
tions of code and writes CUDA methods to perform the calculation
on the GPU. Because mapped, pinned memory keeps the host and
GPU data synchronized, the developer can focus on writing the GPU
code and not on data movement.

 3. Eventually moves enough of the calculation to the GPU so it no
longer becomes necessary to keep data synchronized with the host.
Unnecessary mappings can then be disabled or removed—thus cre-
ating a GPU-based version of the code that will not be affected by
the PCI bottleneck.

Mapped, pinned memory provides a wonderful capability to facilitate
regression testing when porting legacy application code to CUDA. (Regressions
are unintended consequences and errors that result from program modifi ca-
tions.) Without question, regression testing is an essential software practice
that is vital to the creation and verifi cation of correctly working software!

When porting legacy software, the developer is provided with an existing
known working code base that can be used for comparison against GPU
generated results to identify errors. By transparently maintaining a syn-
chronized version of data between both the host and device memory spaces,
mapped memory allows comparison between results calculated on the GPU
and host. By using memcmp() or other simple functions, developers can
quickly search for the fi rst appearance of a discrepancy between the original
host and new GPU code. With care, the programmer can exploit the trans-
parent synchronization provided by mapped, pinned memory throughout
the entire porting project. As a result, there will always be a known working
version that can be used to compare all calculations performed by new code
running on the GPU.

2.3.2 Step 2: Maximizing the Amount of Work
Performed per Call to the GPU

Graphics processors generally run relatively small pieces of computation-
ally intensive code—otherwise known as kernels. Essentially, a kernel is a
C-language subroutine that runs on each thread of the graphics processor.
In CUDA, kernel calls are asynchronous so they can be pipelined to max-
imize performance. This also means that a kernel cannot act as a function
because asynchronous execution precludes returning function values to the
host code.

The current generation of NVIDIA GT200 graphics processors limits kernel
sizes to roughly two million instructions per kernel. Of course, an applica-
tion can have many kernels so the size restriction is not really a limiting fac-
tor. However, it does emphasis the computationally intensive off-load nature
of graphics processors. Most applications will be hybrid codes that run the

10768_C002.indd 3910768_C002.indd 39 6/17/2010 7:23:23 PM6/17/2010 7:23:23 PM

40 Bioinformatics: High Performance Parallel Computer Architectures

massively parallel sections of code on the GPU and the remaining serial or
small-scale parallel sections on the host processor(s).

The adage, “be careful what you ask for because you might get it,” applies to
GPU computing. Graphics processors are very fast, which is extremely desir-
able but conversely raises the challenge of giving them enough work to do.

Even with pipelined asynchronous calls, there is still some overhead
incurred in transferring parameters across the PCIe bus, setting up the grid
in the GPU, and performing other housekeeping chores. To get a sense of the
numbers, let’s assume this overhead is 4 µsec for 1 terafl op GPU that takes
four cycles to perform a fl oating-point operation. To achieve peak perfor-
mance, each kernel must perform roughly one million fl oating-point opera-
tions or the GPU will stall waiting for the next kernel to start. If the kernel
only takes 2 µsec to complete, then 50% of the GPU cycles will be wasted.

Most computationally oriented scientists and programmers are familiar
with the basic linear algebra subprograms (BLAS) package, which is the de
facto programming interface for basic linear algebra operations. NVIDIA
supports this interface with their own library for the GPU called CUBLAS.

BLAS is structured according to three different levels with increasing data
and runtime requirements. (The following discussion uses Big-O notation,
which is a convenient way to describe how the size of an input affects the
consumption by an algorithm of some resource such as time or memory.)

Level-1:• Vector-vector operations that require O(n) data and O(n)
work. Examples include taking the inner product of two vectors or
scaling a vector by a constant multiplier.
Level-2:• Matrix-vector operations that require O(n2) data and O(n2)
work. Examples include matrix-vector multiplication or a single
right-hand-side triangular solve.
Level-3:• Matrix-vector operations that require O(n2) data and O(n3)
work. Examples include dense matrix-matrix multiplication.

Table 2.3 illustrates the amount of work that the GPU will be required to
perform for each fl oating-point value transferred to the GPU.

Effectively, Table 2.3 tells us that Level-3 BLAS operations should run effi -
ciently on graphics processors because they perform many fl oating-point
operations of work for every fl oating-point value transferred to the GPU. In
addition, it is necessary to put as many level-1 and level-2 types of BLAS

TABLE 2.3

Work per Datum According to BLAS Level

BLAS Level Data Work Work Per Datum

1 O(n) O(n) O(1)
2 O(n2) O(n2) O(1)
3 O(n2) O(n3) O(n)

10768_C002.indd 4010768_C002.indd 40 6/17/2010 7:23:23 PM6/17/2010 7:23:23 PM

Introduction to GPGPUs and Massively Threaded Programming 41

operations into a single kernel call or risk having the GPU stall, as described
earlier, because of kernel launch overhead.

The same work-per-datum analysis—and potential to stall the GPU—
applies to non–BLAS-related computational problems as well. NIVDIA pro-
vides performance profi ling tools (such as the CUDA profi ler, cuda-prof,
and Nexus) to assist developers in identifying ineffi ciencies in their code.
Experience has shown that incorporating multiple smaller work-per-datum
tasks together into a single GPU kernel can greatly boost effi ciency.

Unfortunately, some problems may just be too small to justify the costs
associated with transferring data to/from the GPU. The current generation
of conventional processors from Intel and AMD has both large caches and
decent memory bandwidth per processing core, which makes them ideal for
small-scale parallel work. For example, the CUFFT library is a highly opti-
mized fast fourier transform (FFT) library for NVIDIA CUDA-enabled GPUs.
While this library can provide excellent performance, there are a number of
studies in the literature and on the internet that show that it is not worth pay-
ing the data transfer overhead for smaller problems. However, GPU hardware
and the CUFFT library—as well as conventional processors and libraries
such as FFTW—are all evolving quickly, so please check the latest literature
to determine where the break-even point might be for your problems. Please
note that many FFT-intensive calculations such as Car–Parrinello quantum
chemistry applications demonstrate excellent performance when running
on graphics processors.

Previously, we assumed that all the kernel calls could be asynchronously
queued up in the pipeline. In many cases, it is necessary to pass some value
or data from the GPU to the host before a calculation can proceed. If this data
transfer must occur synchronously—which is common for reduction opera-
tions like calculating a sum—then the programmer must plan on the GPU
stalling for even longer periods of time. Unfortunately, synchronous data
transfers will break the asynchronous pipelining of kernel launches.

In many cases, synchronization is necessary for correct program execu-
tion. For instance, CUDA can be used to generate or modify data that will
be rendered by the GPU. (Mixing CUDA computational kernels and 3D ren-
dering in the same application can deliver very high performance for sci-
entifi c visualization.) This requires that the host processor wait until the
GPU kernel has fi nished before issuing appropriate rendering commands.
Otherwise, the results of a partially completed calculation might be acciden-
tally rendered to the screen. When synchronization is required, the CUDA
runtime method cudaSynchronizeThreads() can be called to ensure that all the
kernels in the pipeline have completed.

2.3.3 Step 3: Exploiting Internal Resources on the GPU

So far, we have discussed only global memory on graphics processors. This
is by far the largest type of memory on GPUs with capacities measured in

10768_C002.indd 4110768_C002.indd 41 6/17/2010 7:23:24 PM6/17/2010 7:23:24 PM

42 Bioinformatics: High Performance Parallel Computer Architectures

gigabytes (a gigabyte equals one billion bytes). Most data will reside in global
memory. It is also the source and destination for most data transfers.

Data reuse is a key characteristic of application kernels that achieve high
performance on graphics processors. Our simple vector multiply example
will not perform well as it demonstrates no data reuse—each element of vec-
tors a, b, and c are used only once. As a result, global memory bandwidth
becomes the rate-limiting factor for computational throughput.

Conventional processors also rely on data reuse to achieve high-computational
effi ciency. For smaller problems, internal processor caches can transparently
buffer application data. In this way, any data reuse can be exploited allowing
the processor to deliver a high computational throughput on smaller problems
or those that heavily utilize a smaller amount of data that fi ts well in cache.

These caches are an important reason why it is currently advantageous
to run some problems, such as smaller FFTs, on the local host processor(s)
rather than on the GPGPU. Once cache utilization starts to drop, conven-
tional processors also become memory bandwidth limited and application
performance can precipitously drop.

Graphics processor hardware is evolving quickly. NVIDIA is attempting
to double the performance of their hardware roughly every 18 months. They
recently announced the newest generation of GPGPU architecture, Fermi,
which incorporates a local cache on the multiprocessors. The advent of local
multiprocessor cache has the potential to greatly expand the domain of prob-
lems that run effi ciently on GPGPU hardware as well as ease the development
effort for programmers. As mentioned in the FFT discussion, please look to
the latest performance studies for information that can help decide how to
most effectively allocate work between the host and GPGPU devices.

GPGPU programmers also have the ability to declare variables in several
CUDA memory types to both reuse data and exploit various performance
characteristics.

2.3.3.1 Register and Shared Memory

Obviously, the on-chip register and shared-memory types are highly desirable
from a performance standpoint because they have single-cycle access times.
Because they are located on the multiprocessor chip, they are also a very lim-
ited resource. NVIDA provides the CUDA occupancy calculator in the form
of an Excel spreadsheet to help developers calculate how to best utilize these
scarce resources. This spreadsheet is freely downloadable from the NVIDIA
web site, and predefi nes the various multiprocessor register and shared-
memory capacities for each generation of NVIDIA GPGPU architecture.

The CUDA occupancy calculator is an indispensible tool that allows
GPGPU developers to balance their use of these scarce on-chip memories
and greatly increase the performance of their application kernels. Using too
many registers, for example, will force the compiler to utilize local memory
for register storage. As can be seen in Table 2.4, local memory is signifi cantly

10768_C002.indd 4210768_C002.indd 42 6/17/2010 7:23:24 PM6/17/2010 7:23:24 PM

Introduction to GPGPUs and Massively Threaded Programming 43

slower than register memory, which implies dire performance consequences
for those application kernels that spill registers to local memory.

Shared memory is effectively the high-speed pathway to share information
between the threads of a thread block. CUDA developers generally spend much
effort in partitioning problems to eliminate communications between threads
that do not belong to the same thread block. Otherwise, slower global memory
must be used with potentially drastic performance implications. Please note
that shared memory—like global memory—is also subject to bank confl icts
and the resulting serialization of accesses will quickly reduce performance.

2.3.3.2 Constant Memory

Constant memory is hardware optimized for the case when all threads read
from the same location. Essentially, data can be broadcast from constant
memory to all threads with one cycle of latency when there is a cache hit.
This is remarkable given that constant memory resides in global memory.
The constant memory cache includes an intelligent prefetch mechanism so
the fi rst access incurs only one cycle of latency. Constant memory can only
be written via a data transfer from the host with the CUDA runtime method
cudaMemcpyToSymbol(). It is also persistent across kernel calls within the
same application, which allows constants to be loaded at startup and utilized
throughout the application lifetime.

2.3.3.3 Texture Memory

From a C-programmer’s perspective, texture memory provides an unusual
combination of cache memory (separate from register, global, and shared
memory), local processing capability (separate from the thread processors),
and a necessary path for CUDA to interact with the display capabilities of

TABLE 2.4

CUDA Memory Types

Memory Location Cached Access Scope Access Latency

Register On-chip No Read/write One thread Single cycle
Shared On-chip N/A Read/write All threads in a

block
Single cycle

Constant Off-chip Yes Read All threads +
host

One to hundreds of
cycles depending on
cache locality

Texture Off-chip Yes Read/write
(CUDA 2.2
and later)

All threads +
host

One to hundreds of
cycles depending on
cache locality

Global Off-chip No Read/write All threads +
host

slow (400–600 cycles)

Local Off-chip No Read/write One thread *slow* (400–600 cycles)

10768_C002.indd 4310768_C002.indd 43 6/17/2010 7:23:24 PM6/17/2010 7:23:24 PM

44 Bioinformatics: High Performance Parallel Computer Architectures

the GPU. It is possible, through the judicious use of the caching behavior of
texture memory to avoid the bandwidth limitations of global memory and
greatly accelerate GPU application performance.

The easiest way to think of texture memory is as a simple hardware inter-
face with limited processing capability that the CUDA programmer can bind
to arbitrary regions of the global memory. GPGPUs have multiple texture
units, each of which

Has roughly 8 KB (a KB, or kilobyte, is a thousand bytes) of local •
memory per multiprocessor to prefetch data from global memory.
Is optimized for 2D spatial locality and can provide a performance •
boost when all the threads in a warp access nearby locations in the
texture according to this expectation of locality.

Also, please note that texture memory can be used as a limited form of high-
performance random-access memory! One ingenious mapping of a random-
access bloom fi ler to texture memory has been implemented within the
CUDA-EC software [4].

Potentially the most important capability texture memory provides is
the ability to mix CUDA and visualization code (either OpenGL or DirectX
based) within the same application. Very high performance can be achieved
because data never needs to be moved off the GPU—thus avoiding both host
computer and PCIe bottlenecks. As a result, mixed CUDA and graphics pro-
grams can perform complex data creation, modifi cation, and rendering at
hundreds of frames per second on the current generation of mid- and high-
end CUDA-enabled graphics processors such as the GeForce GTX 285.

Other performance benefi ts of texture memory include the following:

Packed data may be broadcast to separate variables in a single •
operation.
8-bit and 16-bit integer input data may be optionally converted to •
32-bit fl oating-point values in the range [0.0, 1.0] or [−1.0, 1.0] by the
texture unit hardware.
Linear, bilinear, and trilinear interpolation is performed using dedi-•
cated hardware separate from the thread processors.

2.3.3.4 Global Memory

Global memory is by far the largest memory space, with capacities measured
in gigabytes. Briefl y, global memory

Is potentially 150× slower than register or shared memory. Data •
reuse enabled by other GPGPU memory types is required to prevent
thread data starvation and achieve high performance.

10768_C002.indd 4410768_C002.indd 44 6/17/2010 7:23:24 PM6/17/2010 7:23:24 PM

Introduction to GPGPUs and Massively Threaded Programming 45

Requires coalesced operations to deliver the highest performance.•
Has the lifetime of the application.•
Is accessible from either the host or the device.•

Much of the discussion in this chapter has centered on the memory band-
width and latency issues associated with global memory, which also refl ects
much of where the effort is spent when programming GPGPUs. Without
question, data reuse is a mandatory requirement to achieve high-GPGPU
kernel performance. Massive multithreading helps because it provides the
large thread count that utilizes the capability of each multiprocessor to sup-
port many outstanding load requests. As a result, load-to-use latency can be
hidden when accessing data stored in global memory.

The recently announced Fermi architecture, or 20-series of NVIDIA hard-
ware, provides two important advances related to global memory:

 1. Local multiprocessor caches facilitate data reuse and enable more
applications to achieve high performance.

 2. It breaks the 4 GB global memory barrier imposed by the 32-bit add-
ressing space utilized in previous generations of GPGPUs.

2.3.3.5 Local Memory

Local memory is actually a memory abstraction utilized exclusively by the
compiler that implies “local in the scope of each thread.” It is not an actual
hardware component but rather is allocated and resides in global memory.
Normally, automatic variables declared in a kernel reside in registers, which
provide the fastest form of memory access. Performance can drastically drop
when registers are spilled to local memory, so it is important to understand
the circumstances that might cause the compiler to place automatic variables
in local memory. They include the following:

There are too many register variables.•
A structure would consume too much register space.•
The compiler cannot determine if an array is indexed with constant •
quantities.

2.4 Visualization

Amusingly, the focus of this chapter has been on utilizing the massively
threaded computational capabilities provided by graphics processors—
while the remarkable ability of this same hardware to render graphics has

10768_C002.indd 4510768_C002.indd 45 6/17/2010 7:23:24 PM6/17/2010 7:23:24 PM

46 Bioinformatics: High Performance Parallel Computer Architectures

been largely ignored. Suffi ce it to say that GPGPUs exhibit extraordinary
capabilities to display information as well.

Through the use of CUDA, high-performance visualization is possible
without requiring that data be moved on and off the GPU. As with computa-
tional kernels, eliminating data transfers over the PCI bus removes a signifi -
cant bottleneck and can dramatically speed the rendering process. Much like
combining calculations in a single kernel, newer OpenGL constructs such
as primitive restart provide signifi cant performance benefi ts for the CUDA
programmer by effectively combining multiple rendering operations into a
single call. Unlike other OpenGL calls, primitive restart only utilizes infor-
mation defi ned and kept on the GPU and does not require transferring any
index or length arrays from the host to the GPU. A working example of prim-
itive restart is provided in article sixteen of my Doctor Dobb’s Journal series of
online tutorials [5].

CUDA enables the effi cient interoperability with graphics by mapping
a pointer from the graphics buffer(s) to CUDA. Once provided with the
mapped pointer(s), CUDA programmers are then free to exploit their knowl-
edge of CUDA to write fast and effi cient kernels to operate on the graphics
buffers. The separation is distinct because graphical manipulation of buffers
currently mapped by CUDA is not allowed.

There are two very clear benefi ts of the separation (yet effi cient interoper-
ability) between CUDA and graphics:

From a programming view:• When not mapped into the CUDA mem-
ory space, graphics gurus are free to exploit existing legacy code
bases, their expertise and the full power of all the tools available
to them.
From an investment view:• Probably the most important benefi t of this
separated approach is the effi cient exploitation of existing legacy
visualization software investments. Essentially, CUDA code can
be incrementally added to existing visualization software without
assuming signifi cant risk or requiring that substantial portions of
the code be rewritten.

2.5 Conclusion

It is possible today to purchase a commodity graphics processor at your
favorite electronics store that nearly doubles the world record–breaking
terafl op supercomputer performance announced in December 1996 by
Sandia National Laboratory. Combining four of these same graphics pro-
cessors that retail for less than $500 in a dedicated workstation can provide

10768_C002.indd 4610768_C002.indd 46 6/17/2010 7:23:24 PM6/17/2010 7:23:24 PM

Introduction to GPGPUs and Massively Threaded Programming 47

a student with over 7 terafl ops of dedicated computational capability,
which compares favorably with the recently decommissioned 11.8 tera-
fl op MPP2 supercomputer provided by the Pacifi c Northwest National
Laboratory for shared use by their entire world-wide user community. The
latest generation of GPGPUs, announced but as yet untested, tout signifi -
cantly greater computational capabilities and should be available in the
fi rst half of 2010.

Massively threaded programming models are the key to exploiting the
capabilities of this massively parallel hardware technology. The myriad of
scientifi c applications that now utilize GPGPU technology provide ample
proof that scientists and engineers fi nd the existing CUDA programming
model, compiler, and development tools to be adequate. Newer models and
programming pragmas are being advanced to make massively threaded
programming even more general and familiar to C- and FORTRAN
programmers.

With so many GPGPU massively threaded applications delivering orders
of magnitude greater performance than multithreaded software running
on conventional hardware, it is clear that extraordinary scientifi c advances
are possible. Technology is only a tool, and scientists who combine knowl-
edge of massively threaded programming with perceptiveness and insight
are the ones who will likely make the most signifi cant advances in the com-
ing years. In a very real sense, computational biology and bioinformatics are
transitioning from the “light-based microscopy” of conventional computing
to the powerful new GPGPU “electron microscopes” of commodity massively
parallel computing.

Several excellent sources of information exist on the internet that pro-
vide more detailed information about GPGPU computing and CUDA. I
recommend visiting the NVIDIA CUDA Zone web site for the latest infor-
mation on both CUDA software and hardware [6]. Those who wish to
learn CUDA should consult my “Supercomputing for the Masses” series
of tutorials that are freely available online at the Doctor Dobb’s journal
web site [5].

2.6 References

 1. The Connectome Project. http://iic.harvard.edu/research/connectome. Acce-
ssed February 15, 2010.

 2. R. Farber. GPGPUs: Neat idea or disruptive technology. Scientifi c Computing,
24(11), (January 2008).

 3. NVIDIA Cuda Zone. http://nvidia.com/cuda http://iic.harvard.edu/
research/connectome. Accessed February 15, 2010.

10768_C002.indd 4710768_C002.indd 47 6/17/2010 7:23:25 PM6/17/2010 7:23:25 PM

48 Bioinformatics: High Performance Parallel Computer Architectures

 4. H. Shi, B. Schmidt, W. Liu, W. Mueller-Wittig. Accelerating error correction in
high-throughput short-read DNA sequencing data with CUDA, Proceedings of
the 2009 IEEE International Symposium on Parallel and Distributed Processing
(IPDPS).

 5. Doctor Dobb’s Journal. http://www.ddj.com http://iic.harvard.edu/research/
connectome Accessed February 15, 2010.

 6. R. Farber. Using vertex buffer objects with CUDA and OpenGL, 2009, to be pub-
lished online.

10768_C002.indd 4810768_C002.indd 48 6/17/2010 7:23:25 PM6/17/2010 7:23:25 PM

http://iic.harvard.edu/research/connectome
http://iic.harvard.edu/research/connectome

49

3
FPGA: Architecture and Programming

Douglas Maskell

3.1 Introduction .. 49
3.2 The Need for FPGA Computing ..50
3.3 FPGA Computing Architectures ... 52
3.4 FPGA Development Tools...54
3.5 Discussion ...56
3.6 References ...56

3.1 Introduction

The history of the fi eld-programmable gate array (FPGA) dates back to the
1970s with the commercial development of programmable logic array (PLA)
and programmable array logic (PAL) devices. While PLA and PAL devices
have evolved into today’s complex programmable logic devices (CPLD),
FPGA development took a slightly different route more akin to gate array
technology. The fi rst commercially successful FPGA, the Xilinx XC2064 [1],
was developed by Ross Freeman and Bernard Vonderschmitt in 1985. This
device, called a logic cell array, consisted of three different types of user con-
fi gurable elements: confi gurable logic blocks (CLB), confi gurable I/O blocks
(IOB), and programmable interconnect. The schematic layout of the XC2064
logic cell array and the CLB structure is shown in Figure 3.1. The confi gu-
ration of these elements was achieved by writing data to the confi guration
memory to establish the various logic functions and connections. However,
it was not until 1989 when Stan Baker of EETimes came up with the term
FPGA that these devices became known as fi eld-programmable gate arrays
or FPGAs.

Since their introduction, FPGAs have evolved from relatively small homo-
geneous arrays of confi gurable elements to large heterogeneous computing
systems consisting of a programmable fabric, an embedded memory, and a
range of hardwired functional units, such as multipliers, communications

10768_C003.indd 4910768_C003.indd 49 6/17/2010 7:23:53 PM6/17/2010 7:23:53 PM

50 Bioinformatics: High Performance Parallel Computer Architectures

transceivers, digital signal processing (DSP) blocks, and even complete
microprocessors. The major FPGA vendors also provide a range of intellec-
tual property (IP) soft cores, including soft-core processors and peripher-
als, and a comprehensive development environment to compose complete
FPGA systems. Modern FPGAs provide multimillion equivalent gates with
embedded computing capability and are large enough for entire systems to
be implemented onto a single chip. These devices are sometimes called sys-
tem on programmable chip (SoPC) or platform FPGA to parallel the terminol-
ogy used in application-specifi c integrated circuit (ASIC) design.

3.2 The Need for FPGA Computing

As the demand for computing resources increases, central processing unit
(CPU) development has relied on a combination of clock speed increases and
changes to the architecture to improve instruction level parallelism. However,
there is a growing performance gap between the capabilities of the micro-
processor and the data transfer rate of memory. To fi ll this gap, techniques
such as caching, pipelining, out-of-order execution, and branch prediction are
being pushed to their limits. These microarchitectural changes come at a cost,
as running a system with extra circuitry and at a higher frequency consumes
more power and dissipates more heat. As a result, CPU designers have moved
toward multicore and many-core technologies to improve performance while
keeping thermal dissipation within manageable limits. Unfortunately, multi-
core architectures have not really addressed the memory bottleneck issue and
have introduced a completely new set of problems. To tap their full potential,
multicore systems require more sophisticated operating systems and better

(a) (b)

A
B
C
D S

Y

X

R
C

D Q

CLK

LUT

FIGURE 3.1
The XC2064 logic cell array [1], (a) schematic layout, showing the array of CLBs with the confi gu-
rable IOBs around the outside and the programmable interconnect, and (b) schematic of a CLB.

10768_C003.indd 5010768_C003.indd 50 6/17/2010 7:23:53 PM6/17/2010 7:23:53 PM

FPGA: Architecture and Programming 51

parallelizing compilers, while applications developers require time to adapt
and to become profi cient with both the tools and the platform itself. The bot-
tom line is that when it comes to accelerating algorithms, systems based on
processors alone do not scale well with increasing frequency. Instead, other
technologies, which can either work in conjunction with existing computing
platforms or even replace them, need to be developed. One such technology
is the FPGA-based reconfi gurable computing accelerator.

Virtually since the FPGA’s inception, it has been used for application accel-
eration, particularly in the DSP and digital communications areas. More
recently, as FPGA devices have become larger, they are being increasingly
seen as enabling technology, used alongside conventional high-performance
computing systems, to accelerate computational tasks. Unlike conventional
microprocessors, which must transfer data from/to registers, or memory, as
part of the computation cycle, FPGAs can stream data between different pro-
cessing elements eliminating the bulk of the data transfers. FPGA computing
can achieve higher performance by exploiting the massive inherent parallel-
ism and by using fl exibility to specialize the architecture. A signifi cant advan-
tage over CPU devices is achieved because FPGA resources are confi gurable.
Precomputed lookup tables are used in place of complex mathematical func-
tions. Issues of memory bandwidth are alleviated by having access to multiple
memory banks in parallel. The use of custom circuits means that the applica-
tion can be better matched to the architecture. For example, in bioinformat-
ics research, the algorithms for gene and protein sequence matching do not
require the full integer precision available in modern CPUs, let alone needing
fl oating point arithmetic. Therefore, adapting the application so that it exploits
its inherent precision and parallelism, results in better utilization of the avail-
able resources even though the hardware may be clocked at a signifi cantly
lower frequency than that of the latest CPUs. This approach not only achieves
algorithm acceleration, but also usually results in a reduced power consump-
tion and heat dissipation.

The fact that the FPGA can be reprogrammed at will and with little
effort makes it very attractive for developing effi cient implementations of
algorithms. Because many of these algorithms often originate in the form
of a software application that requires acceleration, converting the imple-
mentation from software to hardware requires a fair amount of tweaking
and experimentation. The FPGA offers precisely the right combination of
resources and fl exibility to help develop, test, and evaluate the performance
of an algorithm’s implementation. The developer can, and must, choose
which portions of the algorithm to implement in FPGA hardware and which
should be left to execute on a CPU. This process is known as hardware- software
partitioning. Co-synthesis techniques that apply a hardware-software parti-
tioning algorithm to automatically generate a software model that can be
cross-compiled and a hardware model that can be synthesized are fairly
mature [2–4]. The end result is that a sequence of instructions is converted
into a hardware circuit that is functionally equivalent.

10768_C003.indd 5110768_C003.indd 51 6/17/2010 7:23:54 PM6/17/2010 7:23:54 PM

52 Bioinformatics: High Performance Parallel Computer Architectures

3.3 FPGA Computing Architectures

CPUs are designed to handle a rich mix of operations, while FPGAs are able
to accelerate a well-defi ned set of repetitive operations. In many software
applications, most of the computation time is attributable to only a small
portion of the application, with the execution of the larger part of the code,
which is necessary for completeness, having little effect on the performance.
Consequently, an interesting hybrid computing approach couples a CPU
with an FPGA fabric [5]. This hybrid approach has seen several systems
proposed that couple a general-purpose CPU with a reconfi gurable array.
An early example of this is the dynamic instruction set computer (DISC)
[6]. Later examples include Garp [7] and CHIMAERA [8]. This was followed
by commercial hybrid platforms, including the Triscend A7 and E5 CSoC
Families [9, 10], the QuickSilver Technology ADAPT2400 ACM Architecture
[11], and the Stretch S5 and S6 SCP Engines [12].

An increasing number of new chips include a portion of FPGA-like fabric
to add fl exibility to adapt to a number of applications. This trend is due to
companies such as M2000 (now Abound Logic) who market FPGA fabric
for integration into new ASIC devices [13]. While many hybrid architectures
have been proposed, most have had little commercial success. As of writing
the only commercial hybrid device still existent in the market is the Stretch
S6. The mix of paradigms has the effect of mixing the complexities of appli-
cation design for software and hardware. To adopt such a device, a company
has to use specialized compiler tools that are as yet unproven. Thus, the ben-
efi t of using such a device does not outweigh the risk inherent in complex
systems that are only supported by a single vendor.

The FPGA vendors have had slightly more success introducing processors
embedded inside their FPGA fabrics. Examples of commercially available
platforms are the Xilinx Virtex-2 Pro, Virtex-4 FX, and Virtex-5 FXT FPGAs
with an embedded PowerPC [14], and the Altera Excalibur with an embed-
ded ARM [15]. In contrast to the hybrid architecture vendors mentioned pre-
viously, the FPGA development environments of Altera and Xilinx are well
established. They have built on this advantage and integrated processor cores
that have well-established programming environments. What is interesting
is that Xilinx has no plans to incorporate a hard-core processor into its latest
generation Virtex-6 devices, while Altera after exiting the hard-core proces-
sor arena in 2002 has recently licensed the MIPS32 RISC architecture from
MIPS Technologies [16]. Alternatively, soft-core processors offer a cheaper
and lower risk alternative to hybrid architectures, albeit at a lower speed.
Soft-core processors use standard FPGA resources to build microproces-
sor architectures. In addition to the vendor-specifi c cores, such as the Xilinx
Microblaze [14] and Altera NIOS-2 [15], there are a range of both commercial
and open-source cores on offer. Commercial cores include ARM’s FPGA-
optimized Cortex M1 processor [17] and Freescale’s V1 Coldfi re processor

10768_C003.indd 5210768_C003.indd 52 6/17/2010 7:23:54 PM6/17/2010 7:23:54 PM

FPGA: Architecture and Programming 53

[18] while open-source cores include the LEON SPARC [19] and Opencores
OpenRISC [20].

As FPGA technology has developed, its use as a computing platform has
moved from academic research into the commercial domain. Many compa-
nies offer PCI bus FPGA accelerators with the necessary IP to develop hard-
ware accelerated solutions. High-performance computing platforms based
on FPGA initially developed as research platforms [21, 22] are now a com-
mercial reality, with companies such as Starbridge Systems [23], Nallatech
[24], and SRC Computers [25] offering high-performance FPGA-based com-
puting solutions. FPGA technology was also briefl y adopted by high-profi le
supercomputing companies such as Cray with their XD1 platform [26], and
SGI with their RASC platform [27], although both appear to have discontin-
ued these product lines. The architecture of the Cray XD1 and the SGI RASC
platforms showing the FPGA accelerator is given in Figure 3.2.

The mainstream microprocessor manufacturers are also showing inter-
est in FPGA accelerators. What started with AMD’s strategy to improve the
potential of their Opteron processor-based platforms by opening up the
HyperTransport specifi cation [28] has resulted in a number of tightly coupled
FPGA accelerators targeted at both AMD and Intel processors. In opening
up HyperTransport, AMD had hoped that the resulting application-specifi c
accelerators, closely coupled with their processors, would provide platforms
that outperform their competitors, thus giving them a competitive edge.
Initially, two companies developed FPGA platforms that slot into a available
Opteron socket on a multiple processor motherboard. DRC Computer offers a
reconfi gurable Xilinx Virtex-4 platform [29] and XtremeData offers an Altera
Stratix-2 platform [30]. Placing the FPGA at this point in the system provides a
5.4 GB/s link with up to 4 GB of memory and a 1.6 GB/s link to the other AMD

(a) (b)

RapidArray Interconnect Bus

2 x 2.0GB/s
4 x 3.2GB/s

2 x 3.2GB/s

3.2GB/s

3.2GB/s

12.8GB/s 9.6GB/s

16MB QDR SRAM 6MB QDR SRAM

CPUNUMALink Interconnect Bus

CPUInterface
Interface

FPGA FPGA

FIGURE 3.2
(a) XD1 architecture (Modifi ed from Cray, Inc., http://www.cray.com/), and (b) the SCI RASC
architecture (Modifi ed from SGI, http://www.sgi.com/).

10768_C003.indd 5310768_C003.indd 53 6/17/2010 7:23:54 PM6/17/2010 7:23:54 PM

54 Bioinformatics: High Performance Parallel Computer Architectures

Opteron processors on the motherboard, as shown in Figure 3.3. In response,
Intel has also provided the ability to connect to its Xeon processor front side
bus (FSB) and the QuickAssist accelerator abstraction layer. XtremeData offers
an Altera Stratix III FPGA-based module, which targets the Intel FSB at 1066
MHz, while Nallatech [24] offers a stackable Vertix-5-based solution. Both
Nallatech and Xtreme Data have recently announced that they are develop-
ing FPGA accelerators for Intel’s new high-speed QuickPath interconnect.

3.4 FPGA Development Tools

Similar to software designs, FPGA design descriptions must be optimized
and translated to a form usable at the physical hardware level. The resulting
confi guration data, called a bitstream, is then loaded into the FPGA to form the
connections to make the required hardware circuit. Traditionally, an FPGA
designer would develop a behavioral register transfer level (RTL) description
of the required circuit using a hardware description language (HDL), such as
VHDL or Verilog. This behavioral RTL representation would then be input
into an FPGA compiler tool, such as Xilinx ISE [14] or Altera Quartus [15], for
synthesis, logic optimization, and fi nally mapping to a specifi c FPGA.

Both VHDL and Verilog are well-established HDLs, and allow the defi ni-
tion of both high-level algorithms and low-level optimizations in the same
language. The resultant code is reasonably straightforward for a software
programmer to interpret, provided that the languages built in concurrency
are understood. However, as designs become larger and more complicated, it
becomes more diffi cult to manage the complexity at the HDL level. To meet
these design challenges, automated EDA tools have been developed to make
system-level design easier. System-level design tools that can effectively inte-
grate the different design strategies within domains, so as to better lever-
age FPGA resources, are available from both FPGA vendor and third party

SYS
SBCPU

FPGA PCle-16

2 x 5.0GB/s2 x 1.6GB/s

2 x 4.0GB/s
6.0GB/s

5.4GB/s
DDR Memory

DDR Memory

FIGURE 3.3
The XtremeData XD1000 architecture (Modifi ed from XtremeData, Inc., http://www.
xtremedatainc.com/).

10768_C003.indd 5410768_C003.indd 54 6/17/2010 7:23:55 PM6/17/2010 7:23:55 PM

http://www.xtremedatainc.com/
http://www.xtremedatainc.com/

FPGA: Architecture and Programming 55

sources. Xilinx offers a system edition of its ISE design tool that combines a
DSP and embedded processing development environment with its more con-
ventional FPGA design environment [14]. Altera provides SoPC Builder with
a set of unbundled tools with similar functionality (i.e., Quartus II, Nios II
EDK and DSP builder) [15]. Both these tool chains offer seamless integration
with the MATLAB and Simulink tools from The Mathworks [31]. In addition,
complete system-level tool chains are available from third party sources,
such as Mentor Graphics [32] and Synopsys [33].

Even with the advances in EDA tools, good FPGA design still requires a
signifi cant amount of domain knowledge. Therefore, to bring FPGA com-
puting into the mainstream, where software programmers still predomi-
nantly focus on sequential program design, a number of initiatives looking

MATLAB/
Simulink

System specifications

Algorithm

Hardware/software partitionerHardware input

Synthesis

Place & route

Bitstream Executable
FPGA

System
co-verfication

RTL simulator

Testbenches

Instruction set
simulator Linker

Compiler

Software description

Software input

HLL source
C/C++C/C++

Netlist

Hardware description
(Verilog/VDHL)

FIGURE 3.4
A typical HLL to hardware design fl ow.

10768_C003.indd 5510768_C003.indd 55 6/17/2010 7:23:55 PM6/17/2010 7:23:55 PM

56 Bioinformatics: High Performance Parallel Computer Architectures

at synthesis from high-level languages (HLL) have been initiated. Enabling
synthesis from a HLL also allows designers to leverage on the large amount
of open-source software that is currently available. A number of commercial
HLL to HDL tools have been released, most of which target translation from
the C-language to hardware. These include Handel-C from Agility (acquired
from Celoxica) [34], Impulse C from Impulse Accelerated Technologies [35],
Dime-C from Nallatech [24], Catapult C from Mentor Graphics [32], Mitrion-C
from Mitrionics [36], and C-to-Hardware from Altera [15]. Tools such as
Simulink HDL Coder from The Mathsworks [31] and the Bluespec Compiler
from Bluespec [37] allow a more algorithmic approach for generating hard-
ware. A typical HLL to Hardware design fl ow is shown in Figure 3.4.

3.5 Discussion

There are many documented examples in the scientifi c literature where
FPGA-based computing provides superior performance to CPU-based com-
puting. In the DSP and Image processing domains, these include FPGA imple-
mentations of the DES data encryption algorithm providing a speedup of up
to two orders of magnitude [38] and video applications with speedups of
20–100 times [39]. In the bioinformatics domain, FPGA implementations of
the Smith–Waterman pairwise protein sequence alignment have achieved
speedups of 120–200 times [40] that of the corresponding software imple-
mentations, while FPGA implementations of the basic local alignment search
tool (BLAST) have also achieved impressive speedups [41]. These previous
implementations have all been carefully hand crafted with signifi cant man-
ual input to identify the parallelism and the processing precision, thereby
achieving the best speedup possible. Solutions based on translating from
HLLs to hardware, while producing signifi cant application acceleration [42],
still have some way to go before they are able to achieve the performance
of these manual designs. Pico Computing has recently announced a 5000X
acceleration of a graphical tool for visualization of the comparison of two
DNA sequences on an FPGA cluster [43] using C-to-FPGA tools provided by
Impulse Accelerated Technologies [35]. This particular algorithm was inher-
ently parallel, thus making it an ideal candidate for acceleration using a large
number of FPGA devices.

3.6 References

 1. Xilinx XC2064/XC2018 Logic Cell Array, http://www.datasheetarchive.com/
XC2064–100PC68C-datasheet.html, last accessed Nov. 2009.

10768_C003.indd 5610768_C003.indd 56 6/17/2010 7:23:55 PM6/17/2010 7:23:55 PM

FPGA: Architecture and Programming 57

 2. R.K. Gupta, Co-Synthesis of Hardware and Software for Digital Embedded Systems,
Kluwer Academic Publishers, 1995.

 3. R. Ernst, J. Henkel, T. Benner, Hardware–software co-synthesis for microcon-
trollers, IEEE Design & Test of Computers, 10(4), 64–75, 1993.

 4. F. Balarin et al., Hardware–Software Co-Design of Embedded Systems: The POLIS
Approach, Kluwer Academic Publishers, 1997.

 5. A. DeHon, The density advantage of confi gurable computing, IEEE Computer,
33(4), 41–49, 2000.

 6. M.J. Wirthlin and B.L. Hutchings, A dynamic instruction set computer, IEEE
Symposium on FPGAs for Custom Computing Machines (FCCM ‘95), pp. 99–107,
Napa Valley, CA, USA, Apr. 1995.

 7. J.R. Hauser, Augmenting a microprocessor with reconfi gurable hardware, PhD
dissertation, University of California, Berkeley, CA, 2000.

 8. Z.A. Ye, A. Moshovos, S. Hauck, P. Banerjee, CHIMAERA: a high-performance
architecture with a tightly-coupled reconfi gurable functional unit, Proceedings of
the 27th Annual International Symposium on Computer Architecture, pp. 225–235,
Vancouver, BC, Canada, 2000.

 9. Triscend E5 Customizable Microcontroller Platform, http://www.
datasheetarchive.com/datasheet-pdf/027/DSA00484394.html, last accessed Nov.
2009.

 10. Triscend A7 Confi gurable System-on-Chip Platform, http://www.
datasheetarchive.com/datasheet-pdf/04/DSA0065723.html, last accessed Nov.
2009.

 11. QuickSilver Technology, Inc., http://www.qstech.com/default.htm, last
accessed Nov. 2009.

 12. Stretch, Inc., http://www.stretchinc.com/, last accessed Nov. 2009.
 13. Raptor FPGA, http://www.aboundlogic.com/index.html, last accessed Nov.

2009.
 14. Xilinx, Inc., http://www.xilinx.com/, last accessed Nov. 2009.
 15. Altera Corporation, http://www.altera.com/, last accessed Nov. 2009.
 16. Altera Licenses MIPS32 Processor Architecture, http://www.edn.com/

blog/980000298/post/1410049541.html, Oct. 2009, last accessed Mar. 2010.
 17. ARM Cortex-M1, http://www.arm.com/products/CPUs/ARM_Cortex-M1.

html, last accessed Nov. 2009.
 18. Freescale ColdFire V1 Core, http://www.freescale.com/, last accessed Nov.

2009.
 19. Aerofl ex Gaisler AB, LEON3 SPARC V8 Processor core, http://www.gaisler.

com/cms/, last accessed Nov. 2009.
 20. OpenRISC 1000 architecture, http://www.opencores.org/openrisc, last

accessed Nov. 2009.
 21. A. Patel, C.A. Madill, M. Saldana, C. Comis, R. Pomes, P. Chow, A scal-

able FPGA-based multiprocessor, 14th Annual IEEE Symposium on Field-
Programmable Custom Computing Machines, pp. 111–120, Napa Valley, CA,
USA, Apr. 2006.

 22. G. Pfeiffer, S. Baumgart, J. Schroeder, M. Schimmler, A massively parallel archi-
tecture for bioinformatics, Computational Science—ICCS 2009, International
Conference on Computational Science, LNCS 5544, 994–1003, 2009.

 23. Star Bridge Systems, Inc., http://www.starbridgesystems.com/, last accessed
Nov. 2009.

10768_C003.indd 5710768_C003.indd 57 6/17/2010 7:23:55 PM6/17/2010 7:23:55 PM

http://www.datasheetarchive.com/datasheet-pdf/04/DSA0065723.html
http://www.datasheetarchive.com/datasheet-pdf/04/DSA0065723.html
http://www.edn.com/blog/980000298/post/1410049541.html
http://www.edn.com/blog/980000298/post/1410049541.html
http://www.arm.com/products/CPUs/ARM_Cortex-M1.html
http://www.arm.com/products/CPUs/ARM_Cortex-M1.html
http://www.gaisler.com/cms/
http://www.gaisler.com/cms/
http://www.datasheetarchive.com/datasheet-pdf/027/DSA00484394.html
http://www.datasheetarchive.com/datasheet-pdf/027/DSA00484394.html

58 Bioinformatics: High Performance Parallel Computer Architectures

 24. Nallatech, Inc., http://www.nallatech.com/, last accessed Nov. 2009.
 25. SRC Computers, LLC, http://www.srccomputers.com/index.asp, last accessed

Nov. 2009.
 26. Cray, Inc., http://www.cray.com/, last accessed Nov. 2009.
 27. SGI, http://www.sgi.com/, last accessed Nov. 2009.
 28. HyperTransport Consortium, http://www.hypertransport.org/, last accessed

Nov. 2009.
 29. DRC Computer Corporation, http://www.drccomputer.com/, last accessed

Nov. 2009.
 30. XtremeData, Inc., http://www.xtremedatainc.com/, last accessed Nov. 2009.
 31. The MathWorks, Inc., http://www.mathworks.com/, last accessed Nov. 2009.
 32. Mentor Graphics, Inc., http://www.mentor.com/, last accessed Nov. 2009.
 33. Synopsys, Inc., http://www.synopsys.com/, last accessed Nov. 2009.
 34. Agility DK Design Suite, http://agilityds.com/, last accessed Nov. 2009.
 35. Impulse Accelerated Technologies, Inc., http://www.impulseaccelerated.com/,

last accessed Nov. 2009.
 36. A.B. Mitrionics, http://www.mitrionics.com/, last accessed Nov. 2009.
 37. Bluespec, Inc., http://www.bluespec.com/, last accessed Nov. 2009.
 38. C. Patterson, High performance DES encryption in Virtex FPGAs using JBits,

IEEE Symposium on Field-Programmable Custom Computing Machines, pp. 113–121,
Napa Valley, CA, USA, Apr. 2000.

 39. Z. Guo, W. Najjar, F. Vahid, K. Vissers, A quantitative analysis of the speedup
factors of FPGAs over processors, International Symposium on Field Programmable
Gate Arrays, pp. 162–170, Monterey, USA, 2004.

 40. T.F. Oliver, B. Schmidt, D.L. Maskell, Reconfi gurable architectures for bio-
sequence database scanning on FPGAs, IEEE Transactions on Circuits and Systems
II, 52(12), 851–855, 2005.

 41. P. Krishnamurthy et al., Biosequence similarity search on the mercury system,
J. VLSI Signal Processing Systems, 49(1), 101–121, 2007.

 42. Y.L. Aung, D.L. Maskell, T.F. Oliver, B. Schmidt, W. Bong, C-based design meth-
odology for FPGA implementation of ClustalW MSA, Pattern Recognition in
Bioinformatics 2007, LNCS, 4774, 11–18, 2007.

 43. Pico Computing, Inc., FPGA cluster accelerates bioinformatics application
by 5000×, http://www.picocomputing.com/pdf/PR_Pico_Bioinformatics_
Nov_9_2009.pdf, last accessed Nov. 2009.

10768_C003.indd 5810768_C003.indd 58 6/17/2010 7:23:55 PM6/17/2010 7:23:55 PM

http://www.picocomputing.com/pdf/PR_Pico_Bioinformatics_Nov_9_2009.pdf
http://www.picocomputing.com/pdf/PR_Pico_Bioinformatics_Nov_9_2009.pdf

59

4
Parallel Algorithms for
Alignments on the Cell BE

Abhinav Sarje and Srinivas Aluru

4.1 Computing Alignments .. 61
4.2 Sequence Alignments on the Cell Processor ...63
4.3 A Parallel Communication Scheme ..63

4.3.1 Tiling Scheme for Aligning Longer Sequences65
4.3.2 Computing the Optimal Alignment Score

Using Tiling ..66
4.3.3 Computing an Optimal Alignment Using Tiling 67

4.4 A Hybrid Parallel Algorithm ...68
4.4.1 Parallel Alignment Scheme Using Prefi x

Computations ...68
4.4.2 Problem Decomposition Using Wavefront Scheme 70
4.4.3 Subproblem Alignment Phase Using Hirschberg’s

Technique ..72
4.4.4 Further Optimizations: Vectorization and Memory

Management ... 73
4.4.5 Space Usage .. 74
4.4.6 Performance of the Hybrid Algorithm ... 74

4.5 Algorithms for Specialized Alignments .. 76
4.5.1 Spliced Alignments ... 76
4.5.2 Performance of Parallel Spliced Alignment

Algorithm .. 78
4.5.3 Syntenic Alignments ... 79
4.5.4 Performance of Parallel Syntenic Alignment

Algorithm ..80
4.6 Ending Notes .. 82
4.7 References ... 82

10768_C004.indd 5910768_C004.indd 59 6/17/2010 7:47:22 PM6/17/2010 7:47:22 PM

60 Bioinformatics: High Performance Parallel Computer Architectures

Alignment of biological sequences enables discovery of evolutionary and
functional relationships among them. Computing alignments, as a means
to elucidate different kinds of sequence relationships, is a fundamental tool
arising in numerous contexts and applications in computational biology. A
number of algorithms for sequence alignments have been developed in the
past few decades, the most common being the ones for pairwise global align-
ments (aligning sequences in their entirety [1]) and local alignments (aligning
sequences that each contain a substring that is highly similar [2]). Some appli-
cations require more complex types of alignments. One such example is when
aligning an mRNA sequence transcribed from a eukaryotic gene with the cor-
responding genomic sequence to infer the gene structure [3]. A gene consists
of alternating regions called exons and introns, while the transcribed mRNA
corresponds to a concatenated sequence of the exons. This requires identify-
ing a partition of the mRNA sequence into consecutive substrings (the exons)
that align to the same number of ordered, nonoverlapping, nonconsecutive
substrings of the gene, a problem known as spliced alignment. Another impor-
tant problem is that of syntenic alignment [4], for aligning two sequences that
contain conserved substrings that occur in the same order (such as genes with
conserved exons from different organisms, or long syntenic regions between
genomes of two organisms). An illustration of these four kinds of alignments,
showing how the regions of two sequences are aligned, is given in Figure 4.1.

Dynamic programming is the most commonly used method for computing
pairwise alignments [1–4], and takes time proportional to the product of the
lengths of the two input sequences (although the original Smith–Waterman
algorithm for local alignment [2] has cubic complexity, it is widely known that
this can be implemented in quadratic time, as is shown in [5]; also, [3] presents
an algorithm with cubic complexity, but the spliced alignment problem can be
treated as a special case of syntenic alignment and solved in quadratic time,
as will be described later in this chapter). Various parallel algorithms have
also been developed for these methods. Some of these parallelize the com-
putations within a single processor utilizing its vector processing units and
single- instruction multiple-data (SIMD) style instructions [6, 7], while other
algorithms deal with parallelization across multiple processors [8–10]. We
mainly focus on the latter in this chapter, and present algorithms for comput-
ing pairwise alignments in parallel on the Cell Broadband Engine (CBE). We
fi rst describe the global/local alignment algorithms using dynamic program-
ming, and a basic parallel computation strategy using the wavefront commu-
nication pattern. Using this strategy, alignment scores can be computed in
parallel across the different synergistic processing elements of the Cell pro-
cessor. Though this parallel strategy allows effi cient computation of align-
ment scores in linear space, retrieving the actual optimal alignment requires
quadratic space. We then present a linear space parallel algorithm for the Cell
processor, which overcomes this limitation and computes an actual optimal
alignment. Further, we describe how this algorithm can also be extended to
the more specialized spliced and syntenic alignment problems.

10768_C004.indd 6010768_C004.indd 60 6/17/2010 7:47:23 PM6/17/2010 7:47:23 PM

Parallel Algorithms for Alignments on the Cell BE 61

4.1 Computing Alignments

We start with a brief description of the sequential dynamic programming
algorithm for computing global alignments. Consider two sequences, S1 =
a1a2 . . . am and S2 = b1b2 . . . bn over an alphabet ∑, and let “–” denote the gap
character. A global alignment of the two sequences is a 2 × N matrix, where
N ≥ max(m, n), such that each row represents one of the sequences with gaps
inserted in certain positions and no column contains gaps in both sequences.
The alignment is scored as follows: a function, score: ∑×∑ → \, prescribes
the score for any column in the alignment that does not contain a gap. We
assume the score function returns the score for any pair of characters from
∑ in constant time. Affi ne gap penalty functions are commonly used to deter-
mine the scores of columns involving gaps, so that a sequence of gaps is
assigned less penalty than treating them as individual gaps—this is because

S1

(b) Local alignment

(c) Spliced alignment

(d) Syntenic alignment

(a) Global alignment

S2

S1

S2

S1

S2

S1

S2

FIGURE 4.1
Genomic alignments—the thick portions of sequences S1 and S2 show the segments that are
aligned. (a) Global alignment: Both sequences are aligned in their entirety. (b) Local alignment:
A substring from each sequence is aligned. (c) Spliced alignment: Ordered series of substrings of
one sequence is aligned to the entire second sequence. (d) Syntenic alignment: Ordered series of
substrings of one sequence is aligned with ordered series of substrings on the second sequence.
For (b), (c), and (d), the goal includes fi nding the aligning regions such that the score of the result-
ing alignment, as given by a score function, is maximized. Both the number and boundaries of
aligning regions are unknown and need to be inferred by the algorithm. Only the sequences S1
and S2 are the input for each alignment problem. (From Sarje, A. and Aluru, S., IEEE Transactions
on Parallel and Distributed Systems, 20(11):1600–1610, 2009. With permission. © 2009 IEEE.)

10768_C004.indd 6110768_C004.indd 61 6/17/2010 7:47:23 PM6/17/2010 7:47:23 PM

62 Bioinformatics: High Performance Parallel Computer Architectures

a mutation affecting a short segment of a genomic sequence is more likely
than several individual base mutations. Such a function is defi ned as fol-
lows: for a maximal consecutive sequence of k gaps, a penalty of h + gk is
applied. Thus, the fi rst gap in a maximal sequence is charged h + g, while
the rest of the gaps are charged g each. When h = 0, the scoring function is
called a constant gap penalty function. The score of the alignment is the sum
of scores over all the columns.

The global alignment problem with affine gap penalty function can
be solved using three (m + 1) × (n + 1) sized dynamic programming
tables, denoted C, D (for deletion), and I (for insertion). An element [i,
j] in a table is used to store the optimal score of an alignment between
a1a2 . . . ai and b1b2 . . . bj with the following restrictions on the last column
of the alignment: ai is matched with bj in C, a gap is matched with bj in
D, and ai is matched with a gap in I. The tables can be computed using
the following recursive equations, which can be applied row by row,
column by column, or antidiagonal by antidiagonal (also called minor
diagonal):

i j

C i j
C i j score a b max D i j

I i j

[1, 1]
[,] (,) [1, 1]

[1, 1]

− −= + − −
 − −

(4.1)

C i j h g
D i j max D i j g

I i j h g

[, 1] ()
[,] [, 1]

[, 1] ()

− − += − −
 − − +

(4.2)

()
()

C i j h g
I i j max D i j h g

I i j g

[, 1]
[,] [, 1]

[, 1]

 − − +
= − − +
 − −

(4.3)

The fi rst row and column of each table are initialized to –∞ except in the
following cases (1 ≤ i ≤ m; 1 ≤ j ≤ n):

C[0, 0] = 0
D[0, j] = h + gj
I[i, 0] = h + gi

The maximum of the scores among C[m, n], D[m, n], and I[m, n] gives the opti-
mal global alignment score. By keeping track of a pointer from each entry to
one of the entries that resulted in the maximum while computing its score,
an optimal alignment can be constructed by retracing the pointers from the
optimal score at bottom right to the top left corner of the tables. This proce-
dure is known as trace-back.

10768_C004.indd 6210768_C004.indd 62 6/17/2010 7:47:24 PM6/17/2010 7:47:24 PM

Parallel Algorithms for Alignments on the Cell BE 63

4.2 Sequence Alignments on the Cell Processor

A number of bioinformatics applications dealing with pairwise genomic
alignments have been ported to the CBE (e.g., [11–14]). Many such applica-
tions employ aligning an input sequence to sequences from a large data-
base and obtaining their alignment scores, for example, BLAST, ClustalW,
FASTA, and Ssearch. Porting of these applications to the Cell processor is
discussed in [12–14]. These methods for sequence alignments on the CBE
are restricted to the basic Smith–Waterman algorithm [2] for local align-
ments. The basic idea common to them is that all the alignments to be per-
formed between the input sequence and each sequence from the database
are independent of each other, and can be computed individually on each
of the synergistic processing elements (SPEs) of the CBE. The PowerPC pro-
cessing element (PPE) assigns sequences for independently computing the
alignment scores to the different SPEs, each of which then simultaneously
computes the score for the pair of sequences assigned to it and reports the
score back to the PPE. Hence, the individual SPEs do not need to synchro-
nize with each other.

Although computation of alignment scores is useful in statistical analyses
to assess the alignment quality, or to fi nd a small subset of sequences, which
have a high similarity with the query sequence, these implementations do
not compute the actual alignment, which is necessary to gain biological
insight into the genomic sequences being aligned. Moreover, they work for
smaller sequence sizes as only small local stores (256 KB) are available on
each SPE to store the whole sequences and the dynamic programming tables
to be computed. Therefore, in this chapter we focus on parallel algorithms
to compute a single optimal pairwise alignment on the CBE. To perform the
alignments in parallel, the input sequences and the dynamic programming
table computations need to be distributed among the various SPEs, which
also need to synchronize the computations among themselves. In the follow-
ing section we describe these distribution and communication strategies.

4.3 A Parallel Communication Scheme

In this section, we fi rst describe a parallel communication strategy that is
commonly employed by many parallel alignment algorithms on the CBE
[15–17]. This scheme, popularly known as the wavefront communication
scheme, was fi rst proposed by Edmiston et al. [9]. In this method, each table
is divided into a w × p matrix of block, where p is the number of processing
elements to be used and w is the number of blocks in one column (w = p in
the original algorithm). Therefore, each block contains at most n

p[] columns

10768_C004.indd 6310768_C004.indd 63 6/17/2010 7:47:24 PM6/17/2010 7:47:24 PM

64 Bioinformatics: High Performance Parallel Computer Architectures

and r rows, where r is a prechosen block size. Let Bi,j denote a block, where 0
≤ i < w and 0 ≤ j < p. Each processing element is assigned a unique column of
blocks to compute: processor Pj computes the blocks Bi,j. The blocks are simul-
taneously computed one antidiagonal at a time. All blocks on an antidiago-
nal can be computed simultaneously as they depend only on blocks on the
previous two antidiagonals—computation of a block Bi,j on the antidiagonal
t, where t = i + j, only depends on blocks Bi-1,j and Bi,j-1 from antidiagonal t – 1,
and block Bi-1,j-1 from antidiagonal t – 2. Because of the block assignment to
processing elements, each of them only needs to receive the last column of
a block (plus an additional element) from the previous processing element.
An illustration of this wavefront pattern is shown in Figure 4.2. Each SPE
receives all of the fi rst sequence (length m) and a distinct np length substring
of the second sequence. The total number of rounds of block computations
in this scheme is equal to the number of block antidiagonals, which is equal
to p + w – 1, although each SPE computes exactly w blocks. The SPEs need
to synchronize with each other after transferring their corresponding right-
most column to the next SPE. For an effi cient implementation, this can be
achieved using the signal notifi cation registers on the SPEs.

Sequence 2

Sequence 1

B0,0 B1,0 B2,0 B3,0

n/p

r

m

B4,0

B0,1 B1,1 B2,1 B3,1 B4,1

B0,2 B1,2 B2,2 B3,2 B4,2

B0,3 B1,3 B2,3 B3,3 B4,3

B0,4 B1,4 B2,4 B3,4 B4,4

B0,w–1

P0 P1 P2 P3 P4

B1,w–1

Bp–1,0

Bp–1,1

Bp–1,2

Bp–1,3

Bp–1,4

Bp–1,w-1

Pp-1

B2,w–1 B3,w–1 B4,w–1

FIGURE 4.2
Block division in the wavefront technique—SPE j is assigned a column of blocks Bi,j, 0 ≤ i < w,
as shown by the labels Pj below each column. Block computations follow diagonal wavefront
pattern, where for antidiagonal t, blocks Bi,j such that i + j = t, are computed simultaneously
in parallel (shown by blocks in the same shade of gray). SPE Pj (0 ≤ j < p) sends the rightmost
computed column in its assigned block (shown as thin shaded columns) to SPE Pj+1 for the next
iteration. (From Sarje, A. and Aluru, S., IEEE Transactions on Parallel and Distributed Systems,
20(11):1600–1610, 2009. With permission. © 2009 IEEE.)

10768_C004.indd 6410768_C004.indd 64 6/17/2010 7:47:25 PM6/17/2010 7:47:25 PM

Parallel Algorithms for Alignments on the Cell BE 65

The dynamic programming tables can thus be computed on each of the
SPEs. A simple extension of the block division enables alignment of longer
sequences, and cannot at once fi t into the local stores of the SPEs, and we
discuss this next.

4.3.1 Tiling Scheme for Aligning Longer Sequences

Because of the small local stores available on the SPEs, to enable optimal
alignment score computation of longer sequences, the dynamic program-
ming tables can be first divided into tiles such that the collective memory
of all the SPEs is sufficient for computation of a tile at once. Therefore,
the two input sequences are partitioned into segments such that each
pair of segments, one taken from each input sequence, defines a tile.
A single tile consists of w × p blocks, where each block contains r rows
and c columns. The dynamic programming tables are, hence, divided
into

m n
rw cp× tiles. Each tile is computed in parallel among the SPEs using

the wavefront scheme described earlier. An illustration of the tiling
scheme is presented in Figure 4.3. All the tiles are processed one by one
while explicitly storing the last, (cp – 1)th, column of each tile in the main
memory (when processing the tiles column-wise). Algorithm 1 gives a

Sequence 2

Sequence 1

T0,1 T1,1

T1,

n
cp –1,0T1,0T0,0

Tile

c

r

m

n

T

n
cp –1,1T

n m
rwcp –1,T –1m

rw –1T0,mrw –1

FIGURE 4.3
Tiling scheme to process longer sequences—the bold rectangles correspond to tiles. Shown
here is the case when four SPEs are used, resulting in four columns of blocks in each tile. Each
tile, denoted by Tk,l, is processed using the wavefront technique (as in Figure 4.2). The shaded
rightmost columns of the tiles need to be explicitly stored in the main memory, when going
over the tiles column wise.

10768_C004.indd 6510768_C004.indd 65 6/17/2010 7:47:25 PM6/17/2010 7:47:25 PM

66 Bioinformatics: High Performance Parallel Computer Architectures

pseudocode representation of this tile processing scheme. Wirawan et al.
[17] and Aji et al. [15] use this tiling scheme to enable alignment of longer
sequences.

Many DMA transfers to/from the main memory are required for the til-
ing scheme. The PPE initially divides the problem into tiles and instructs
the SPEs to process one tile after another. PPE can perform these required
communications with the SPEs through mailbox notifi cations. The SPEs use
direct memory access (DMA) transfers to move the corresponding sequence
fragments and the last column of the previously computed tile from the
main memory to their local stores. Once the processing of a tile is completed,
the SPEs transfer the computed scores to the main memory, notify the PPE
through mailboxes or signal notifi cations, and proceed to process the next
tile.
Algorithm 1: Tiling scheme. The dynamic programming tables are
divided into tiles, and each of them are processed using the
wavefront scheme. All the DMA transfers mentioned here are
between the main memory and the local stores of the SPEs.

 1 for l ← 0 to n
cp -1 do

 2 DMA transfer lth segment of S2 to local stores of the SPEs;
 3 for k ← 0 to

m
rw -1 do

 4 DMA transfer kth segment of S1 to local stores of SPEs;
 5 if l = 0 then
 6 Corresponding SPEs initialize 0th rows and

columns of the tables;
 7 else
 8 DMA transfer (cpl − 1)th column of the tables

to the local stores of the SPEs;
 9 end
10 Process tile Tk,l in parallel using wavefront scheme;
11 DMA transfer (cp − 1)th column of computed Tk,l to

main memory;
12 end

13 end

4.3.2 Computing the Optimal Alignment Score Using Tiling

To compute the alignment score entry [i, j] of a dynamic programming
table, only the entries in previous row (i − 1) and previous column (j − 1) are
required. Therefore, to compute only the optimal alignment score of the input
sequences, it is suffi cient to just store a linear array for the last computed row.
In the parallel wavefront scheme on the CBE, this linear space usage can
be achieved for score computations by additionally storing a linear sized
column array for the last column of the block being computed, which is com-
municated to the next SPE in charge of computing the next block. Wirawan

10768_C004.indd 6610768_C004.indd 66 6/17/2010 7:47:26 PM6/17/2010 7:47:26 PM

Parallel Algorithms for Alignments on the Cell BE 67

et al. [17] demonstrate an implementation of this linear space algorithm for
computing optimal local alignment scores. They also use this scheme in con-
junction with the tiling scheme described earlier to compute optimal align-
ment scores of longer sequences. Therefore, when only the optimal score
needs to be computed, this linear space method is helpful in light of the
small local stores available on the SPEs.

4.3.3 Computing an Optimal Alignment Using Tiling

Using the aforementioned linear space technique in conjunction with til-
ing does not allow retrieval of an actual alignment. To obtain an optimal
alignment along with the score, quadratic space is needed when using the
above-mentioned tiling scheme. Each tile is computed in parallel among
the SPEs, while storing all the rows of the dynamic programming tables.
On completion of a tile, the SPEs initiate DMA transfers to move the com-
puted tile (not just the (cp − 1)th column of each tile, as given in Algorithm
1) to the main memory, and then proceed to the next tile. For further paral-
lel effi ciency, the SPEs also keep track of their local maximum score when
performing local alignments, which are transferred to the main memory
at the end, to be used by the PPE to pick the optimal one. This informa-
tion can then be used by the PPE to perform a trace-back sequentially
on the fully stored dynamic programming tables residing in the main
memory to retrieve an optimal alignment. This strategy is demonstrated
for the Smith–Waterman local alignment algorithm in [15]. This method
enables obtaining an optimal alignment of longer sequences, though it
is still restricted by the size of the main memory because of its quadratic
space usage. It will also be slower due to large memory (quadratic sized)
transfers taking place from the SPEs to the main memory after computa-
tion of each tile.

Although the tiling scheme for alignment on the Cell processor is useful
in certain cases, it has the following drawbacks: (1) Linear space usage can
provide an effi cient implementation, but this yields only the optimal align-
ment score. (2) When an actual alignment is required, this scheme can align
longer sequence than what can fi t in the local stores of the SPEs, but the
main memory usage is still quadratic, which can become a limiting factor;
moreover, it performs slower. In the following section, we describe a parallel
approach as an extension of the wavefront scheme, for computing an opti-
mal alignment using only linear amount of space on the SPEs and the main
memory. The alignments are also obtained in parallel during the computa-
tions on the SPEs. Therefore, this approach delivers much faster performance
and avoids DMA transfers to the main memory until the whole alignment
computation is fi nished. With only linear space usage, longer sequences can
be aligned at once.

10768_C004.indd 6710768_C004.indd 67 6/17/2010 7:47:27 PM6/17/2010 7:47:27 PM

68 Bioinformatics: High Performance Parallel Computer Architectures

4.4 A Hybrid Parallel Algorithm

In the rest of the chapter, we focus on a parallel approach incorporating
a linear space strategy to increase the size of problems that can be solved
using the collective SPE memory and also infer an optimal alignment.
Hirschberg [18] presented a divide-and-conquer algorithm to obtain an
optimal alignment while using linear space, and we incorporate this strat-
egy in the parallel algorithm discussed later. This scheme should be suffi -
cient for most global/local/spliced alignment problems as the sequences are
unlikely to exceed several thousand bases. This alignment method for the
CBE is based on the parallel algorithm by Aluru et al. [8], which we describe
subsequently.

4.4.1 Parallel Alignment Scheme Using Prefix Computations

The parallel algorithm for computing global alignments in linear space given
in [8] consists of two phases: (1) problem decomposition phase and (2) subproblem
alignment phase. In the fi rst phase, the alignment problem is divided into p
nonoverlapping subproblems, where p is the number of processing elements.
Once the problem is decomposed, each processing element performs a linear
space alignment algorithm, computing an optimal alignment for the corre-
sponding subproblem. The result from each processing element is then sim-
ply concatenated to obtain an optimal alignment of the actual problem. We
describe the problem decomposition phase fi rst.

Initially, the sequence S1 is provided to all the processors and S2 is equally
divided among them—each processor receives a distinct block of n

p consecu-
tive columns to compute. Defi ne p special columns, () nC k pk 1= + × , 0 ≤ k ≤ p – 1,
of a table to be the last columns of the blocks allocated to each processing ele-
ment, except for the last one. The intersections of an optimal alignment path
with these special columns defi ne the segment of the fi rst sequence to be
used within a particular processing element independently of other blocks,
thereby splitting the problem into p subproblems.

To compute the intersections of an optimal path with the special columns,
the information on the special columns is explicitly stored. In addition to the
score values, for each entry of a table a pointer is also computed. This repre-
sents the table and row number of the entry in the closest special column
to the left that lies on an optimal path from C[0, 0] to the entry. The pointer
information is also explicitly stored for the special columns. Conceptually,
these pointers give the ability to perform a trace-back through special col-
umns without considering other columns. The entries of the dynamic pro-
gramming tables are computed row by row using parallel prefi x operation as
described later in linear space (storing only the last computed row, and the
special columns, thereby using O(m + np) space).

10768_C004.indd 6810768_C004.indd 68 6/17/2010 7:47:27 PM6/17/2010 7:47:27 PM

Parallel Algorithms for Alignments on the Cell BE 69

Parallel prefi x is a basic operation in parallel computing to compute prefi x
sums. Given N data items x0, x1, . . . ,xN−1, and a binary associative operator ⊗
that operates on these data items and produces a result of the same type, the
parallel prefi x operation is to compute the N partial sums s0, s1, . . . , sN−1, where
si = x0 ⊗ x1 ⊗ x2 ⊗ . . . xi in parallel. This operation is used to compute the table
entries. Consider computing row i of the tables C, D, and I after the (i – 1)th
rows are already computed. The ith rows of C and I can be computed directly
as they depend only on (i – 1)th rows (see Equations 4.1–4.3). After computing
them, the ith row of D can be computed using parallel prefi x. Separating the
terms that are already computed, let

{C i j g hW j max
I i j g h
[, 1] ()[]
[, 1] ()

− − += − − +
Then,

{=
− −

W jD i j max
D i j g

[][,]
[, 1]

Let

X[j] = D[i,j] + jg

{W j jgmax j gD i j
[]

1)([, 1]
+= −+−

{ +=
−

W j jgmax
X j

[]
[1]

As W[j] + jg is known for all j, X[j]’s can be computed using parallel prefi x
with max as the binary associative operator. Then, D[i, j] (1 ≤ j ≤ n) can be
derived using

D[i, j] = X[j] – jg.

On completion, a trace-back procedure along the special columns can
be used to split the problem into p subproblems in O(p) time. The problem
decomposition phase is visualized in Figure 4.4. Once the problem is divided
among the processors, in the second phase each processing element performs
an alignment on its corresponding segments of sequences while adopting
Hirschberg’s technique [18, 19] to use linear space.

The hybrid parallel alignment algorithm on the CBE presented here is a
combination of this special–columns-based parallel alignment algorithm
with Edmiston’s wavefront communication pattern described previously
in Section 4.3. In the wavefront alignment scheme, each processing element
works on a block of the tables independently, communicating the last column

10768_C004.indd 6910768_C004.indd 69 6/17/2010 7:47:27 PM6/17/2010 7:47:27 PM

70 Bioinformatics: High Performance Parallel Computer Architectures

to the next processing element when done and then starts computation on its
next block; the parallel prefi x approach requires the processing elements to
communicate a single element when computing each row. If implemented
as such on the CBE, these short but frequent communications for each row
increase channel stalls in the SPEs, which is reduced to one bulk communi-
cation per block of size r in the wavefront scheme. Each communication leads
to a synchronization event among the SPEs. To make most use of parallelism
on the Cell processor, such events should be minimized. Moreover, the block
size can be optimized for DMA transfer in the wavefront communication
scheme, which makes it a better choice for the CBE. Furthermore, adopting
the space-saving method is particularly important for the CBE because of the
small local store on each SPE.

4.4.2 Problem Decomposition Using Wavefront Scheme

As described earlier in Section 4.3, each dynamic programming table is par-
titioned into a w × p matrix of blocks, the size of each block being nr p× , where

mr w= is the number of rows in a block. Each row of blocks contains as many
blocks as SPEs (=p). Each column of blocks is assigned to a single SPE. The

Sequence 2

Optimal alignment path

Sequence 1

P0 P1 P2 P3 P4 Pp–1

FIGURE 4.4
Block division in parallel-prefi x based special columns technique—the second sequence is
divided into vertical blocks, which are assigned to different processors Pi. Special columns
constitute the shaded rightmost column of each vertical block and the dotted circles show
intersection of an optimal alignment path with the special columns, which are used for prob-
lem division. The shaded rectangles around the optimal alignment path represent the subdi-
visions of the problem for each processor. (From Sarje, A. and Aluru, S., IEEE Transactions on
Parallel and Distributed Systems, 20(11):1600–1610, 2009. With permission. © 2009 IEEE.)

10768_C004.indd 7010768_C004.indd 70 6/17/2010 7:47:29 PM6/17/2010 7:47:29 PM

Parallel Algorithms for Alignments on the Cell BE 71

parallel decomposition phase of the special–columns-based algorithm [8] is
modifi ed to incorporate the wavefront communication scheme and store only
the last column (special column) for each SPE block. This also enables use of
double buffering in moving input column sequence, and overlapping of DMA
transfers with block computations. Each SPE transfers portions of the second
sequence allotted to it by the PPE from the main memory to its local store. For
each computation block, it transfers blocks of the fi rst sequence using double
buffering and performs the table computations in linear space, while storing
all of the last column. Once done, it transfers the recently computed block of
last column data to the next SPE and continues computation on the next block.
This scheme for SPE Pj, 0 ≤ j < p with a total of p SPEs, is shown as pseudocode
in Algorithm 2. Once the special columns containing pointers to the previous
special columns are computed, the segments of the fi rst sequence are found,
which are to be aligned to the segments of the second sequence on the cor-
responding SPEs, thereby decomposing the problem into p independent sub-
problems. This is followed by the sequential alignment phase.

Algorithm 2: Problem decomposition phase of the parallel
space-saving algorithm for SPE Pj.

 1 Start DMA transfer of 2′S , the allocated S2 segment for SPE Pj
 2 l2 ← length(2′S);
 3 w ← length(S1)/r;
 4 Start DMA transfer of currentBlock, the first r characters of S1;
 5 for r ← 1 to w − 1 do
 6 if j ≠ 0 then
 7 Receive signal from SPE Pj-1
 8 end
 9 Start DMA transfer of nextBlock, the next r characters of S1;
10 Wait for completion of currentBlock transfer;
11 for i ← 1 to r do
12 Compute entries of row i for three tables re-using

single row buffer;
13 specialColumn[i] ← last entry in row i;
14 end
15 if j ≠ p − 1 then
16 DMA transfer last computed block of specialColumns

to next SPE Pj+1;
17 Signal the next SPE Pj+1 that its first column has

been written;
18 end
19 currentBlock ← nextBlock;
20 end
21 Wait for completion of currentBlock transfer;
22 Perform linear space table computation on currentBlock

storing the last column in specialColumns array;
23 DMA transfer last block of computed specialColumns to next

SPE;

10768_C004.indd 7110768_C004.indd 71 6/17/2010 7:47:32 PM6/17/2010 7:47:32 PM

72 Bioinformatics: High Performance Parallel Computer Architectures

4.4.3 Subproblem Alignment Phase Using Hirschberg’s Technique

Once the alignment problem is decomposed into subproblems among all the
SPEs, each SPE simultaneously computes optimal alignments for its local sub-
problem making use of Hirschberg’s space-saving technique [18, 19], which
reduces the space usage from O(mn) to O(m + n) while enabling retrieval of
an optimal alignment. This method is a divide-and-conquer technique where
the problem is recursively divided into subproblems, the results of which are
combined to obtain an optimal alignment of the original problem [20]. In this
scheme, one of the input sequences is divided into two halves, and tables are
computed for each half aligned with the other input sequence. This is done
in the normal top-down and left-to-right fashion for the upper half and in a
reverse bottom-up and right-to-left manner (aligning the reverses of the input
sequences) for the lower half. For these computations, it is suffi cient to store a
linear array for the last computed row. Once the middle two rows are obtained
from the corresponding two halves, they are combined to obtain the optimal
alignment score, dividing the second sequence at the appropriate place where
the optimal alignment path crosses these middle rows. Care needs to be taken
to handle the gap continuations across the division, and the possibility of mul-
tiple optimal alignment paths. The problem is subsequently divided into two
subproblems, and this is repeated recursively for each subproblem. An illus-
tration of the recursion using this scheme is shown in Figure 4.5.

Sequence 2

Optimal alignment path

Sequence 1

m/8

m/4

n

m

m/2

FIGURE 4.5
The sequential recursive space-saving scheme—in Hirschberg’s technique, the problem is recur-
sively divided into subproblems around an optimal alignment path, while using linear space.
The middle two rows are enlarged for the fi rst recursion showing an example of an optimal
alignment path crossing them (not shown for subsequent divisions). The four bold arrows show
the direction of computations for the two halves. (From Sarje, A. and Aluru, S., IEEE Transactions
on Parallel and Distributed Systems, 20(11):1600–1610, 2009. With permission. © 2009 IEEE.)

10768_C004.indd 7210768_C004.indd 72 6/17/2010 7:47:32 PM6/17/2010 7:47:32 PM

Parallel Algorithms for Alignments on the Cell BE 73

On completion, each SPE contains an optimal alignment of its subproblem,
and writes it to the main memory through DMA transfers. A concatenation
of these alignments gives an overall optimal alignment.

Huang [21] describes how to perform space-saving local alignment by
using space-saving global alignment as a building block. This technique can
be used in conjunction with this hybrid algorithm to derive a space-saving
local alignment on the CBE that produces an optimal alignment.

4.4.4 Further Optimizations: Vectorization and Memory Management

SPEs are vector processing units with 128-bit vectors. We present here a basic
vectorization scheme for this algorithm, to take advantage of this level of
parallelism on the CBE. In the problem decomposition phase, each of the
table entries contains a score value along with a pointer to previous special
column comprising the table number and row number. Using arrays of vec-
tors, all these data for one table entry are grouped together into one vector.
To minimize space usage, single-dimensional arrays vecEntry[], representing
a single row of the tables, are reused while computing each row within a
block. The table entry for column j during computation of a particular row i
is represented as the vector:

() () ()i j i j i jvecEntry j score tableNum rowNum, , ,[] , ,=

(4.4)

Here, score(i,j) represents the alignment score corresponding to the table
entry [i,j], and the two entries tableNum(i,j) and rowNum(i,j) are, respectively, the
table number and the row number, representing the pointer to the previous
special column. Hence, there are three such vector arrays, corresponding to
the tables C, D, and I for global alignment. Subsequent to problem decomposi-
tion phase, each processor runs Hirschberg’s space-saving technique–based
algorithm sequentially on its assigned local segments of the input sequences.
During this phase, only the scores in each entry of the tables need to be
stored. Hence, the vector construction is different—each entry in a particular
vector corresponds to the score in each of the three different tables. Such a
vector for column j, during computation of row [i], is defi ned as.

[] [] []vecTables j C i j D i j I i j[] , , , , ,=
(4.5)

where C[i, j], D[i, j], and I[i, j] represent the alignment scores for the respec-
tive tables. To use linear space, a single row is stored at a time in the vector
array vecTables and is then reused for each row. This results in a single array
for all the three tables. This way of vectorizing also helps in using various
effi cient SPE intrinsics for computation of the entries.

As the vector buffers for table computation used in the two phases are con-
structed differently, dynamic memory management can be used to minimize

10768_C004.indd 7310768_C004.indd 73 6/17/2010 7:47:34 PM6/17/2010 7:47:34 PM

74 Bioinformatics: High Performance Parallel Computer Architectures

memory usage when integrating the two phases. The linear space sequential
algorithm used in the second phase is a recursive algorithm. Owing to small
local storage on each SPE, recursive implementations on the Cell are not rec-
ommended, but in this case the same row buffer can be reused for table calcu-
lations during the recursion, limiting the extra memory used within each step
of recursion so that the stack does not grow rapidly. As mentioned previously,
the lengths of sequences are split into two in each recursive call, which makes
the number of recursive calls linear in the order of sequence lengths. Actual
alignments are obtained in parallel on all the SPEs during the recursion [19].

4.4.5 Space Usage

The local store space usage for table computations (apart from space needed
for input sequences and output alignment) on a single SPE during the problem
decomposition phase is (m+n

p)sy bytes, where s is the number of dynamic pro-
gramming tables used (three in the case of global or local alignment), and y is
the number of bytes needed to represent a single element of a single table (this
comprises score, tableNum, and rowNum). The computation space usage during
second phase is lower: (n

p sy′) bytes, where y′ is number of bytes required to
store a single table entry (here it is just the score). Owing to small local store of
256 KB, a limit is put on the maximum input sequence lengths.

4.4.6 Performance of the Hybrid Algorithm

Here we present some basic performance graphs for the hybrid parallel algo-
rithm for global alignment on the CBE. More detailed results can be found in
[16, 22]. The implementation used for these results was developed on the IBM
Cell SDK 3.0, compiled with 03 optimization level, and run on a QS20 Cell Blade.
(The CellBuzz cluster located at the Sony-Toshiba-IBM Center of Competence in
Georgia Institute of Technology, Atlanta, U.S.A., was used for this purpose.) A
QS20 Cell blade contains two Cell processors connected by an extension of the
EIB through a coherent interface, providing a total of 16 SPEs. For these tests,
the block size r was chosen to be 128 to optimize the DMA transfers.

The runtimes for varying number of SPEs are shown in Figure 4.6 along
with the speedups. The speedups shown are obtained by comparing the
parallel Cell implementation with (A1) the parallel implementation running
on a single SPE on the Cell processor, (A2) a sequential implementation of
the Hirschberg’s space-saving technique-based global alignment algorithm
for a single SPE on the Cell processor (to completely eliminate the paral-
lel decomposition phase), and (A3) a generic sequential implementation run
on a desktop with a 3.2 GHz Pentium 4 processor. On one SPE, the parallel
implementation obviously performs worse than the serial implementation,
as it includes the additional problem decomposition phase, which computes
the whole table to merely return the entire problem as the subproblem to
solve sequentially. This is used to study the scaling of the algorithm, and a

10768_C004.indd 7410768_C004.indd 74 6/17/2010 7:47:35 PM6/17/2010 7:47:35 PM

Parallel Algorithms for Alignments on the Cell BE 75

speedup of 11.25 on 16 SPEs is obtained. When compared with the sequential
implementations, a speedup of almost 8 over a single SPE, and a speedup of
more than 6.5 over the Pentium 4 processor are obtained.

It can be seen in the runtime/speedup graph (Figure 4.6) that the runtimes
only show a marginal improvement as the number of SPEs is increased from
8 to 12, as opposed to the near linear scaling exhibited below 8 and beyond
12. The latency for data transfer from one Cell processor to the other Cell
processor on the blade (off-chip communication) is much higher than any data
transfer between components on a single processor (on-chip communication),
and these communication times are signifi cant compared to the computa-
tional running time of the implementation. On using more than 8 SPEs, both
the processors on the Cell blade are used and data needs to be transferred
from one processor to the other. Owing to the higher off-chip communication
latency, the runtime using 9 SPEs is similar (or even worse in case of other
alignment problems discussed in later sections) to the runtime using 8 SPEs.
A tradeoff is created with the off-chip communication time and computation
time on the two processors. When amount of computation exceeds the com-
munication time, the runtime further starts to decrease, thereby increasing
the speedups as seen in Figure 4.6 for more than 12 SPEs.

To assess the absolute performance of the Cell implementation, the metric
of number of cells in the dynamic programming tables updated per second

600

500

400

300

Ru
nt

im
e [

m
s]

Sp
ee

du
p

200

100

2 4 6 8 10 12 14 16
0

2

4

6

8

10

12

14
Runtime [ms]

Speedup wrt A1
Speedup wrt A2
Speedup wrt A3

Number of SPEs
A1 A2 A3

FIGURE 4.6
Runtimes and speedup of global alignment implementation for an input of size 2048 × 2048.
A1 is the parallel implementation running on single SPE, A2 is a sequential implementation
on one SPE and A3 is a sequential implementation running on Pentium 4 processor. Both these
sequential implementations do not contain the problem decomposition phase. (From Sarje, A.
and Aluru, S., IEEE Transactions on Parallel and Distributed Systems, 20(11):1600–1610, 2009. With
permission. © 2009 IEEE.)

10768_C004.indd 7510768_C004.indd 75 6/17/2010 7:47:35 PM6/17/2010 7:47:35 PM

76 Bioinformatics: High Performance Parallel Computer Architectures

(CUPS) is used and the results are shown in Figure 4.7, with varying number
of SPEs. For an implementation where only the alignment scores are com-
puted, the absolute performance obtained would be higher because of algo-
rithmic differences [16].

4.5 Algorithms for Specialized Alignments

We next describe how to extend the parallel global alignment algorithm
to more specialized alignment problems of spliced alignments and syn-
tenic alignments. Both these alignment problems involve identifi cation of
an ordered set of subregions from one (spliced alignment) or both (syntenic
alignment) input sequences, which form a part of the optimal alignment,
while the remaining subregions are unaligned.

4.5.1 Spliced Alignments

During the synthesis of a protein, mRNA is formed by transcription from
the corresponding gene, followed by removal of the introns and splicing
together of the exons. To identify genes on a genomic sequence, or to infer
gene structure, one can align processed products (mRNA, EST, cDNA,
etc.) to the genomic sequence. To solve this spliced alignment problem, a

700

600

500

400

300

200

100

2 4 6 8
Number of SPEs

M
CU

PS

10 12 14 16

FIGURE 4.7
Cell updates per second for the global alignment on input size of 2048 × 2048 is shown in this graph
for increasing number of SPEs and is given in MCUPS (106 CUPS). CUPS for 1 SPE is shown for the
parallel implementation running on a single SPE. (From Sarje, A. and Aluru, S., IEEE Transactions
on Parallel and Distributed Systems, 20(11):1600–1610, 2009. With permission. © 2009 IEEE.)

10768_C004.indd 7610768_C004.indd 76 6/17/2010 7:47:35 PM6/17/2010 7:47:35 PM

Parallel Algorithms for Alignments on the Cell BE 77

solution similar to the one for global alignments is described here. While
Gelfand et al.’s algorithm [3] has an O(m2n + mn2) runtime complexity, an
O(mn) algorithm can be easily derived as a special case of Huang’s O(mn)
time syntenic alignment algorithm [4] by disallowing unaligned regions
in one of the sequences. This algorithm uses the three tables as before
along with a fourth table H, which represents those regions of the gene
sequence that are excluded from the aligned regions (i.e., they correspond
to introns or other unaligned regions). A large penalty d is used in table H
to prevent short spurious substrings in the larger sequence from aligning
with the other sequence. Intuitively, a sequence of contiguous gaps with
penalty greater than the threshold d is replaced by a path in the table H
representing this region to be unaligned. The four tables are computed as
follows:

()i j

C i j
D i j

C i j score a b max I i j
H i j

[1, 1]
[1, 1]

[,] , [1, 1]
[1, 1]

− −
 − −= +  − −

− −

(4.6)

C i j h g
D i j g

D i j max I i j h g
H i j h g

[, 1] ()
[, 1]

[,] [, 1] ()
[, 1] ()

− − +
 − −=  − − +

− − +

(4.7)

C i j h g
D i j h g

I i j max I i j g
H i j h g

[1,] ()
[1,] ()

[,] [1,]
[1,] ()

− − +
 − − +=  − −

− − +

(4.8)

C i j d
H i j max D i j d

H i j

[1,]
[,] [1,]

[1,]

− −= − −
 −

(4.9)

For a parallel algorithm for spliced alignments on the CBE, the same
techniques as described for parallel global alignment can be followed.
Algorithm 2 is used to compute the special columns for the four tables in
this case. The vectorization also needs to incorporate the additional table
H. For the problem decomposition phase, the vectorization used on the SPE
for each of the tables is the same as that given by Equation 4.4. There will
be four such arrays, one for each of the tables. Owing to the presence of
the fourth array, memory usage for this problem is higher than that for the
global alignment problem. The vectorization for the second phase includes

10768_C004.indd 7710768_C004.indd 77 6/17/2010 7:47:40 PM6/17/2010 7:47:40 PM

78 Bioinformatics: High Performance Parallel Computer Architectures

an entry for the fourth table, using the following structure for column [j]
and a particular row i:

vecTables j C i j D i j I i j H i j[] [,], [,], [,], [,]= (4.10)

4.5.2 Performance of Parallel Spliced Alignment Algorithm

An implementation of the spliced alignment algorithm, as an extension and
modifi cation of the global alignment implementation, is used to obtain the
following performance graphs. Figure 4.8 shows the runtimes and speed-
ups obtained from a synthetic dataset on varying number of SPEs.

To demonstrate the performance on real biological data, Figure 4.9 shows
the runtimes and speedups for aligning the phytoene synthase gene from
Lycopersicum (tomato) with the messenger ribonucleic acid (mRNA) corre-
sponding to this gene’s transcription. The scaling obtained is similar to that
obtained for global alignment implementation. The difference in speedups in
Figures 4.8 and 4.9 is mainly attributable to the different input sizes (the artifi -
cial data size is larger than the biological data). Moreover, the synthetic dataset
is random, which results in a more uniform problem decomposition among
the SPEs, while in the actual biological data the problem sizes for each SPEs
may be quite different because of the presence of larger unaligned regions.

500

400

300

Ru
nt

im
e [

m
s]

Sp
ee

du
p

200

100

2 4 6 8 10 12 14 16
0

2

4

6

8

10

12
Runtime [ms]

Speedup wrt A1
Speedup wrt A2
Speedup wrt A3

Number of SPEs
A1 A2 A3

FIGURE 4.8
The runtimes of the spliced alignment implementation and the respective speedups on various
number of SPEs for a synthetic input of size 1408 × 1408 is shown in this graph. The speed-
ups are obtained by comparison with (A1) parallel implementation running on one SPE, (A2)
sequential implementation for a single SPE, and (A3) sequential implementation on a Pentium
4 desktop. (From Sarje, A. and Aluru, S., IEEE Transactions on Parallel and Distributed Systems,
20(11):1600–1610, 2009. With permission. © 2009 IEEE.)

10768_C004.indd 7810768_C004.indd 78 6/17/2010 7:47:40 PM6/17/2010 7:47:40 PM

Parallel Algorithms for Alignments on the Cell BE 79

4.5.3 Syntenic Alignments

Syntenic alignment, used to compare sequences with intermittent similari-
ties, is a generalization of spliced alignment allowing unaligned regions in
both the sequences. This is used to discover an ordered list of similar regions
separated by dissimilar regions that do not form part of the fi nal alignments.
This technique is applicable to comparison of two genes with conserved
exons, such as counterpart genes from different organisms. A dynamic pro-
gramming algorithm for this has been developed by Huang [4]. Similar to
spliced alignment, a large penalty d is used to prevent alignment of short sub-
strings. This dynamic programming algorithm also has four tables, but with
an extension in the table H that both sequences can have substrings excluded
from aligning. Table defi nitions for C, D, and I remain the same as Equations
4.6–4.8 for spliced alignment. Defi nition of table H is modifi ed as follows:

C i j d
D i j d
C i j d

H i j max I i j d
H i j
H i j

[1,]
[1,]
[, 1]

[,] [, 1]
[1,]
[, 1]

− −
 − −
 − −=  − −

−
−

(4.11)

A parallel algorithm for solving the syntenic alignment problem is
described in [10] that is similar to the parallel global alignment algorithm
described earlier in this chapter. To develop a parallel algorithm for the

600

350

300

250

200

Ru
nt

im
e [

m
s]

Sp
ee

du
p

150

100

50

2 4 6 8 10 12 14 16
0

2

4

6

8

10

12
Runtime [ms]

Speedup wrt A1
Speedup wrt A2
Speedup wrt A3

Number of SPEs
A1 A2 A3

FIGURE 4.9
This graph shows the runtimes and speedups of spliced alignment implementa- tion on vari-
ous number of SPEs on the Cell blade for phytoene synthase gene from Lycopersicum with its
mRNA sequence (1792 × 872). (From Sarje, A. and Aluru, S., IEEE Transactions on Parallel and
Distributed Systems, 20(11):1600–1610, 2009. With permission. © 2009 IEEE.)

10768_C004.indd 7910768_C004.indd 79 6/17/2010 7:47:43 PM6/17/2010 7:47:43 PM

80 Bioinformatics: High Performance Parallel Computer Architectures

CBE, Algorithm 2 is used with adaptation to compute the modifi ed table
H. Table H can derive scores from either an entry in previous row or a pre-
vious column. This directionality information is important to retrieve the
alignment and needs to be stored explicitly. Another way to view this extra
information is to split the table H into two, Hh and Hv, where they have
the restrictions of alignment paths going only horizontally or only verti-
cally, respectively. Because of this overhead, space requirement in syntenic
alignment implementation is even higher. The same scheme for vectoriza-
tion can be followed for construction of the table entries as in Equations 4.4
and 4.10.

4.5.4 Performance of Parallel Syntenic Alignment Algorithm

The results shown here for syntenic alignment implementation on the CBE
have been obtained using both synthetic data and alignment of a copy of the
phytoene synthase gene from Lycopersicum (tomato) and Zea mays (maize). The
runtimes and speedups of the syntenic alignment implementation run on
QS20 Cell blade are shown in Figure 4.10. The performance results for syntenic
alignment of a copy of the phytoene synthase gene from Lycopersicum (tomato)
and Zea mays (maize) are shown in Figure 4.11. The speedup is better for the
biological data mainly because of its larger size than the synthetic dataset.

600

500

400

300

200

Ru
nt

im
e [

m
s]

Sp
ee

du
p

100

2 4 6 8 10 12 14 16
0

2

4

6

8

10

12

14Runtime [ms]
Speedup wrt A1
Speedup wrt A2
Speedup wrt A3

Number of SPEs

A1 A2 A3

FIGURE 4.10
The runtimes (in milliseconds) and speedups of syntenic alignment running on the Cell blade
for a synthetic input data size of 1408 × 1408. A1 is the parallel algorithm running on one SPE,
A2 is sequential algorithm on single SPE, and A3 is the sequential algorithm on a Pentium 4
desktop. (From Sarje, A. and Aluru, S., IEEE Transactions on Parallel and Distributed Systems,
20(11):1600–1610, 2009. With permission. © 2009 IEEE.)

10768_C004.indd 8010768_C004.indd 80 6/17/2010 7:47:44 PM6/17/2010 7:47:44 PM

Parallel Algorithms for Alignments on the Cell BE 81

450

400

350

300

250

200Ru
nt

im
e [

m
s]

Sp
ee

du
p

150

100

50
2 4 6 8 10 12 14 16

0

2

4

6

8

10Runtime [ms]
Speedup wrt A2
Speedup wrt A3

Number of SPEs
A2 A3

FIGURE 4.11
The runtimes (in milliseconds) and speedup of syntenic alignment implemen- tation for the phy-
toene synthase gene from Lycopersicum (tomato) and Zea mays (maize) (1792 x 1580) on the Cell blade.
Speedup comparison is done against A2 and A3. (From Sarje, A. and Aluru, S., IEEE Transactions on
Parallel and Distributed Systems, 20(11):1600–1610, 2009. With permission. © 2009 IEEE.)

160

140

120

100

80

Global Alignment

Ru
nt

im
e [

m
s]

Spliced Alignment
Syntenic Alignment

m x n

60

40

20

0

512x5
12

896x8
96

1280x1
280

1664x1
664

2048x2
048

2432x2
432

2816x2
816

3200x3
200

3584x3
584

FIGURE 4.12
Scaling of the three alignment implementations with increase in input data size. x-axis is the
product of lengths m and n of the two input sequences. This shows that runtime of our imple-
mentations scales linearly with m × n as expected. (From Sarje, A. and Aluru, S., IEEE Transactions
on Parallel and Distributed Systems, 20(11):1600–1610, 2009. With permission. © 2009 IEEE.)

10768_C004.indd 8110768_C004.indd 81 6/17/2010 7:47:45 PM6/17/2010 7:47:45 PM

82 Bioinformatics: High Performance Parallel Computer Architectures

4.6 Ending Notes

All the three hybrid parallel alignment algorithms run in time proportional
to the product of the lengths of the input sequences. This fact is supported
by the scaling graphs shown in Figure 4.12. It shows a linear scaling of run-
times of the algorithms with varying product of input sequence sizes.

The performance of the hybrid parallel algorithms for pairwise global/
local, spliced, and syntenic alignments for biological sequences show that
the Cell processor is a promising platform for developing high- performing
applications in bioinformatics that use sequence alignments as a funda-
mental tool. Depending on the type of the application, the various par-
allel algorithms presented in this chapter would be helpful to develop
an effi cient implementation. The alignment algorithms provide an easy
overlapping of computations with DMA transfers, a key to achieve high
parallel effi ciency on multicore architectures. These algorithms clearly
demonstrate the use of parallelism at the level of SPEs through the prob-
lem decomposition and data distribution, and within the SPEs through
vectorization.

Acknowledgment

Portions of text in this chapter have been taken from the article [16]. © 2009
IEEE.

4.7 References

 1. S. B. Needleman and C. D. Wunsch. A general method applicable to the search
for similarities in amino acid sequence of two proteins. Journal of Molecular
Biology, 48:443–453, 1970.

 2. T. Smith and M. Waterman. Identifi cation of common molecular subsequences.
Journal of Molecular Biology, 147:195–197, 1981.

 3. M. S. Gelfand, A. A. Mironov, and P. A. Pevzner. Gene recognition via spliced
sequence alignment. Proceedings of the National Academy of Sciences USA,
93(17):9061–9066, 1996.

 4. X. Huang and K. Chao. A generalized global alignment algorithm. Bioinformatics,
19:228–233, 2003.

 5. O. Gotoh. An improved algorithm for matching biological sequences. Journal of
Molecular Biology, 162(3):705–708, December 1982.

10768_C004.indd 8210768_C004.indd 82 6/17/2010 7:47:45 PM6/17/2010 7:47:45 PM

Parallel Algorithms for Alignments on the Cell BE 83

 6. M. Farrar. Striped Smith–Waterman speeds database searches six times over
other SIMD implementations. Bioinformatics, 23(2):156–161, 2007.

 7. T. Rogens and E. Seeberg. Six-fold speed-up of Smith–Waterman sequence
database searches using parallel processing on common microprocessors.
Bioinformatics, 16(8):699–706, 2000.

 8. S. Aluru, N. Futamura, and K. Mehrotra. Parallel biological sequence comparison
using prefi x computations. Journal of Parallel and Distributed Computing,
 63:264–272, 2003.

 9. E. W. Edmiston, N. G. Core, J. H. Saltz, and R. M. Smith. Parallel processing
of biological sequence comparison algorithms. International Journal of Parallel
Programming, 17(3):259–275, 1988.

 10. N. Futamura, S. Aluru, and X. Huang. Parallel syntenic alignments. Parallel
Processing Letters, 63(3):264–272, 2003.

 11. A. M. Aji and W. Feng. Optimizing performance, cost, and sensitivity in pairwise
sequence search on a cluster of playStations. In 8th IEEE International Conference
on BioInformatics and BioEngineering, 2008. BIBE 2008, pages 1–6, 2008.

 12. S. Isaza, F. Sanchez, G. Gaydadjiev, A. Ramirez, and M. Valero. Preliminary anal-
ysis of the cell BE processor limitations for sequence alignment applications. In
SAMOS ‘08: Proceedings of the 8th International Workshop on Embedded Computer
Systems, pages 53–64, Springer-Verlag, Berlin, 2008.

 13. V. Sachdeva, M. Kistler, E. Speight, and T. K. Tzeng. Exploring the viability of
the cell broadband engine for bioinformatics applications. Parallel Computing,
34(11):616–626, 2008.

 14. H. Vandierendonck, S. Rul, M. Questier, and K. Bosschere. Experiences with
parallelizing a bio-informatics program on the cell BE. In High Performance
Embedded Architectures and Compilers (HiPEAC’08), volume 4917/2008, pages
161–175. Springer, Berlin, January 2008.

 15. A. M. Aji, W. Feng, F. Blagojevic, and D. S. Nikolopoulos. Cell-SWat: modeling
and scheduling wavefront computations on the Cell broadband engine. In Proc.
of the 2008 Conference on Computing Frontiers (CF’08), pages 13–22, New York,
NY, USA, 2008. ACM.

 16. A. Sarje and S. Aluru. Parallel genomic alignments on the Cell Broadband
Engine. IEEE Transactions on Parallel and Distributed Systems, 20(11):1600–1610,
2009.

 17. A. Wirawan, K. C. Keong, and B. Schmidt. Parallel DNA sequence alignment
on the cell broadband engine. Workshop on Parallel Computational Biology (PBC
2007), LNCS, 4967:1249–1256, 2008.

 18. D. S. Hirschberg. A linear space algorithm for computing maximal common
subsequences. Communications of the ACM, 18(6):341–343, 1975.

 19. E. W. Myers and W. Miller. Optimal alignments in linear space. Computer
Applications in Biosciences, 4(1):11–17, 1988.

 20. S. Aluru. Handbook of Computational Molecular Biology (Chapman & Hall/CRC
Computer and Information Science Series). Chapman & Hall/CRC, Boca Raton,
FL, 2005.

 21. X. Huang. A space-effi cient algorithm for local similarities. Computer Applications
in the Biosciences, 6(4):373–381, 1990.

 22. A. Sarje and S. Aluru. Parallel biological sequence alignments on the cell
broadband engine. In IEEE International Symposium on Parallel and Distributed
Processing, 2008. IPDPS 2008, pages 1–11, 2008.

10768_C004.indd 8310768_C004.indd 83 6/17/2010 7:47:45 PM6/17/2010 7:47:45 PM

85

5
Orchestrating the Phylogenetic
Likelihood Function on Emerging
Parallel Architectures

Alexandros Stamatakis

5.1 Phylogenetic Inference ..86
5.2 The Phylogenetic Likelihood Function...88

5.2.1 Avoiding Numerical Underfl ow .. 92
5.2.2 Memory Requirements ... 94
5.2.3 Single or Double Precision? .. 95

5.3 Parallelization Strategies .. 97
5.3.1 Parallel Programming Paradigms ... 98
5.3.2 General Fine-Grain Parallelization ... 98

5.3.2.1 A Library for the PLF ... 101
5.3.2.2 Scalability Issues ... 102

5.3.3 The Real World: Load Balance Issues ... 103
5.4 Adaptations to Emerging Parallel Architectures 107
5.5 Future Directions ... 110
5.6 References ... 112

The reconstruction of phylogenetic (evolutionary) trees from molecular
sequence data is a comparatively old problem in bioinformatics, given that
Joe Felsenstein’s seminal paper [1] on computing the maximum likelihood
score on trees was already published in 1981, that is, almost 3 decades ago.
However, signifi cant advances in wet-lab molecular sequencing techniques
with the introduction of, for example, the 454 sequencers [2], are generat-
ing a highly challenging, unprecedented molecular data fl ood. In addition,
recent years have witnessed the emergence of multicore and other parallel
architectures such as graphics processing units (GPUs) or the IBM Cell that
pose new challenges to the fi eld of phylogenetic or phylogenomic analy-
sis (reconstruction of phylogenies at the genome scale), in particular with
respect to orchestrating the phylogenetic likelihood function (PLF). In
fact, the phyloinformatics community faces a continuous struggle to keep

10768_C005.indd 8510768_C005.indd 85 6/17/2010 7:49:04 PM6/17/2010 7:49:04 PM

86 Bioinformatics: High Performance Parallel Computer Architectures

up with the rapid speed of data accumulation and provide ever more scal-
able and powerful analysis tools; that is, we just try to keep pace with data
accumulation.

Memory footprints of more than 50 GB, just to compute the likelihood, on a
single, fi xed tree as well as resource requirements exceeding 2 million cen-
tral processing unit (CPU) hours to simply conduct a comprehensive and
thorough real-world ML analysis on one large phylogenomic dataset are
becoming the norm, rather than the exception.

In the present chapter I will attempt to review the underlying concepts,
current developments, and advances in orchestrating the PLF on paral-
lel computer architectures ranging from fi eld-programmable gate arrays
(FPGAs) up to the IBM BlueGene/L supercomputer. The PLF typically
consumes more than 95% of total execution time in current state-of-the-art
 maximum likelihood and Bayesian tools for phylogenetic tree reconstruc-
tion. The acceleration and parallelization of the PLF is thus—apart from
algorithmic innovations—the key component to handle the data fl ood to
improve scalability of the respective tools. I will also outline potential future
developments and challenges.

This chapter is organized as follows: In Section 5.1 I will briefl y introduce
the fi eld of phylogenetic inference and its applications to medical and biolog-
ical research. In the following Section 5.2, I will outline the PLF and respec-
tive important numerical issues and sequential optimization strategies. In
the subsequent Section 5.3, I will discuss the basic fi ne-grain parallelization
strategies for the PLF. Thereafter (Section 5.4), I will review recent adapta-
tions to accelerators and supercomputers. I will conclude in Section 5.5 with
a summary of potential future challenges with respect to the PLF per se, par-
allelization strategies, and necessary adaptations to different input dataset
shapes.

5.1 Phylogenetic Inference

The goal of phylogenetic inference consists in reconstructing the evolu-
tionary history of a set of n present-day organisms from their respective
molecular sequence data. Those n organisms, also called taxa, may also
be represented by a concatenation of molecular data from various genes
or even the whole genome. Thus, the molecular sequence representing one
taxon may consist of a mixture of DNA, protein, and even morphological
or binary characters. A phylogenetic tree, or simply a phylogeny, is usu-
ally represented as unrooted binary tree, where the n present-day taxa are
located at the leaves of the tree and the inner nodes represent extinct com-
mon ancestors.

10768_C005.indd 8610768_C005.indd 86 6/17/2010 7:49:05 PM6/17/2010 7:49:05 PM

Orchestrating the PLF on Emerging Parallel Architectures 87

The input data for a phylogenetic analysis under maximum likelihood
consists of a “good” multiple sequence alignment of the n taxa; that is, by
insertion of gaps, or essentially nucleotide insertion and deletion events,
all sequences in the input data will have the same length m after the align-
ment step. While there also exist simpler methods for alignment-free tree
reconstruction, they have been shown to be generally less accurate [3, 4] than
alignment-based methods. Alignments that comprise sequence data from
several genes are called multigene or phylogenomic alignments. A simple exam-
ple for a multiple sequence alignment of DNA data for human, mouse, cow,
and chicken is provided below.

Cow ATGGCATATCCCA-ACAACTAGGATTCCAAGA----
Chicken ATGGCCAACCACTCCCAACTAGGCTTTC-AGACGCC
Human ATGGCACAT---GCGCAAGTAGGTCTAC-AGACGCT
Mouse ATGGCCCATTCCAACTTGGTCTACAAGACGCCACAT

An open issue, especially within the context of real-world analyses, is the
defi nition of what a “good” multiple sequence alignment actually is, since no
objective criterion is available to judge alignment quality. In a recent Science
paper Loytynoja and Goldman [5] challenged the established opinion on
how a “good” alignment should look like by arguing in favor of a phylogeny-
aware view of the alignment problem. In addition, the multiple sequence
alignment problem is a computationally hard problem by itself. Since, this
chapter mainly focuses on the computational aspects of phylogenetic infer-
ence, we will just assume that the alignment is given, though the problems
of phylogenetic inference and multiple sequence alignment should be solved
simultaneously in an ideal world, but current approaches [6–8] are still too
slow and too resource intensive for practical purposes, especially when we
consider current input alignment growth.

It is important to note that provided any biologically meaningful opti-
mality criterion to score a given tree topology, such as ML or Maximum
Parsimony [9], the underlying optimization problem for fi nding the opti-
mal tree is NP-hard [10, 11]. The number of distinct alternative unrooted tree
topologies for n taxa is = −∏ 3 (2 5)

n
i i [12]. While there exists a vast amount of liter-

ature covering heuristic search algorithms for the ML optimization problem
(see [13] for an overview), they all rely on repeatedly executing the likelihood
function to explore the tree space, which represents the main computational
and memory bottleneck.

Phylogenetic trees have many important applications in medical and bio-
logical research; current state-of-the-art ML phylogeny programs such as
PAML [14], PHYML [15], PAUP [16], GARLI [17], RAxML [18], IQPNNI [19],
TEEFINDER [20], or likelihood-based Bayesian programs such as MrBayes
[21], PhyloBayes [22], or BEAST [23] have accumulated well above 20,000 cita-
tions to date. Phylogenies can be used, for example, to infer the evolutionary
history of pappilomaviruses that are associated with cervical cancer [24], to

10768_C005.indd 8710768_C005.indd 87 6/17/2010 7:49:05 PM6/17/2010 7:49:05 PM

88 Bioinformatics: High Performance Parallel Computer Architectures

disentangle the evolutionary history of Acer [25] (maple trees), or to analyze
bacterial communities in permafrost soils [26]. A recent phylogenomic study
in Nature improved the accuracy of the animal tree of life [27] while another
recent study in Science assessed the rates of evolution (essentially the speed
of evolution) and their association to life history in fl owering plants [28].
Those two papers also point toward a fundamental problem that will need
to be tackled in the future: the phylogenomic study [27] contains less than
100 taxa but a large number of 150 genes—an on-going follow-up study [29]
even comprises about 1,000 genes. The study by Smith and Donoghue [28]
is based on two datasets with less than ten genes, but more than 4,000 and
13,000 taxa respectively. The datasets used have signifi cantly distinct shapes
that have an impact on algorithm design, scalability, and future paralleliza-
tion strategies that need to be deployed. Here I introduce the term “well-
shaped” alignments for few-taxa/many-gene input datasets and “badly
shaped” for many-taxa/few-gene datasets (see Figure 5.1). Evidently, badly
shaped datasets are harder to analyze algorithmically and also more diffi cult
to parallelize.

5.2 The Phylogenetic Likelihood Function

As already mentioned, the input for a phylogenetic analysis under ML
consists of a multiple sequence alignment with n sequences (also denoted
as taxa or tips) and m alignment columns. The branch length values on
the tree that are returned by ML essentially represent the relative time

Few taxa

Few genes

Many taxa
“Badly shaped”
hard to parallelize

“Well-shaped”
easy to parallelize

Many genes

FIGURE 5.1
Badly shaped and well-shaped alignments.

10768_C005.indd 8810768_C005.indd 88 6/17/2010 7:49:05 PM6/17/2010 7:49:05 PM

Orchestrating the PLF on Emerging Parallel Architectures 89

of evolution between nodes in the tree. Here we will initially consider
only how to compute the likelihood on a fi xed, given, tree topology. Apart
from the tree topology one also needs several ML model parameters. One
important parameter is the instantaneous nucleotide substitution matrix
Q, which contains the transition probabilities for time dt between binary
(2 x 2 matrix, states: 0 or 1), nucleotide (4 x 4 matrix, states: A, C, G, T), or
for instance, amino acid (20 x 20 matrix) characters. The transition prob-
ability matrix for time (branch length) t is then computed as P(t) = eQt and
can be computed via a respective eigenvector/eigenvalue decomposition.
Note that there also exist various models to accommodate ribonucleic
acid (RNA) secondary structure information, that is, models that allow to
group together columns and hence let them evolve together in the respec-
tive DNA/RNA alignment. For secondary structure there exist 6-state (6 x
6 Q-matrix), 7-state, and 16-state models (for a summary see [30]). Recently,
61-state codon models (see, e.g., [31]) for protein-coding genes, which group
together triplets of DNA characters, have also received considerable atten-
tion. As we will see below, the computational complexity for computing the
likelihood of a single column is directly proportional to the square of the
number of states. Using DNA as an example, in addition to the Q matrix
we also need the prior probabilities of observing the nucleotides, for exam-
ple, πA, πC, πG, πT for DNA data, which can be determined empirically from
the alignment or obtained via an ML estimate. We also need the α shape
parameter that forms part of the Г model [32] of rate heterogeneity. The Г
model accounts for the biological fact that different columns in the align-
ment evolve at different speeds. While the Г model is well-established and
the de facto standard, there exist computationally much more effi cient ways
to incorporate rate heterogeneity, such as the CAT (category) approxima-
tion of rate heterogeneity [33], which represents perhaps the most under-
estimated paper of the author, despite its huge computational advantages,
especially in the phylogenomic era. Finally, one also requires the 2n – 3
branch lengths in the unrooted tree topology.

Given all these parameters to compute the likelihood of a fi xed unrooted
binary tree topology, initially one needs to compute the entries for all inter-
nal probability vectors (located at the inner nodes) that contain the probabili-
ties P(A), P(C), P(G), P(T) of observing an A,C,G, or T at each site/column c,
where c = 1 . . . m of the input alignment at the specifi c inner node. Those
probability vectors are computed bottom-up from the tips toward a virtual
root that can be placed into any branch of the tree. This important property
of ML holds as long as the nucleotide substitution model is time reversible;
that is, evolution occurred in the same way if followed forward or backward
in time. The most commonly used and general model for DNA substitution
is the general time reversible (GTR) model [34] of nucleotide substitution.
However, there also exist proposals for comparatively effi cient and more
realistic nonreversible substitution models [35]. The procedure described
earlier for computing the likelihood is also know as the Felsenstein pruning

10768_C005.indd 8910768_C005.indd 89 6/17/2010 7:49:05 PM6/17/2010 7:49:05 PM

90 Bioinformatics: High Performance Parallel Computer Architectures

algorithm [1]. Under certain standard model restrictions (time reversibility
of the model) the overall likelihood score will be the same regardless of the
placement of the virtual root.

As already mentioned, every probability vector entry ()L c
G

 at position
c (c = 1 . . . m) at the tips and at the inner nodes of the tree topology contains
the four probabilities P(A), P(C), P(G), P(T) of observing a nucleotide A, C,
G, T at a specifi c column c of the input alignment. The probabilities at the
tips (leaves) of the tree for which observed data (e.g., the DNA sequences
of the currently living organisms under study) is available are set to 1.0 for
the observed nucleotide character at the respective position c, for example,
for the nucleotide A: () [1.0, 0.0, 0.0, 0.0]L c =

G
. Given a parent node k, and

two child nodes i and j (with respect to the virtual root), their probability
vectors

()i
L
G

 and
()j

L
G

, the respective branch lengths leading to the children
bi and bj, and the transition probability matrices P(bi), P(bj), the probability
of observing an A at position c of the ancestral (parent) vector

()
()

k
AL c
G

 is
computed as follows:

() () ()

() (() ()) ()
= =

  =     
∑ ∑

JG JG JGT Tk i j
A S SAS i AS j

S A S A
L c P b L c P b L c

(5.1)

As already mentioned, the transition probability matrix P(b) for a given
branch length b is obtained from Q via P(b) = eQb. Once the two probability
vectors

()i
L
G

 and
()j

L
G

 to the left and right of the virtual root (vr) have been
computed, the likelihood score l(c) for an alignment column c (c = 1 . . . m) can
be calculated as follows, given the branch length bvr between nodes i and j:

() ()

() (() () ())π
T Ti j

R SR RS vr
R A S A

l c L c P b L c
= =

= ∑ ∑
JG JG

 (5.2)

The overall score is then computed by summing over the per-column log
likelihood scores as indicated in Equation 5.3.

1

(())
m

c

LnL log l c
=

= ∑ (5.3)

An important property of the likelihood function is the assumption that
sites evolve independently; that is, all entries c of the probability vectors L

G

can be computed independently. This property represents the main source
of fi ne-grain parallelism in the PLF. Therefore, for a full tree traversal, only
one single reduction operation and hence synchronization point is required
when the virtual root is reached (see Equation 5.3).

When the Г model of rate heterogeneity is used, the computation is slightly
more complex, since initially the Г function is approximated by usually four

10768_C005.indd 9010768_C005.indd 90 6/17/2010 7:49:05 PM6/17/2010 7:49:05 PM

Orchestrating the PLF on Emerging Parallel Architectures 91

discrete rates r0, r1, r2, r3 using standard numerical techniques (see, e.g., [36]).
Then, for each branch we need to compute four transition probability matri-
ces: 0() QtrP t e= , . . . , 3() QtrP t e= and also need to calculate a separate probabil-
ity vector L

G
 for every discrete rate, which results in a four-fold increase in

fl oating point operations and memory consumption of the inner probability
vectors. The log likelihood at the root is then calculated as.

0 1 2 3

1

(0.25 (() () () ()))
m

c
LnL log l c l c l c l c

=

= × + + +∑ (5.4)

where l0(c), . . . ,l3(c) are the per-site likelihoods at column c of the alignment
for the 4 discrete Г rates r0, . . . ,r3.

To compute the maximum likelihood value for such a fi xed tree topology
all individual branch lengths, as well as the substitution rates in the
Q matrix and the α shape parameter of the Г distribution, must also be
optimized via an ML estimate. For the Q matrix and the α shape param-
eter the most common approach in state-of-the-art ML implementations
consists in using Brent’s algorithm [37]. A key computational issue is that
to evaluate changes in Q or α the entire tree needs to be retraversed, that
is, a full tree traversal needs to be conducted from the leaves toward the
virtual root to correctly recompute the likelihood. For the optimization of
branch lengths the Newton–Raphson method is commonly used. To opti-
mize the branches of a tree, the branches are repeatedly visited and opti-
mized one by one until the achieved likelihood improvement (or branch
length change) is smaller than some predefi ned ϵ. Since the branch length
is optimized with respect to the likelihood score, the Newton–Raphson
method operates only on a single pair of probability vectors ()i

L
G , ()j

L
G that are

located at either ends of the branch to be optimized. The Newton–Raphson
method requires the computation of the fi rst and second derivative of the
likelihood function. Because we intend to maximize the likelihood func-
tion, we need to determine the root of the fi rst derivative of the likeli-
hood function. Note that a reduction operation to compute the overall
value (accumulate over all columns) for the fi rst and second derivative is
required at every iteration of the Newton–Raphson procedure. Evidently,
when a branch of the tree is updated this means that a large number of
probability vectors L

G
 in the tree are affected by this change and hence

need to be recomputed to maintain a state that is consistent with the new
branch length confi guration.

An important implementation issue is the assignment of memory space
for the probability vectors to inner nodes of the tree. There exist two alterna-
tive approaches: a separate vector can be assigned to each of the three out-
going branches of an inner node (PHYML uses this approach), or only one
vector can be assigned to each inner node (GARLI, RAxML, and MrBayes,
among others deploy this technique). In the latter case, which evidently is

10768_C005.indd 9110768_C005.indd 91 6/17/2010 7:49:08 PM6/17/2010 7:49:08 PM

92 Bioinformatics: High Performance Parallel Computer Architectures

signifi cantly more memory effi cient, the probability vectors always main-
tain a rooted view of the tree; that is, they are oriented toward the current
virtual root of the tree. In the case that the virtual root is then relocated
to a different branch (e.g., to optimize the respective branch length), a cer-
tain number of vectors, for which the orientation to the virtual root has
changed, need to be recomputed. If the tree is traversed in an intelligent
way, for example, for branch length optimization, the number of probabil-
ity vectors that will need to be recomputed after relocations of the virtual
root can be minimized. An example for this type of data organization is
provided in Figure 5.2. RAxML also uses this type of rooted probability
vector organization to handle large-scale alignments, since current phy-
logenomic datasets can require up to 89 GB of main memory under the Г
model, even when using this effi cient organization of the inner (ancestral)
vectors.

5.2.1 Avoiding Numerical Underflow

The methods deployed to avoid numerical underfl ow via appropriate scaling
mechanisms represent an important implementation and performance issue.
As can be derived from Equation 5.1 the values in the probability vectors L

G
 at

the inner nodes of the tree will progressively become smaller as we approach
the virtual root in the tree, since we are always conducting multiplications
with probability values in the transition probability matrix P(t). Therefore,
for trees with many taxa, measures need to be taken to avoid numerical

Virtual Root

Virtual root

Relocate virtual root

Relocate and
Recompute

FIGURE 5.2
Rooted organization of the probability vectors at inner nodes. This fi gure also shows the cyclic
distribution of probability vector entries to two threads.

10768_C005.indd 9210768_C005.indd 92 6/17/2010 7:49:09 PM6/17/2010 7:49:09 PM

Orchestrating the PLF on Emerging Parallel Architectures 93

underfl ow in the probability vectors. A detailed analysis of numerical issues
regarding large-scale phylogenetic analyses is provided in [38].

Scaling of the probability vector entries may be conducted as follows:
at a column c of an ancestral probability vector for DNA data L

G
 we scale

the entries if () () () ()A C G TL c L c L c L c< ∧ < ∧ < ∧ <
JG JG JG JG

� � � � , where ϵ = 1/2256 for
double precision (DP) and ϵ = 1/232 for single precision (SP) arithmetics.
Note that the decision to scale only a probability vector entry when all
values in that column c are smaller than ε may potentially be dangerous
if the differences between the individual values become too large. So far,
we have not observed any numerical instability because of this strategy
in RAxML, but this potential problem may become prevalent for 61-state
codon models.

If probability vector column c at vector L
G

 needs to be scaled, we simply
multiply all entries (), (), (), ()A G TCL c L c L c L c

JG JG JG JG
 by 2256 under DP or 232 under SP,

respectively (see Section 5.2.3 for a discussion of single vs. double precision
arithmetics trade-offs).

To correct for the scaling multiplications once the virtual root is reached,
we need to keep track of the total number of scaling events conducted per
column. We use integer vectors U

JJG
 that maintain the scaling events and cor-

respond to the respective probability vectors at inner nodes. As we traverse
the tree to compute an ancestral vector

()k
L
G

 from two child vectors
()i

L
G

 and
()j

L
G

 the scaling vector is initially updated as follows
() () ()

() : () ()
k i j

U c U c U c= +
JJG JJG JJG

 .
Then, if an entry of

()k
L
G

 needs to be scaled at position c we increment
() ()

() : () 1
k k

U c U c= +
JJG JJG

. The scaling vectors at the tips of the tree are not allocated,
but implicitly initialized with 0.

At the virtual root, given
()i

L
G

,
()j

L
G

 and the corresponding scaling vectors
()i

U
JJG

,
()j

U
JJG

 we can compute the likelihood as follows:

() ()() ()
() ()

256

1
() (() () ())

2

i jU c U c T Ti j
R SR RS vr

R A S A
l c L c P b L cπ

+

= =

 =   
∑ ∑

JG JG
 (5.5)

If we take the logarithm of l(c) and ϵ = 1/2256 this can be rewritten as:

() ()
() ()(()) (() () log()) log (() () ())π

= =

 = + +   
∑ ∑

JG JGT Ti ji j
R SR RS vr

R A S A
log l c U c U c L c P b L c� (5.6)

This does not appear to be the most effi cient method for likelihood scaling,
in particular because of the conjunction of comparisons on fl oating point
numbers that we use to decide if scaling is required at every single itera-
tion of the for loop over a vector L

G
. However, our experiments with vari-

ous alternative scaling methods indicate that this method is indeed very
effi cient.

10768_C005.indd 9310768_C005.indd 93 6/17/2010 7:49:10 PM6/17/2010 7:49:10 PM

94 Bioinformatics: High Performance Parallel Computer Architectures

An alternative to the aforementioned method consists of keeping track of
scaling events across all entries c = 1 . . . m of a probability vector L

G
. In this

case every inner node of the tree will store only one integer value u instead
of an integer arrayU

JJG. As we traverse the tree to compute an ancestral vector
()k

L
G

 from two child vectors ()i
L
G

 and ()j
L
G

 the single scaling entry at node k, uk,
is computed as uk := ui + uj. During the computation of vector ()k

L
G

 we simply
count the total number s of scaling events that occurred along this vector,
where 0 ≤ s ≤ m − 1 and add it to the node scaling value uk := uk + s. When we
reach the root we compute the likelihood across all sites as follows:

1

() log() log(())
m

i j
c

LnL u u l c
=

= + + ∑� (5.7)

The method outlined in Equation 5.7, which was suggested to us by Minh
Bui from the University of Vienna, clearly requires less arithmetic opera-
tions and less memory for scaling. On a large phylogenomic DNA dataset
with 404 taxa and 11 genes we measured a performance improvement of
7% for RAxML with the aforementioned scaling method. While all of this
may appear relatively simple, in the real world and for a widely used tool
such as RAxML it is not. The problem is that the aforementioned method
does not allow to obtain correct per-site (per-column) log likelihood val-
ues log(l(c)) that are required, for example, to conduct some of the standard
statistical tests (Goldman et al. provide an excellent summary of statisti-
cal tests in [39]) to assess if two trees have signifi cantly different likeli-
hood scores or not. In reality we face diffi cult software engineering issues
that are outlined by the aforementioned example, and constantly have to
strive for a balance between effi ciency and code complexity. In the afore-
mentioned example we decided to integrate both approaches, for example,
scaling with scaling vectors and with per-node scaling counters in RAxML
to offer faster scaling and faster likelihood computations when the per-site
log likelihood scores are not required, which is the case for tree searches,
but at the same time maintain all functionalities of RAxML, for example,
the computation of the extended likelihood weights ELW statistics [40] or
the option to print per-site log likelihood values to a fi le for usage with the
CONSEL package [41].

Overall, more research is required to devise better scaling procedures,
which as we demonstrate here can have a huge impact on program perfor-
mance, especially under SP, which in turn is important for GPU implementa-
tions of the PLF.

5.2.2 Memory Requirements

The memory requirements for ML-based phylogeny programs are domi-
nated by the space required for the inner probability vectors L

G
 and, to a lesser

extent, the inner scaling vectors U
JJG or per-node scaling numbers u. Depending

10768_C005.indd 9410768_C005.indd 94 6/17/2010 7:49:14 PM6/17/2010 7:49:14 PM

Orchestrating the PLF on Emerging Parallel Architectures 95

on the memory organization and data structures used, we need to assign at
least one probability vector and one scaling vector to each of the n–2 inner
(ancestral) nodes of the tree. Since for the values at the leaves we only have,
for example, 15 alternative probability vector entries using ambiguous DNA
character encoding, we need to store only one vector L

G
 of length 15 that

can then be accessed using the raw input sequences as an index. The input
sequences can be stored as simple character arrays and the respective small
table may be viewed as a lookup table. Hence, the memory requirements
for computing the likelihood on a DNA alignment (without accommodating
for rate heterogeneity) with n taxa and m columns are n · m · 1 bytes for the
input sequences, (n – 2) · m · 4 · 8 bytes for the probability vectors, and (n –
2) · m · 4 bytes for the scaling vectors. If we use the standard Г model of rate
heterogeneity with 4 discrete rates r0, . . . ,r3 the space requirements for the
probability vectors increase to (n – 2) · m · 16 · 8 bytes, while the remaining
values remain unchanged. Hence, the memory requirements are dominated
by the space required for the probability vectors located at the inner nodes of
the tree and can be reduced by almost factor 2 using single precision arith-
metics. In addition, when the CAT approximation of rate heterogeneity [33] is
being used, memory requirements can be reduced by a factor of 4 compared
to the standard Г model. This is an important issue, since we are receiving
an increasing number of reports from RAxML users that they are encoun-
tering memory shortages. Memory requirements can be reduced dramati-
cally, especially for large phylogenomic alignments by using SP arithmetics
and the CAT approximation. On a protein dataset with 232 taxa and 349,718
alignment sites, the Г model under double precision requires 44GB of main
memory compared to only 5GB of memory for CAT and single precision.
Such a reduction in memory requirements, which can be further improved
(see [42]) by taking into account the large number of missing sequence data
in phylogenomic alignments, will help many typical users who do not have
access to high-performance computing (HPC) resources to conduct large-
scale analyses on their desktop.

5.2.3 Single or Double Precision?

One of the key design decision when implementing the PLF is whether to
use single or double precision fl oating point arithmetics for the implemen-
tation. As outlined in the previous section, a single-precision implementa-
tion can yield signifi cant computational advantages and memory savings.
Memory savings are the main reason why MrBayes uses single precision.
Note that memory consumption is an even more critical issue for Bayesian
approaches that typically deploy a Metropolis-Coupled Markov-Chain
Monte-Carlo [43] approach with several heated and one cold chain. The
usage of multiple chains means that as many trees and associated data
structures as there are chains need to be kept in memory and hence the

10768_C005.indd 9510768_C005.indd 95 6/17/2010 7:49:16 PM6/17/2010 7:49:16 PM

96 Bioinformatics: High Performance Parallel Computer Architectures

memory footprint is proportional to the number of chains as well. The key
dilemma here is that more chains will yield better results, or at least higher
confi dence for convergence assessment, but that they will also require more
memory. A reduction of the number of chains because of memory shortage
may have fatal effects on the quality of the trees produced by Bayesian
inferences (see [44] for a discussion of potential pitfalls of Bayesian phylo-
genetic inference).

Another key driving factor to work on SP implementations is the current
performance gap between SP and DP arithmetics on GPUs that amounts to
one order of magnitude. At present, it is hard to predict if, as has happened
with the IBM Cell, DP performance will dramatically improve on GPUs in
the future. The SP-DP performance gap on GPUs is also one of the main
reasons why GARLI (Derrick Zwickl, personal communication) and RAxML
[45] have recently been ported to SP arithmetics.

The standard approach currently consists in conducting the numerically
sensitive operations, such as Eigenvector/Eigenvalue decomposition, compu-
tation of the P(t) matrix under DP, then cast P(t) to SP and conduct the compu-
tation of the probability vector entries in L

G
, that is, the main computational

bulk, under SP. The “classic” ML programs RAxML and GARLI also allow
for a more straightforward assessment of the impact of the induced loss of
precision on topological accuracy, because every search under SP will just
return one single tree that can then be compared to the tree returned by the
DP likelihood kernel.

Following an analysis in [45] and a personal communication with Derrick
Zwickl, it is not necessary to adopt a mixed-precision approach as proposed,
for example, for systems of linear equations in [46], but it suffi ces to use SP
all the way, since the tree topology has the by far largest infl uence on the
likelihood score and small deviations in likelihood scores between SP and
DP are negligible. The observation that modifi cations of the tree topology
yield the largest improvements in likelihood scores is also used to devise
fast heuristic search algorithms (see [15, 17, 18, 47–49] for examples). As out-
lined in [45] SP also allows for better exploitation of general-purpose CPUs
by SSE3 vector instructions than DP, because four, instead of two, operations
can be executed per cycle. Surprisingly, current commercial compilers such
as the Intel icc compiler (versions 10.x and 11.x) are not able to automati-
cally vectorize the RAxML code despite the fact that the loops appear to be
relatively straightforward to vectorize to the human eye.

However, there are two major drawbacks to the usage of SP. As described
in Section 5.2.1 the scaling threshold ε for SP is signifi cantly smaller than for
DP, which means that a signifi cantly higher number of scalings, that is, mul-
tiplications by 232, are required. We fi nd that the number of such multiplica-
tions increases by one order of magnitude in the SP version of RAxML. This
actually led to a performance decrease, despite using SSE3 intrinsics under
SP, compared to DP. However, in the experiments described in [45], we used

10768_C005.indd 9610768_C005.indd 96 6/17/2010 7:49:16 PM6/17/2010 7:49:16 PM

Orchestrating the PLF on Emerging Parallel Architectures 97

only single-gene alignments with relatively small memory footprints. A fol-
low-up analysis on the aforementioned phylogenomic alignment with 232
taxa and 349,718 columns showed that the SP version is actually faster than
the DP version, both under Г and under the CAT approximation. Under the
WAG+Г [50] the DP version (without SSE3) required 37.7 hours, compared to
the SP version that required 22 hours and the SSE3 vectorized SP version that
required only 13.4 hours for the fi rst six iterations of the search algorithm on
a SUN x4600 multicore system with 32 CPUs and 64GB of main memory. We
assume that this impressive speedup is partially due to cache effects, since
the memory footprint is reduced from 44 GB to about 22 GB, but this hypoth-
esis requires further analysis.

While these results are promising, the second major drawback of SP is a
loss of accuracy for datasets with more than 1,000 taxa. While we have dem-
onstrated in [45] that the SP implementation in RAxML is reliable up to about
2,000 taxa, further tests have revealed that apparently for alignments with
more than 2,000 taxa the loss in precision induced by SP arithmetics is too
great in order to achieve numerical stability. We have found that at least the
RAxML SP implementation is not able to optimize branch lengths and model
parameters on trees with 4,000, 6,000, and 7,000 taxa. This may simply be a
problem that is associated with the specifi c implementation in RAxML, but
we are not aware of any other study that assesses SP precision issues in the
ML function on such large datasets.

To this end, SP seems to be a feasible solution for handling memory-
 intensive phylogenomic datasets up to 500 or 1,000 taxa, but SP implemen-
tations of the ML function should be handled with extreme care when
many-taxon trees are analyzed. Although the SP implementation in MrBayes
may be considerably more stable, these problems may nonetheless occur
with Bayesian inferences and it would be important to conduct compara-
tive studies on many-taxon trees using SP and DP arithmetics for the most
widely used Bayesian inference programs.

5.3 Parallelization Strategies

As outlined in the previous section and as can be derived from Equations
5.1, 5.2, and 5.3 the bulk of all PLF computations consists of for-loops over
the length m of the vectors L

G
. These for-loops require about 95% of total

execution time in all standard likelihood-based phylogenetic tools and are
thus the candidate functions for a fi ne-grain parallelization. An important
property of the likelihood function that actually enables such a fi ne-grain
parallelization is the assumption that sites evolve independently; that is, all
entries c of the probability vectors L

G
 can be computed simultaneously. This

10768_C005.indd 9710768_C005.indd 97 6/17/2010 7:49:16 PM6/17/2010 7:49:16 PM

98 Bioinformatics: High Performance Parallel Computer Architectures

property represents the main source of fi ne-grain parallelism in the PLF (see,
e.g., [51]).

5.3.1 Parallel Programming Paradigms

The most straightforward approach is to use OpenMP for parallelization
[52]. However, OpenMP has some major drawbacks: for nonexpert users it
will be diffi cult to install an OpenMP-based compiler. Moreover, a com-
mercial compiler is required, since the current gcc version implements a
strict fork-join paradigm for the threads, in contrast to a synchronization
via barriers that avoids thread initialization and termination for every par-
allel region that is traversed as implemented in the icc copiler. This is a
performance critical issue for OpenMP-based PLF implementations, since
a prohibitively large number of parallel regions will be entered and exited
during a tree search. The advantage of using Pthreads instead is that the
program compiles out of the box and hence a signifi cantly larger number of
users are able to fully exploit the capabilities of their multicore machines.
Another reason for using Pthreads is the nondeterminism in OpenMP-
based reduction operations; that is, the reduction operation conducted at the
virtual root of the tree (see Equation 5.3) may yield different results when
invoked repeatedly on exactly the same tree. Since this will generate, and
has generated, extremely hard-to-detect numerical bugs we have decided to
completely abandon OpenMP in favor of Pthreads to have full control over
such issues. A Pthreads-based implementation also allows more easily to
separate the address spaces of the threads such that it is easier to maintain
an MPI [41] as well as Pthreads-based version of the code. Some additional
software engineering issues regarding design choices for parallel program-
ming paradigms in the PLF are covered in [42] and [53].

5.3.2 General Fine-Grain Parallelization

The general fi ne-grain parallelization scheme for the PLF is outlined by the
example of the Pthreads-based version of RAxML. An example for the overall
parallelization strategy is outlined in Figure 5.3 for a full tree traversal. The
basic underlying concept is based upon a clear separation of tasks between
the master and worker threads/processes. The only thread that actually
needs to “understand” tree topologies and conduct the heuristic tree search
is the master thread. The worker threads essentially only allocate and oper-
ate on their private fraction of the probability vectors L

G
 and are used to per-

form the fl oating-point intensive likelihood computations.
The probability vectors are enumerated consistently across all workers

and the master thread. Thereby, an operation or a series of operations on
the probability vectors can be described and communicated as a sequence
of operations on those vectors. We call such a data structure that contains
the number and order of vectors as well as the respective branch lengths a

10768_C005.indd 9810768_C005.indd 98 6/17/2010 7:49:16 PM6/17/2010 7:49:16 PM

Orchestrating the PLF on Emerging Parallel Architectures 99

traversal descriptor. In the case of a full tree traversal such a traversal descrip-
tor will hence contain all numbers that correspond to inner probability vec-
tors and the order in which they are combined represents the tree structure.
One important property of current search algorithms is that only a part
of the tree will usually be traversed when a topological change has been
applied to the tree. This type of traversal, which frequently entails only the
recomputation of just a few probability vectors is called partial traversal. In
addition to the tree traversals that refl ect Equation 5.1, other function types,
specifi cally the computation of the likelihood score at the root (Equation 5.3)
or the optimization of a specifi c branch length, also require reduction opera-
tions for computing the log likelihood score across sites or the 1st and 2nd
derivative across sites, respectively.

For the sake of completeness we provide the traversal data type defi nition
as used in RAxML below:

typedef struct
{
 int tipCase; /* tip case */
 int pNumber; /* ancestral vector number */
 int qNumber; /* left child number */
 int rNumber; /* right child number */
 double qz[NUM_BRANCHES]; /* branch length(s) for p <−> q */
 double rz[NUM_BRANCHES]; /* branch length(s) for p <−> r */
} traversalInfo;
typedef struct
{
 traversallnfo *ti; /* array of traversallnfo entries */
int count; /* number of nodes to traverse */

} traversalData;

Virtual root

Thread1Thread0

Sum0 Sum1w

x

y

z

z
y
x
w

Probability vector
AAG−TT

AGG−−T

AGGGTT

GGG−−T

AGG−−GAAGG−T

Reduction = Sum0 + Sum1
Sync

FIGURE 5.3
Parallel fi ne-grain computation of the likelihood score on a given tree with given branch
lengths. Probability vectors are enumerated consistently by w, x, y, z.

10768_C005.indd 9910768_C005.indd 99 6/17/2010 7:49:17 PM6/17/2010 7:49:17 PM

100 Bioinformatics: High Performance Parallel Computer Architectures

The variable tipCase is used to determine if the ancestral vector has
two children that are tips/leaves, one child that is a leaf, or two children
that are also ancestral vectors. The respective branch lengths between nodes
p ↔ q and p ↔ r are actually arrays of double values to accommodate par-
titioned models with a per-partition estimate of branch lengths (see Section
5.3.3 for a more detailed discussion). Partial tree traversals, that is, relatively
short traversalData arrays, with count typically ≤ 10 will dominate
the communication between master and workers. An example for a paral-
lel partial tree traversal is provided in Figure 5.4. Note that the defi nition
of traversalInfo lacks an additional fi eld operationType, that is, com-
putation of an ancestral vector, computation of the likelihood at the root, or
branch length optimization. This fi eld is missing because the data structure
has evolved over various redesign cycles, but a future RAxML version will
contain a cleaner interface defi nition that will allow for a better separation of
the PLF implementation from the search algorithm.

The master thread steers the tree search and orchestrates the optimization
of the branch lengths and model parameters. During the model parameter
optimization phase the tree needs to be fully traversed to optimize the rates in
the Q matrix and the α shape parameter of the Г distribution. In this case the
master thread generates a full tree traversal list that remains fi xed during the
model parameter optimization process because the tree topology and the tra-
versal order will not be changed during model parameter optimization. When
a model parameter (Q or α) has been changed, every worker thread can inde-
pendently update its fraction of the likelihood array entries for the full tree

Virtual root

Thread1Thread0

Reduction = Sum0 + Sum1

Sum0 Sum1
Sync

Changed
part

w

x

y

z

z
y
x

w

Unchanged parts

Probability vector

Unchanged pts oftree

FIGURE 5.4
Example for a parallel partial tree traversal. Not all probability vectors are re-computed in this
partial reevaluation of the tree. Probability vectors are enumerated consistently by w, x, y, z.

10768_C005.indd 10010768_C005.indd 100 6/17/2010 7:49:17 PM6/17/2010 7:49:17 PM

Orchestrating the PLF on Emerging Parallel Architectures 101

traversals and the threads only need to be synchronized when the virtual root
is reached and the likelihood score is computed (see Figure 5.3). Therefore,
every thread can conduct a relatively large fraction of independent work per
alignment column during the model parameter optimization phase.

In contrast to this, if we consider the branch length optimization process, it
requires several Newton–Raphson iterations and therefore synchronizations
coupled with reduction operations at every individual branch. The synchro-
nization-to-computation ratio for branch length optimization is thus signif-
icantly less favorable than for optimization of the model parameters (Q, α)
and partial tree traversals. Another important issue is that distinct branches
in the tree cannot be optimized simultaneously, since branch length altera-
tions are not independent from each other; that is, we need to repeatedly
traverse the tree and optimize one branch at a time. In addition, a subset of
branches will also need to be reoptimized after topological changes during
the tree search. The considerations regarding branch length optimization
are important for the load balance issues discussed in Section 5.3.3.

5.3.2.1 A Library for the PLF

The organization and clear separation of tasks between master and workers
described earlier is a generally applicable concept that is not RAxML specifi c.
In the course of several code reorganizations, the calls to the likelihood func-
tion have become transparent; that is, the caller does not need to know if they
will be executed sequentially or in parallel. The logical next step would thus
be to develop a library that implements the PLF and that can use several par-
allel architectures in a way that is not visible to the actual tree search algo-
rithm. Ideally, the community would require a highly optimized BLAS-like
(basic linear algebra subroutines) kernel for the PLF, which represents one of
the most important functions in bioinformatics (Felsenstein’s seminal paper
that introduces the likelihood function [1] for trees has been cited 3,741 times
according to Google Scholar).

In Figure 5.5 we provide an abstract description of the architecture of such
a library. On the basis of the prolegomena, one would mainly require a low
latency interconnect to the hardware platform on which the actual computa-
tions are performed, to carry out the frequent reduction and synchronization
operations. Bandwidth is not a major issue, since as mentioned before, tra-
versal descriptors will usually be short; that is, comprise only a few nodes on
average. As mentioned before, for full tree traversal that is required for model
parameter optimizations it suffi ces to broadcast the traversal order once at
the start of a model parameter optimization phase and then reuse it for all
successive iterations that optimize the Q and α parameters. As outlined in
Figure 5.5 and implemented in RAxML the memory needed to hold the prob-
ability vectors should exclusively be allocated by the worker threads and be
hidden behind the interface. Clearly, such a library is urgently required and
the major challenge will consist of defi ning a generic and fl exible enough

10768_C005.indd 10110768_C005.indd 101 6/17/2010 7:49:17 PM6/17/2010 7:49:17 PM

102 Bioinformatics: High Performance Parallel Computer Architectures

interface. However, generality may lead to abandoning certain program-
ming tricks and optimizations in the PLF implementations that signifi cantly
contribute to program effi ciency. An initial promising initiative to devise an
application programming interface (API) for the PLF together with an initial
implementation is available at http://code.google.com/p/beagle-lib/. The
overall API design is similar to the implementation in RAxML and also con-
ceptually similar to the organization outlined in Figure 5.5. Ideally, the API
should also be extended by maximum parsimony functions and by func-
tions for statistical alignment under ML [7] in the future.

5.3.2.2 Scalability Issues

While the aforementioned fi ne-grain parallelization approach is highly
effi cient, and generic, that is, mostly independent of the actual search algo-
rithm, there are some limits to scalability depending on the shape of the
input alignment (see Figure 5.1). Fine-grain parallelism scales well up to
1,024 CPUs for large-scale phylogenomic analyses [51, 53] with m ⪢ 1,000
on well-shaped alignments, but scalability for single-gene or few-gene
analyses on badly shaped datasets with 1,000 ≤ m ≤ 10,000 is limited. There
are signifi cantly less alignment and probability vector columns to com-
pute in-between synchronization or reduction events per thread or pro-
cess, which means that the communication-to-computation ratio quickly
becomes unfavorable.

The reason why this is an important problem on badly shaped alignments
is that they typically contain thousands or tens of thousands of taxa [28].
In current collaborative analyses with biologists we are trying to analyze
datasets with 38,000 and 56,000 taxa that comprise less than 10 genes. The

Master
algorithmic steering

General purpose CPU

Synchronize
Send traversal descriptors

Likelihood scores
Low latency
network IBM Cell

BlueGene/P

Multi-cores

GPUs

Larrabee

FPGAs

Accelerators/parallel computers

Interface

1st and 2nd derivative
of the likelihood

FIGURE 5.5
Combined software and hardware architecture for a PLF library.

10768_C005.indd 10210768_C005.indd 102 6/17/2010 7:49:17 PM6/17/2010 7:49:17 PM

Orchestrating the PLF on Emerging Parallel Architectures 103

scalability of the fi ne-grain approach on such datasets is limited to 8 or 16
CPUs on typical general-purpose multicore architectures such as the AMD
Barcelona or the Intel Nehalem. Even when conducting tree analyses on such
large datasets using the Pthreads version of RAxML on 16 cores, execution
times for just a single tree search will typically range from a week to a month.
This causes two problems: First, most HPC clusters do not allow for such
extremely long execution times, and second, those analyses are susceptible to
hardware failures and cluster unavailabilities for maintenance. While check-
pointing may provide a solution, ideally we would like to improve scalabil-
ity. For a single run, this can be achieved only by exploiting a distinct source
of parallelism on top of the fi ne-grain parallelism; that is, via deployment of
multigrain parallelism. The obvious candidate for a more coarse-grain paral-
lelization of a single search is the search algorithm itself. Hence, certain steps
of the search algorithm would need to be parallelized. While the respective
details are outside the scope of this chapter there are two main problems
inherent to such an approach: First, in contrast to the fi ne-grain paralleliza-
tion of the PLF such a parallelization would be highly program specifi c; that
is, not generally applicable, and second, current effi cient search algorithms
as implemented in GARLI or RAxML exhibit a huge degree of sequential
dependencies that will be hard to resolve. This will also represent a problem
for the PLF library mentioned previously.

Nonetheless, provided the current data fl ood that produces large well-
shaped as well as badly shaped alignments, the community will have to
address this challenging problem.

5.3.3 The Real World: Load Balance Issues

An issue that is often not addressed in papers on the parallelization of
the PLF are the problems that arise for real-world software under the
commonly used models and with the type of data biologists actually want
to analyze. Typical HPC papers—some of our own papers included—
often just show speedups and scalability for unpartitioned datasets of, for
example, DNA or protein alignments and focus on pure proof-of-concept
implementations.

The main load balance issue is caused by partitioned phylogenomic analy-
ses that may contain partitions consisting of different data types; that is,
a large phylogenomic alignment may contain partitions of morphological
or binary characters, of DNA characters, secondary structure characters,
and protein characters. Evidently, the number of fl oating point operations
required to compute the per-column log likelihood at a position c for, for
example, a full-tree traversal, varies as a function of the number of states
s (s = 2 for binary data, s = 4 for DNA data, s = 20 for protein data) and has
a complexity of O(n · s2) (see Equation 5.1) where n is the number of taxa.
The easiest way to handle this type of potential load imbalance is to dis-
tribute the data columns to threads/processes in a cyclic way, rather than

10768_C005.indd 10310768_C005.indd 103 6/17/2010 7:49:18 PM6/17/2010 7:49:18 PM

104 Bioinformatics: High Performance Parallel Computer Architectures

in a monolithic way as outlined in Figure 5.6. The major drawback of this
approach in the current RAxML implementation is that every thread will
have to recompute the probability transition matrix P(t) locally; that is, a
large number of computations are replicated for every partition. To this end,
if the partitions are relatively short and if a large number of threads are used,
it may happen that a thread will have to compute the transition probability
matrices P(t) i for all p partitions, i = 1 . . . p, while only having to compute one
single per-site likelihood for every partition. In this case the computation of
the P(t) i may actually dominate the computations. A solution for this worst-
case scenario may be to also parallelize the computation of the P(t) i, but this
will increase the number of synchronization points in the code by a factor
of about 2. Initial tests have indicated that the current strategy of computing
all required P(t) i locally yields better performance on all real-world datasets
we have tested so far.

A related load-balance issue in partitioned analyses is that of per- partition
model parameter optimization. Typically, users will chose to infer ML model
parameters, such as the GTR substitution matrix or the α parameter that
determines the shape of the Γ distribution separately. One will have to infer
the respective parameters Qi and αi separately using the aforementioned iter-
ative optimization procedures for every partition p. Moreover, one may also
prefer to infer an individual set of 2n – 3 branch lengths for every partition
such that there is a total of p · (2n – 3) branch lengths, rather than to conduct
a joint branch length estimate across all partitions.

It is important to note that per-partition branch length estimates are the
prerequisite for the techniques proposed in [42]. Those techniques can be
used to signifi cantly accelerate the computation of the likelihood function
and substantially reduce the memory footprint on “gappy” phylogenomic
alignments. The reason for the gappyness in such alignments that typically
ranges between 50% and 95% lies in the partial unavailability of sequence
data for the taxa under study for specifi c genes; that is, sequences for a spe-
cifi c gene are not always available for every taxon in the dataset. While these
techniques are outside the scope of this chapter, the load-balance problems

Input alignment

Thread0 Thread1

Thread1
Monolithic column distribution

Cyclic column
distribution

Thread0

FIGURE 5.6
Monolithic versus cyclic distribution of alignment (and probability vector) columns to
threads.

10768_C005.indd 10410768_C005.indd 104 6/17/2010 7:49:18 PM6/17/2010 7:49:18 PM

Orchestrating the PLF on Emerging Parallel Architectures 105

induced by partitioned analyses represent a general problem that will be
addressed in more detail at this point.

A schematic representation of a gappy phylogenomic alignment with
per-partition branch length and model parameter estimates is provided in
Figure 5.7.

As mentioned earlier, one important rationale for using a per-partition
branch length estimate is that a signifi cantly more effi cient strategy to com-
pute the likelihood score on gappy phylogenomic alignments can be applied
[42]. The load-balance problem that arises in this context is described in more
detail in [54]. If we now consider the case where we have to optimize the
per-partition branch lengths of the branches for all partitions that connect
a node p to a node q in the underlying tree topology, the problem emerges
(see Figure 5.8). In order to implement this branch length optimization that
is based on the iterative Newton–Raphson procedure we need to consider
that the number of iterations required for the branch in every partition may
vary. We may either chose to optimize the branch of one partition at a time
or to concurrently start optimizing the branches for all partitions and keep
track of the convergence condition for each single branch. While the latter
method is more challenging and error prone to implement, it can signifi -
cantly improve performance in the fi ne-grain parallelization, because we
can provide more work (more columns to work on simultaneously) to each
thread and dramatically reduce the number of synchronization events. Let

Partition 0 Partition 1 Partition 2

Missing data (data holes)

Separate estimate of
Q-Matrix
alpha-shape
branch lengths

Separate estimate of
Q-Matrix
alpha-shape
branch lengths

Separate estimate of
Q-Matrix
alpha-shape
branch lengths

Taxon 1

Taxon n

iterate iterate iterate

m alignment columns

Gene 0 Gene 1 Gene 3

FIGURE 5.7
Schematic outline of a partitioned analysis on a phylogenomic alignment with per-partition
estimates of model parameters and branch lengths.

10768_C005.indd 10510768_C005.indd 105 6/17/2010 7:49:19 PM6/17/2010 7:49:19 PM

106 Bioinformatics: High Performance Parallel Computer Architectures

us consider a simple example with p = 10 and assume that every partition
has a length of 10 characters. For the sake of simplicity we can also assume
that all p branches will require fi ve iterations of the Newton–Raphson pro-
cedure. If we have 10 threads (each thread holds one column of every par-
tition) and optimize the branches for one partition at a time, we will need
to synchronize the threads 5 · 10 times, and for all of those 50 computations
every thread will just have one column to work on. If we use the approach of
simultaneous optimization of all branches there will only be fi ve synchroni-
zation events and between synchronization events, every thread will have
10 columns to work on. While this is an extreme example, in [54] we show
that the simultaneous optimization of branch lengths across partitions can
yield up to eight-fold improvements in execution times on current multicore
architectures.

Note that while Bayesian programs do not require to explicitly optimize
branch lengths and model parameters via iterative optimization methods,
since this is handled by the Markov Chain Monte Carlo (MCMC) proposal
mechanism, the insights obtained in [54] also apply to Bayesian analyses. In
the Bayesian case, simultaneous branch length change proposals across all
partitions should be applied to increase parallel effi ciency.

Branch to be optimized

Zoom

Per-partition branch
lengths

Optimization

Branch for Partition 0

Branch for Partition 1

Branch for Partition 2

2

5

4 Varying iteration numbers
in Newton−Raphson
procedure

Threads need to be
synchronized
between iterations

FIGURE 5.8
Outline of the application of the Newton–Raphson procedure for the optimization of one
branch in a phylogenomic analysis using per-partition branch length estimates.

10768_C005.indd 10610768_C005.indd 106 6/17/2010 7:49:19 PM6/17/2010 7:49:19 PM

Orchestrating the PLF on Emerging Parallel Architectures 107

5.4 Adaptations to Emerging Parallel Architectures

By now, a plethora of papers has been published on orchestrating the PLF on
emerging parallel architectures, which I will briefl y review in this section. In
all cases the fi ne-grain parallelism in the PLF is exploited, whereas in some
implementations the more coarse-grain parallelism provided by multiple ML
tree searches on distinct starting trees, Bootstrap replicates [55], or Markov–
Chains is used on top of the fi ne-grain parallelism. Since this coarse-grain
type of parallelism at the level of independent tree searches is mostly straight-
forward to explore (in contrast to coarse-grain parallelism at the algorithmic
level) I will mainly focus on exploiting fi ne-grain parallelism.

One key issue that the HPC community often fails to address is that of taking
proof-of-concept implementations to production level; that is, it is shown on
a small subset of the functionality of a widely used tool (some of the author’s
own work included) that scalability can be achieved by applying a certain strat-
egy that takes into account specifi c characteristics of the target architecture.
Unfortunately, many of these parallelizations are never taken to production level
and are therefore of little or no use to the large biological user community.

There have been only few attempts [56–59] to devise explicit architectures
for the PLF on FPGAs. In earlier days the main problem was the lack of support
for fl oating-point arithmetics on FPGAs. This problem has been addressed by
the introduction of digital signal processor (DSPs) on modern FPGAs that now
allow for improved implementations of the PLF on FPGAs [58, 59]. In [59] we
present a signifi cantly improved implementation of the original design that
implements a vector-like processor architecture. This vector-like architecture
comprises 10 basic cells that act in a similar way as the worker processes/
threads or synergistic processing elements (SPEs) on the Cell (see below) in the
general-parallelization scheme albeit at a more fi ne-grain level. This improved
architecture is also capable of carrying out partial tree traversals. The speedups
of the dedicated PLF architecture compared to a high-end multicore machine
are within the typical range (factor 5–10) for fl oating-point intensive computa-
tions on FPGAs. However, we have made a lot of simplifying assumptions that
do not yield the current architecture practical or usable for any real-world phy-
logenetic inference, put aside the latency problems between CPUs and FPGAs
that may nonetheless soon be resolved. The same observations apply to the
work by Mak and Lam [56, 57] (see [58] for a more detailed discussion).

Thus, FPGAs may rather be viewed as prototyping devices than accelera-
tors. We believe that a prototyping device view will help us to devise and
test architectures for the PLF. Current work focuses on the development of a
more versatile and fully functional PLF architecture that will be able to han-
dle different data types (binary, DNA, Protein, etc.) and also accommodate
the standard Γ model of rate heterogeneity.

Early work on general-purpose computing on GPUs (GPGPU) focused on
exploiting the PLF using an, in the meantime deprecated, older version of

10768_C005.indd 10710768_C005.indd 107 6/17/2010 7:49:21 PM6/17/2010 7:49:21 PM

108 Bioinformatics: High Performance Parallel Computer Architectures

RAxML. The main focus of this early work on GPUs was on the exploration
of the capabilities of GPUs in the pre-CUDA era using BrookGPU (http://
www-graphics.stanford.edu/projects/brookgpu/). We faced problems asso-
ciated with GPUs that still persist: the issue of using SP arithmetics and the
data transfer bottleneck between CPU ↔ GPU. Recent work on GPUs dealt
with porting the likelihood kernel of BEAST [23] to a NVIDIA GPU [60].
While this paper reports impressive speedups, mainly for 61-state Codon
models, the actual performance comparison does not appear to be conducted
in an entirely fair way with respect to the general-purpose CPU (a 3.2 GHz
Intel Core 2 Extreme) used. It is not clear how much effort was invested to
optimize the C implementation on the general-purpose CPU, nor if a com-
mercial compiler such as the Intel icc was used. It is also not entirely clear
from the paper why the performance runs on the CPU were only conducted
under DP, while the GPU offers DP and SP implementations. While we have
found that the usage of SP leads to a performance degradation in some cases
because of a 10-fold decrease in scaling events (see Section 5.2.3) this may not
necessarily be the case for the implementation in BEAST. In addition, accu-
racy issues that may arise for input alignments with a larger number of taxa
under SP are not explored because scalability is only assessed on a single
phylogenomic dataset with 62 taxa. The CPU was not fully exploited, since
only one core was used while the code could have been easily parallelized
with OpenMP. Moreover, the code was apparently not vectorized with SSE3,
a technique that can yield signifi cant additional speedups for the likelihood
kernel [45]. Thus, the question remains how much better the multicore plat-
form would have performed if exploited to its full capabilities and if the same
amount of time as for the GPU had also been invested into optimizing the C
code for the CPU. While the speedups that are obtained are still very good
for Codon models on GPUs, it remains an open question how much speedup
a vectorized and multithreaded version of BLAS for computing Equation 5.1
(this equation represents an element-wise multiplication of the results of two
dense matrix-matrix multiplications) on Codon models would yield. Some
initial tests with DNA models and BLAS have shown that the overhead for
calling BLAS is too large and the memory footprint of the 4 × 4 DNA substi-
tution matrix is too small to achieve substantial speedups, but this may not
be the case for the 61-state Codon transition matrices.

Our own assessment of GPUs, multicores, and the IBM Cell using MrBayes
for DNA and protein models that is also implemented in SP shows far less
spectacular results for GPUs [61]. Given the aforementioned problems with
using SP on trees with many taxa, albeit this may just be a problem of the
specifi c implementation in RAxML, a lot will depend on whether DP arith-
metics will become faster on GPUs. It may well be that GPUs will lose ground
compared, for instance, to the Intel Larrabee because of the currently insuf-
fi cient DP performance.

Work on porting the PLF to the IBM Cell and the Sony Playstation III
is described in the following papers [49, 62–64]. Here our efforts mainly

10768_C005.indd 10810768_C005.indd 108 6/17/2010 7:49:21 PM6/17/2010 7:49:21 PM

Orchestrating the PLF on Emerging Parallel Architectures 109

focused on effi ciently scheduling multigrain parallelism on the Cell, by
using a combination of a fi ne-grain and an extremely coarse-grain approach
at the level of independent tree searches. In addition, we explored various
Cell-specifi c optimization techniques for the PLF. The results in the afore-
mentioned papers were all based on older versions of the Cell where the per-
formance differences between SP and DP arithmetics were still signifi cantly
larger than the current factor of two. The fi ne-grain parallelism in the PLF
is exploited in the same way as described previously, with the sole differ-
ence that the probability vectors actually reside on the principal processing
element (PPE) and only small portions (a couple of columns) of the prob-
ability vectors are shuffl ed back and forth between the PPE and the SPEs
where the actual computations are conducted. Unfortunately, the work on
the Cell mainly addressed HPC issues and we never devised a production-
level implementation of RAxML for this architecture. An interesting current
development is that the RoadRunner supercomputer can be programmed
entirely by using the message-passing paradigm; that is, every SPE of the
Cell may act as an independent MPI process. This can facilitate the devel-
opment of a production-level Cell implementation by slightly modifying the
fi ne-grain MPI-based parallelization of RAxML [51]. Nonetheless, the arith-
metic operations in the likelihood functions would still need to be manually
vectorized and tuned to achieve optimal performance on the Cell. An issue
that may limit usage of the Playstation III for real-world phylogenetic infer-
ence is that the PPE in the PS3 does not have enough main memory (256 MB).
This may not prove to be suffi cient for the analysis of larger datasets that can
nowadays easily exceed 1 GB of memory footprint. In addition, most biology
labs would most probably not buy a signifi cantly more expensive Cell pro-
cessor and rather invest into a general-purpose multicore machine, because
only a small subset of the applications typically used by evolutionary biolo-
gists has been ported to the Cell.

With respect to shared-memory nodes, shared-memory supercomputers,
and general-purpose multicore systems many RAxML-specifi c papers deal
with the usage of OpenMP [52], Pthreads [42, 54], and MPI [53] to exploit
fi ne-grain parallelism in the PLF. We also compare performance of MPI,
Pthreads, and OpenMP in [53] and fi nd that MPI clearly performs best
across all platforms (SMPs, multicores, SGI ALTIX 4700 supercomputer),
but shared-memory version of MPI may be hard to install for typical users
of the code. A complete transition to MPI for fi ne-grain parallelism would
however signifi cantly facilitate software maintenance and reduce com-
plexity. In [61] we also provide an OpenMP implementation for MrBayes.
Because of the nondeterminism of the MCMC chains, the nondeterminism
of the reduction operations in OpenMP is not as critical as for RAxML. For
GARLI an OpenMP parallelization is also available, but no performance
study has been published so far. Finally, IQPNNI has also been parallelized
using OpenMP for SMP systems [65]. IQPNNI also represents an example
for a relatively straightforward parallelization of the search algorithm,

10768_C005.indd 10910768_C005.indd 109 6/17/2010 7:49:21 PM6/17/2010 7:49:21 PM

110 Bioinformatics: High Performance Parallel Computer Architectures

which in contrast to RAxML and GARLI exhibits almost no sequential
dependencies. The parallelization of the IQPNNI search algorithm is
 summarized in [19].

Less work has been conducted on orchestrating the PLF function on
massively parallel distributed memory architectures. Most of this work
has focused on the IBM BlueGene/L [51, 66, 67] but we have also assessed
scalability of fi ne-grain parallelism with MPI on an infi niband-connected
cluster of 4-way Opteron SMPs [51, 67]. Owing to the favorable confi gura-
tion with relatively slow processors and a very fast dedicated network for
collective operations, we have measured speedups of 890 on 1,024 nodes of
the BlueGene/L. The PBPI [66] application is an analogous parallelization of
a Bayesian inference algorithm on the BlueGene/L, but has remained in a
proof-of-concept state. Both implementations (RAxML and PBPI) can also be
executed in a multigrain mode where chains or independent tree searches
can be run independently on subgroups of nodes.

5.5 Future Directions

Given the rapid development of computer architectures, it is hard to assess
and predict what the best platform for executing the PLF may be. On the
basis of our observations concerning loss of accuracy under SP for align-
ments with more than 1,000–2,000 taxa, the usage of GPUs may be critical if
DP performance is not improved. The Larrabee architecture surely sounds
promising, but a signifi cant amount of recoding and reorganization of the
PLF will be required to fully exploit the 512-bit wide vector instructions. The
usage of GPUs for scientifi c computing appears to be slightly overestimated
at present.

Whether a dedicated computer architecture for the PLF, a real chip, will
ever become a reality is questionable, because the market for such an archi-
tecture that would be mostly dominated by Academia is most probably too
small. Hence, the interest in building computer architectures for the PLF is
mainly academic and tries to address the question how the ideal architecture
should look like.

Overall, a lot will depend on the development of input datasets; that is,
if phylogenomic datasets start growing in the number of taxa, for example,
phylogenetic analyses of 2,000 taxa with 100–1,000 genes will become com-
mon, which seems to be relatively probable, we will soon reach memory lim-
its and computational resource shortages. A recent phylogenomic analysis
on a BG/L using the MPI-parallelized fi ne-grain version of RAxML already
required 2.25 million CPU hours, while another recent collaborative phy-
logenomic analysis had a memory footprint of 89 GB. However, scalability
is granted with the current parallelization approaches and supercomputers

10768_C005.indd 11010768_C005.indd 110 6/17/2010 7:49:21 PM6/17/2010 7:49:21 PM

Orchestrating the PLF on Emerging Parallel Architectures 111

are available that can handle datasets that are even one order of magnitude
larger than the two aforementioned studies. Signifi cant computational
savings can be achieved if tree searches and likelihood computations are
conducted using the method proposed in [42]. However, the implementa-
tion of this method is algorithmically and technically challenging and for
the time being RAxML is only able to optimize model parameters on a
fi xed tree using this method. Moreover, this method will only be effi cient
if phylogenomic alignments remain gappy; that is, more than 50% of the
data are missing. Depending on the advances in molecular sequencing
techniques the density of such large phylogenomic datasets may increase
to a point where the method described in [42] will not exhibit any compu-
tational advantages any more compared to with the standard approach.
However, it will still be relatively straightforward to handle well-shaped
alignments computationally. In the worst case one will need to fi lter out
some of the data, before the phylogenetic analysis to reduce future datasets
to computable sizes. The development of such fi ltering criteria is defi nitely
a challenge.

With respect to the PLF per se, more research is needed to understand
and optimize the scaling procedures to avoid numerical underfl ow as
well as to explore the accuracy limits of SP as a function of the number
of taxa. Another issue that is directly linked with the likelihood function
is that of constant increase in model complexity, that is, extensions of the
likelihood model that have recently been proposed, for example, Codon
models or mixture models [68]. These models require more fl oating point
operations and more memory per alignment column and will therefore
decrease the size of “computable” datasets again. Thus, there is a clear
tradeoff between model accuracy (or complexity) and the size of comput-
able input datasets.

One of the key challenges will be to devise new algorithmic concepts and
new parallelization strategies for badly shaped alignments. Work on badly
shaped alignments is driven by the desire to infer comprehensive trees (see,
e.g., [28, 69]), such as the phylogenetic tree of plants or the tree of bacteria,
with the fi nal goal to infer the tree of life containing all living beings on
earth. New methods to explore the rough likelihood surface and summa-
rize collections of ML trees that do not have signifi cantly different likelihood
scores, as well as novel methods to infer support values, will be required. In
addition, substantial algorithmic and HPC innovations will be required to
improve scalability and execution times of phylogenetic analyses on many-
taxon trees.

On a slightly different note, the development and parallelization of pro-
grams that can conduct simultaneous alignment and tree inference—current
approaches only scale to 20–100 taxa—poses additional challenges.

In the fi nal analysis, one of the keys to success of parallel computing in
phyloinformatics will be to design scalable, easy-to-use, production-level
codes in close collaboration with the user and HPC community.

10768_C005.indd 11110768_C005.indd 111 6/17/2010 7:49:21 PM6/17/2010 7:49:21 PM

112 Bioinformatics: High Performance Parallel Computer Architectures

5.6 References

 1. J. Felsenstein. Evolutionary trees from DNA sequences: A maximum likelihood
approach. Journal of Molecular Evolution, 17:368–376, 1981.

 2. J. Shendure and H. Ji. Next-generation DNA sequencing. Nature Biotechnology,
26(10):1135–1145, 2008.

 3. T.H. Ogden and M.S. Rosenberg. Multiple sequence alignment accuracy and
phylogenetic inference. Systematic Biology, 55:314–328, 2006.

 4. M. Höhl and M.A. Ragan. Is multiple sequence alignment required for accurate
inference of phylogeny? Systematic Biology, 56(2):206–221, 2007.

 5. A. Loytynoja and N. Goldman. Phylogeny-aware gap placement prevents errors
in sequence alignment and evolutionary analysis. Science, 320(5883):1632, 2008.

 6. W. Wheeler, L. Aagesen, C.P. Arango, J. Faivovich, T. Grant, C. D’Haese, D.
Janies, W. L. Smith, A. Varon, and G. Giribet. Dynamic Homology and Phylogenetic
Systematics: A Unifi ed Approach using POY. American Museum of National
History, 2006.

 7. R. Fleissner, D. Metzler, and A.v. Haeseler. Simultaneous statistical multiple
alignment and phylogeny reconstruction. Systematic Biology, 54:548–561, 2005.

 8. B. Redelings and M. Suchard. Joint Bayesian estimation of alignment and phy-
logeny. Systematic Biology, 54(3), 2005.

 9. W.M. Fitch and E. Margoliash. Construction of phylogenetic trees. Science,
155(3760):279–284, 1967.

 10. L.R. Foulds and R.L. Graham. The Steiner problem in phylogeny is NP-complete.
Advances in Applied Mathematics, 3(43–49):299, 1982.

 11. S. Roch. A short proof that phylogenetic tree reconstruction by maximum likeli-
hood is hard. IEEE/ACM Transactions on Computational Biology and Bioinformatics,
pages 92–94, 2006.

 12. A.W.F. Edwards, L.L. Cavalli-Sforza, V.H. Heywood, and J. McNeill. Phenetic
and phylogenetic classifi cation. Systematics Association Publication, 6:67–76, 1963.

 13. D.A. Morrison. Increasing the effi ciency of searches for the maximum likelihood
tree in a phylogenetic analysis of up to 150 nucleotide sequences. Systematic
Biology, 56(6):988–1010, 2007.

 14. Z. Yang. PAML 4: Phylogenetic analysis by maximum likelihood. Molecular
Biology and Evolution, 24(8):1586, 2007.

 15. S. Guindon and O. Gascuel. A simple, fast, and accurate algorithm to estimate large
phylogenies by maximum likelihood. Systematic Biology, 52(5):696–704, 2003.

 16. D. L. Swofford. PAUP*: Phylogenetic analysis using parsimony (* and other
methods), version 4.0b10. Sinauer Associates, 2002.

 17. D. Zwickl. Genetic Algorithm Approaches for the Phylogenetic Analysis of
Large Biological Sequence Datasets under the Maximum Likelihood Criterion.
PhD thesis, University of Texas at Austin, April 2006.

 18. A. Stamatakis. RAxML-VI-HPC: maximum likelihood-based phylogenetic anal-
yses with thousands of taxa and mixed models. Bioinformatics, 22(21):2688–2690,
2006.

 19. B.Q. Minh, L.S. Vinh, A.v. Haeseler, and H.A. Schmidt. pIQPNNI: Parallel
reconstruction of large maximum likelihood phylogenies. Bioinformatics,
 21(19):3794–3796, 2005.

10768_C005.indd 11210768_C005.indd 112 6/17/2010 7:49:21 PM6/17/2010 7:49:21 PM

Orchestrating the PLF on Emerging Parallel Architectures 113

 20. G. Jobb, A.v. Haeseler, and K. Strimmer. TREEFINDER: A powerful graphical
analysis environment for molecular phylogenetics. BMC Evolutionary Biology, 4,
2004.

 21. F. Ronquist and J.P. Huelsenbeck. MrBayes 3: Bayesian phylogenetic inference
under mixed models. Bioinformatics, 19(12):1572–1574, 2003.

 22. N. Lartillot, S. Blanquart, and T. Lepage. PhyloBayes. v2. 3, 2007.
 23. A.J. Drummond and A. Rambaut. BEAST: Bayesian evolutionary analysis by

sampling trees. BMC Evolutionary Biology, 7(214):1471–2148, 2007.
 24. M. Gottschling, A. Stamatakis, I. Nindl, E. Stockfl eth, A. Alonso, L. Gissmann,

and I.G. Bravo. Multiple evolutionary mechanisms drive papillomavirus diver-
sifi cation. Molecular Biology and Evolution, 24(5):1242–1258, 2007.

 25. G.W. Grimm, S.S. Renner, A. Stamatakis, and V. Hemleben. A nuclear ribosomal
DNA phylogeny of acer inferred with maximum likelihood, splits graphs, and
motif analyses of 606 sequences. Evolutionary Bioinformatics Online, 2:279–294,
2006.

 26. L. Ganzert, G. Jurgens, U. Munster, and D. Wagner. Methanogenic communities
in permafrost-affected soils of the Laptev sea coast, Siberian arctic, character-
ized by 16s rRNA gene fi ngerprints. FEMS Microbiology Ecology, 59(2):476–488,
2007.

 27. C.W. Dunn, A. Hejnol, D.Q. Matus, K. Pang, W.E. Browne, S.A. Smith, E. Seaver,
G.W. Rouse, M. Obst, G.D. Edgecombe, M.V. Sorensen, S.H.D. Haddock, A.
Schmidt-Rhaesa, A. Okusu, R.M. Kristensen, W.C. Wheeler, M.Q. Martindale,
and G. Giribet. Broad phylogenomic sampling improves resolution of the ani-
mal tree of life. Nature, 452(7188):745–749, 2008.

 28. S.A. Smith and M.J. Donoghue. Rates of molecular evolution are linked to life
history in fl owering plants. Science, 322(5898):86–89, 2008.

 29. A. Hejnol, M. Obst, A. Stamatakis, M. Ott, G.W. Rouse, G.D. Edgecombe, P.
Martinez, J. Baguna, X. Bailly, U. Jondelius, M. Wiens, W.E.G. Müller, E. Seaver,
W.C. Wheeler, M.Q. Martindale, G. Giribet, and C.W. Dunn. Rooting the
 bilaterian tree with scalable phylogenomic and supercomputing tools. 2009.
submitted.

 30. N.J. Savill, D.C. Hoyle, and P.G. Higgs. RNA sequence evolution with secondary
structure constraints: Comparison of substitution rate models using maximum-
likelihood methods. Genetics, 157:399–411, 2001.

 31. N. Goldman and Z. Yang. A codon-based model of nucleotide substitution for pro-
tein-coding DNA sequences. Molecular Biology and Evolution, 11(5):725–736, 1994.

 32. Z. Yang. Maximum likelihood phylogenetic estimation from DNA sequences
with variable rates over sites. Journal of Molecular Evolution, 39:306–314, 1994.

 33. A. Stamatakis. Phylogenetic models of rate heterogeneity: a high performance
computing perspective. In Proc. of IPDPS2006, HICOMB Workshop, Proceedings
on CD, Rhodos, Greece, April 2006.

 34. S. Tavaré. Some probabilistic and statistical problems in the analysis of DNA
sequences. Lectures on Mathematics in the Life Sciences, 17:57–86, 1986.

 35. B. Boussau and M. Gouy. Effi cient likelihood computations with nonreversible
models of evolution. Systematic Biology, 55(5):756–768, 2006.

 36. W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery. Numerical recipes
in C. The Art of Scientifi c Computing. Cambridge: University Press, 3(2), 1992.

 37. R.P. Brent. Algorithms for Minimization without Derivatives. Prentice Hall, 1973.

10768_C005.indd 11310768_C005.indd 113 6/17/2010 7:49:22 PM6/17/2010 7:49:22 PM

114 Bioinformatics: High Performance Parallel Computer Architectures

 38. Z. Yang. Maximum likelihood estimation on large phylogenies and analysis of
adaptive evolution in human infl uenza virus A. Journal of Molecular Evolution,
51(5):423–432, 2000.

 39. N. Goldman, J.P. Anderson, and A.G. Rodrigo. Likelihood-based tests of topol-
ogies in phylogenetics. Systematic Biology, 49(4):652–670, 2000.

 40. K. Strimmer and A. Rambaut. Inferring confi dence sets of possibly misspecifi ed
gene trees. Proceedings of the Royal Society B: Biological Sciences, 269(1487):137–
142, 2002.

 41. H. Shimodaira and M. Hasegawa. CONSEL: for assessing the confi dence of
phylogenetic tree selection. Bioinformatics, 17(12):1246–1247, 2001.

 42. A. Stamatakis and M. Ott. Effi cient computation of the phylogenetic likelihood
function on multi-gene alignments and multi-core architectures. Philosophical
Transactions of the Royal Society Series B, 363:3977–3984, 2008.

 43. N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, E. Teller, et
al. Equation of state calculations by fast computing machines. The Journal of
Chemical Physics, 21(6):1087, 1953.

 44. J.P. Huelsenbeck, B. Larget, R. Miller, and F. Ronquist. Potential applications
and pitfalls of Bayesian inference of phylogeny. Systematic Biology, 51(5), 2002.

 45. S. A. Berger and A. Stamatakis. Accuracy and performance of single versus dou-
ble precision arithmetics for maximum likelihood phylogeny reconstruction. In
Proceedings of PBC09, Parallel Biocomputing Workshop. Springer LNCS accepted
for publication.

 46. J. Kurzak and J. Dongarra. Implementation of mixed precision in solving sys-
tems of linear equations on the cell processor. Concurrency and Computation,
19(10):1371, 2007.

 47. A. Stamatakis, P. Hoover, and J. Rougemont. A rapid bootstrap algorithm for the
RAxML web servers. Systematic Biology, 57(5):758–771, 2008.

 48. A. Stamatakis, T. Ludwig, and H. Meier. RAxML-III: A fast program for maxi-
mum likelihood-based inference of large phylogenetic trees. Bioinformatics,
21(4):456–463, 2005.

 49. A. Stamatakis, F. Blagojevic, C.D. Antonopoulos, and D.S. Nikolopoulos.
Exploring new search algorithms and hardware for phylogenetics: RAxML
meets the IBM Cell. Journal of Very Large Scale Integration Signal Processing
Systems, 48(3):271–286, 2007.

 50. S. Whelan and N. Goldman. A general empirical model of protein evolution
derived from multiple protein families using a maximum-likelihood approach.
Molecular Biology and Evolution, 18(5):691–699, 2001.

 51. M. Ott, J. Zola, S. Aluru, and A. Stamatakis. Large-scale maximum likelihood-
based phylogenetic analysis on the IBM BlueGene/L. In Proc. of IEEE/ACM
Supercomputing Conference 2007 (SC2007), 2007.

 52. A. Stamatakis, M. Ott, and T. Ludwig. RAxML-OMP: An effi cient program for
phylogenetic inference on SMPs. PaCT, pages 288–302, 2005.

 53. A. Stamatakis and M. Ott. Exploiting fi ne-grained parallelism in the phyloge-
netic likelihood function with MPI, Pthreads, and OpenMP: A performance
study. In M. Chetty, A. Ngom, and S. Ahmad, editors, Pattern Recognition in
Bioinformatics, LNCS 5265, pp. 424–435. Springer, 2008.

 54. A. Stamatakis and M. Ott. Load balance in the phylogenetic likelihood kernel.
In Proceedings of ICPP 2009, 2009. accepted for publication.

10768_C005.indd 11410768_C005.indd 114 6/17/2010 7:49:22 PM6/17/2010 7:49:22 PM

Orchestrating the PLF on Emerging Parallel Architectures 115

 55. J. Felsenstein. Confi dence limits on phylogenies: An approach using the boot-
strap. Evolution, 39(4):783–791, 1985.

 56. T.S.T. Mak and K.P. Lam. Embedded computation of maximum-likelihood phy-
logeny inference using platform FPGA. In Proceedings of IEEE Computational
Systems Bioinformatics Conference, pages 512–514, 2004.

 57. T.S.T. Mak and K.P. Lam. FPGA-based computation for maximum likelihood
phylogenetic tree evaluation. Field Programmable Logic and Application, LNCS
3203, pp. 1076–1079, 2004.

 58. N. Alachiotis, E. Sotiriades, A. Dollas, and A. Stamatakis. Exploring FPGAs for
accelerating the phylogenetic likelihood function. In Proceedings of HICOMB2009,
2009. Accepted for publication.

 59. N. Alachiotis, A. Stamatakis, E. Sotiriades, and A. Dollas. An architecture for the
phylogenetic likelihood function. 2009. Accepted for publication.

 60. M.A. Suchard and A. Rambaut. Many-core algorithms for statistical phyloge-
netics. Bioinformatics, 25(11):1370, 2009.

 61. F. Pratas, P. Trancoso, A. Stamatakis, and L. Sousa. Fine-grain parallelism for
the phylogenetic likelihood functions on multi-cores, Cell/BE, and GPUs. 2009.
submitted.

 62. F. Blagojevic, D.S. Nikolopoulos, A. Stamatakis, C.D. Antonopoulos, and M.
Curtis- Maury. Runtime scheduling of dynamic parallelism on accelerator-
based multi-core systems. Parallel Computing, 33:700–719, 2007.

 63. F. Blagojevic, D.S. Nikolopoulos, A. Stamatakis, and C.D. Antonopoulos.
Dynamic multigrain parallelization on the cell broadband engine. In Proc. of
PPoPP 2007, San Jose, CA, March 2007.

 64. F. Blagojevic, D.S. Nikolopoulos, A. Stamatakis, and C.D. Antonopoulos.
RAxML-Cell: Parallel phylogenetic tree inference on the cell broadband engine.
In Proc. of International Parallel and Distributed Processing Symposium (IPDPS2007),
2007.

 65. B.Q. Minh, L.S. Vinh, H.A. Schmidt, and A.v. Haeseler. Large maximum likeli-
hood trees. In Proceedings of the NIC Symposium 2006, pages 357–365, 2006.

 66. X. Feng, K.W. Cameron, C.P. Sosa, and B. Smith. Building the tree of life on teras-
cale systems. In Proc. of International Parallel and Distributed Processing Symposium
(IPDPS2007), 2007.

 67. M. Ott, J. Zola, S. Aluru, A.D. Johnson, D. Janies, and A. Stamatakis. Large-scale
phylogenetic analysis on current HPC architectures. Scientifi c Programming,
16(2–3):255–270, 2008.

 68. N. Lartillot and H. Philippe. A Bayesian mixture model for across-site heteroge-
neities in the amino-acid replacement process. Molecular Biology and Evolution,
21(6):1095–1109, 2004.

 69. P.A. Goloboff, S.A. Catalano, J.M. Mirande, C.A. Szumik, J.S. Arias, M. Källersjö,
and J.S. Farris. Phylogenetic analysis of 73060 taxa corroborates major eukary-
otic groups. Cladistics, 25:1–20, 2009.

10768_C005.indd 11510768_C005.indd 115 6/17/2010 7:49:22 PM6/17/2010 7:49:22 PM

117

6
Parallel Bioinformatics Algorithms
for CUDA-Enabled GPUs

Yongchao Liu, Bertil Schmidt, and Douglas Maskell

6.1 Introduction

Bioinformatics has evolved into a compute-intensive and data-intensive
research area driven by advances in both computer hardware and software
algorithms. Therefore, many important biological problems are facing chal-
lenges both in runtime and memory consumption because of the exponen-
tial growth of biological databases. Problem examples include sequence
alignments and motif discovery.

Nowadays, incorporating multiple processor cores into a single silicon die
has become a commonplace to improve computational performance by means
of parallelism. As more and more cores are being incorporated into a single
chip, the era of many-core processors is around the corner, which indicates
that the future mainstream processors are parallel systems with their par-
allelism continuing to scale with Moore’s law. The emergence of many-core
architectures, such as general-purpose graphics processor unit (GPGPU),

6.1 Introduction .. 117
6.2 Techniques for Many-Core GPUs .. 118

6.2.1 Hybrid Computing Framework ... 118
6.2.2 Intertask and Intratask Parallelization 119
6.2.3 Coalesced Subject Sequence Arrangement 120
6.2.4 Coalesced Global Memory Access... 120
6.2.5 Cell Block Division Method ... 121

6.3 SW Database Search .. 121
6.4 Multiple Sequence Alignment ... 123
6.5 Motif Discovery .. 130
6.6 Conclusion .. 135
6.7 References ... 136

10768_C006.indd 11710768_C006.indd 117 6/17/2010 7:50:00 PM6/17/2010 7:50:00 PM

118 Bioinformatics: High Performance Parallel Computer Architectures

especially compute unifi ed device architecture (CUDA)-enabled GPUs [1, 2],
provides the opportunity to signifi cantly reduce the runtime of many bio-
informatics algorithms on commonly available and inexpensive hardware
with more powerful high-performance computing power, which are gen-
erally not provided by conventional general-purpose processors. However,
while demonstrating great compute power, many-core GPUs impose many
design constraints and challenges to achieve peak performance. These fac-
tors make many-core GPUs less fl exible. In general, they would not be able to
outperform conventional general-purpose processors for certain application
domains.

In this chapter, we describe several effective techniques to fully exploit
the compute capability of many-core CUDA-enabled GPUs. These tech-
niques serve at two different scales: the system scale and the device scale.
At the system scale, a hybrid computing framework is suggested to over-
lap the computation of the central processing unit (CPU) and GPU. At
the device scale, two approaches, based on intertask and intratask paral-
lelization, respectively, are described to leverage the computational power
of CUDA for different application conditions. In particular, we use three
techniques to reduce the requirements for global memory bandwidth: coa-
lesced subject sequence arrangement pattern, coalesced global memory
access pattern, and cell block division method. On the basis of these tech-
niques, we have parallelized three algorithms on CUDA-enabled GPUs for
sequence alignments and motif discovery: CUDASW++, MSA-CUDA, and
CUDA-MEME.

6.2 Techniques for Many-Core GPUs

6.2.1 Hybrid Computing Framework

CUDA-enabled GPUs are generally used as additional boards to a general-
purpose workstation or PC. To maximize computational performance, it is
preferable to overlap the computation of the CPU and GPU to fully exploit
the compute capability. This framework is most suitable for the cases in
which the compute-intensive task assigned to GPU requires multiple passes
to complete, and the computing results in each pass can be directly used as
input for the following tasks running on the CPU. Hence, when each pass
is fi nished on the GPU, the CPU can directly conduct the following tasks
assigned to it with no necessity to wait for the whole completion of the task
on the GPU. Therefore, by overlapping the computation of the CPU and GPU,
the runtime is shortened. Figure 6.1 shows the basic structure of a hybrid
computing framework of overlapping GPU–CPU computation. The frame-
work mainly consists of four components: a main thread invoking the CUDA

10768_C006.indd 11810768_C006.indd 118 6/17/2010 7:50:00 PM6/17/2010 7:50:00 PM

Parallel Bioinformatics Algorithms for CUDA-Enabled GPUs 119

kernel(s), one or more auxiliary threads performing the following relevant
tasks according to the input data, a data queue storing the input data for
the auxiliary thread(s), and a message queue facilitating the communication
between the threads.

6.2.2 Intertask and Intratask Parallelization

We have investigated two basic parallelization approaches to map a number
of bioinformatics algorithms to CUDA programming model: intertask paral-
lelization and intratask parallelization.

Intertask parallelization:• Each task is assigned to exactly one thread,
and dimBlock tasks are performed in parallel by different threads in
a thread block.
Intratask parallelization:• Each task is assigned to one thread block,
and dimBlock threads in the thread block cooperate to perform the
task in parallel, exploiting the inherent parallel characteristic of a
task.

Depending on different applications, the defi nition of task refers to different
meanings. For instance, for sequence database search, a task refers to the
computation of the optimal local alignment of a query sequence and a subject
sequence, whereas for multiple sequence alignment, a task refers to the pair-
wise distance computation of a sequence pair. In general, our results have
shown that intertask parallelization achieves better performance but occu-
pies more device memory than intratask parallelization. However, because
intratask parallelization occupies signifi cantly less device memory, it is pos-
sible to deal with larger problem sizes. Sometimes, these two parallelization
approaches are combined in order to meet difference problem sizes.

Data queue

Message queue

Main thread: multi-pass CUDA
kernel(s) invocation model

Perform the relevant tasks

Get an input from data queue

Exit after completing all tasks
or receiving the stop message

Auxiliary thread(s)

Invoke CUDA kernels to
perform one pass of the task

Pack the computing results and
send them to the data queue

Wait for the completion
of the auxiliary thread(s)

FIGURE 6.1
Basic structure of the hybrid computing framework.

10768_C006.indd 11910768_C006.indd 119 6/17/2010 7:50:00 PM6/17/2010 7:50:00 PM

120 Bioinformatics: High Performance Parallel Computer Architectures

6.2.3 Coalesced Subject Sequence Arrangement

This technique is particularly suitable for biological database search. Subject
sequences are prestored in the device memory of GPUs, depending on the
utilized parallelization (intertask or intratask) approach. Two correspond-
ing arrangement patterns for subject sequences in the database are therefore
designed to achieve the coalesced access to global memory.

As a preprocessing step, subject sequences are presorted in the increasing
order according to their lengths. Intertask parallelization arranges the sorted
subject sequences in an array like a multilayer bookcase (see Figure 6.2 (a)). All
symbols of a sequence are restricted to be stored in the same column from the
top to bottom. All sequences are arranged sequentially in the increasing order
of length from left to right and top to bottom in the array. Intratask paralleliza-
tion sequentially stores the sorted subject sequences in an array row by row
from the top-left corner to the bottom-right corner (see Figure 6.2 (b)). All sym-
bols of a sequence are restricted to be stored in the same row from left to right.
Using these arrangement patterns for both parallelization methods, access to
the subject sequences can be coalesced for all threads in a half-warp.

6.2.4 Coalesced Global Memory Access

To gain maximum bandwidth for global memory access, all threads in a
half-warp need to access the global memory in a coalesced pattern. A pre-
requisite for coalescing is that the words accessed by all threads in a half-
warp must lie in the same segment, where the segment size is subject to
the device compute capability. The memory spaces, referred to by the same
variable names (not referring to same addresses), for all threads in a half-
warp have to be allocated in the form of an array to keep them contiguous in
address. In this memory array, consecutive memory slots must be allocated
for consecutive threads in a thread block to achieve coalescing. Figure 6.2
also presents two global memory allocation patterns of a basic type vector

(a) For intertask parallelization (b) For intratask parallelization

MemSlot [0...N]

M
em

Slot [0...N
]

Entity i

Entity j

Entity i

Entity j

Sequences

FIGURE 6.2
Coalesced arrangement pattern for database search and coalesced global memory allocation
patterns for processing entities.

10768_C006.indd 12010768_C006.indd 120 6/17/2010 7:50:00 PM6/17/2010 7:50:00 PM

Parallel Bioinformatics Algorithms for CUDA-Enabled GPUs 121

variable of size N for M processing entities (i.e., threads or thread blocks),
depending on the parallelization approach.

Intertask parallelization exploits the pattern shown in Figure 6.2 (a), where
a memory slot is indexed from top to bottom. When accessing the MemSlot
array using the same index for all threads in a half-warp, these simulta-
neous memory accesses are coalesced into one or two memory transactions
depending on the compute capability of devices. Intratask parallelization
exploits the pattern shown in Figure 6.2 (b), where a memory slot is indexed
from left to right. It is able to obtain the coalesced accesses by using the com-
mon global memory access pattern; that is, successive threads access the suc-
cessive addresses in a memory slot.

6.2.5 Cell Block Division Method

In this chapter, we use the cell block division method to further reduce the num-
ber of access to global memory when performing the Smith–Waterman (SW)
algorithm. The concepts derived from this method can also be used in many
other cases to reduce the bandwidth requirements, but the specifi c implemen-
tations highly depend on the specifi c algorithms. The following description of
this method is based on an SW-based sequence database search.

The alignment matrix is divided into cell blocks of size n × n (or n × 1). We
defi ne qlen and slen to, respectively, denote the lengths of a query sequence
and a subject sequence. For simplicity, assume that qlen and slen are multiples
of n (if not, the sequence is padded with an appropriate number of dummy
symbols). Without cell block division, the computation of one DP-matrix cell
(including the computation of the corresponding values in the H, E, and F
matrices) requires two global memory accesses (one load operation and one
store operation for the intermediate results).

However, when using the cell block division method, the computation of n
cells in one column (or row) in a cell block requires only one load operation
and one store operation on the global memory instead of n load operations
and n store operations.

Because one global memory access typically takes hundreds of clock
cycles, the cell block division method leads to a signifi cant reduction of the
total runtime owing to a reduction in the global memory accesses. However,
the size of cell block is limited by the number of registers (or the amount of
shared memory) available per thread.

6.3 SW Database Search

The CUDASW++ software suite [3] is designed for protein sequence database
search using the SW algorithm running on many-core GPUs. In CUDASW++,

10768_C006.indd 12110768_C006.indd 121 6/17/2010 7:50:00 PM6/17/2010 7:50:00 PM

122 Bioinformatics: High Performance Parallel Computer Architectures

each subject sequence is aligned to the query sequence using the score-only
SW algorithm with affi ne gap penalties (see Chapter 1).

CUDASW++ uses two stages: the fi rst stage exploits intertask paralleliza-
tion and the second exploits intratask parallelization. A subject sequence
length threshold is introduced to separate these two stages. All subject
sequences with length less than or equal to threshold are aligned to the query
sequence in the fi rst stage. All alignments of subject sequences of length
greater than threshold are carried out in the second stage (threshold = 3072 is
used in CUDASW++). Furthermore, the techniques described in Section 6.2
are used to optimize performance: coalesced subject sequence arrangement,
coalesced global memory access, and cell block division method.

Constant memory is exploited to store the gap penalties, scoring matrix,
and the query sequence. Before searching for a query sequence against the
database, the query sequence is loaded into constant memory. The 64-KB
memory capability of the constant memory makes it possible to accom-
modate much longer query sequences. CUDAWSW++ supports query
sequences of length up to 59 K. As mentioned earlier, as long as all threads
in a half-warp read the same address in constant memory, the access is
as fast as reading from registers. Placing the query sequence in constant
memory provides a signifi cant performance improvement as all threads
in a warp on the common execution path read the same query sequence
address. The scoring matrix is loaded into shared memory, as the perfor-
mance of constant memory degrades linearly if multiple addresses are
requested by threads. This is because threads may frequently access dif-
ferent addresses in the scoring matrix. The integer functions max(x, y) and
min(x, y) in the CUDA runtime library are used to map them to a single
instruction on the device.

The performance of CUDASW++ is benchmarked by searching for six
sequences of lengths from 464 to 5,478 against Swiss-Prot release 56.6. The
tests of the single-GPU version are carried out on the GTX 280 graphics card
installed on a PC with an AMD Opteron 248 2.2 GHz processor and 1 GB
RAM, and the multi-GPU version on the GTX 295 graphics card installed
in the same PC. Maximal performance is achieved for a thread block size of
256 threads and a grid size equal to the number of streaming multiproces-
sors for both the single-GPU and multi-GPU versions. The scoring matrix
BLOSUM45 is used with a gap penalty of 10–2k. For the single-GPU ver-
sion, it achieves a relatively constant performance for all query sequences,
with a highest performance of 9.7 GCUPS (giga-cell updates per second). For
the multi-GPU version, the performance increases as the lengths of query
sequences become longer, because of the overhead incurred mainly by the
database loading from host memory to GPU and the host threads schedul-
ing. It achieves a highest performance of 16.1 GCUPS.

We next compare the performance of CUDASW++ with other pub-
licly available implementations for protein database search: SWPS3 [4],
SW-CUDA [5], and NCBI-BLAST [6] (version 2.2.19). All the following

10768_C006.indd 12210768_C006.indd 122 6/17/2010 7:50:01 PM6/17/2010 7:50:01 PM

Parallel Bioinformatics Algorithms for CUDA-Enabled GPUs 123

tests are performed against Swiss-Prot release 56.6. SWPS3 for x86/SSE2
is tested on a Linux workstation with two Intel Xeon 3.0 GHz dual-core
processors by running four threads, and SWPS3 for Cell/BE is tested on
a stand-alone PlayStation 3 (PS3). SWPS3 is a vectorized SW implementa-
tion with striped query profi le layout [7]. The scoring matrices BLOSUM50
and BLOSUM62 are used for the tests. Figure 6.3 presents the performance
comparison between CUDASW++ and the other three publicly available
implementations.

CUDASW++ (available from http://cudasw.sourceforge.net/) is targeted
for CUDA-enabled GPUs with compute capability 1.2 and higher and sup-
ports query sequences of length up to 59K, far longer than the maximum
sequence length 35,213 in Swiss-Prot release 56.6.

6.4 Multiple Sequence Alignment

In this subsection, we describe how to parallelize the three stages of the
ClustalW [8, 9] pipeline for multiple sequence alignment using CUDA. The
three stages are described in more detail in Chapter 1. To develop a paral-
lel version, it is imperative to understand the associated time complexities.
Given an input dataset S = {S1, . . . ,Sn} of n sequences with average length lave,
the time complexities of the three stages are

Distance matrix computation (Stage 1): • O(n2l2
ave)

Guided Tree (Stage 2): • O(n3)

9.6 9.6 9.7 9.6 9.6 9.6

14.5
15.6 16.1 16.1 16.0 16.1

1

6.8

12.6

14.9 15.4 15.8 15.1

4.8 5.3 5.5 5.8
6.5 6.6

0.8
2.7 4.4

6.3
7.8

9.3

0.8
2.7

4.4
6.1

7.8

9.3

2.4

5.2

7.7
8.6

10.7

7.7

0.7
1.7

2.5
2.9 3.6

2.7

0

2

4

6

8

10

12

14

16

18

464 1500 2504 3564 4548 5478

G
CU

PS

Query Sequence Length

Single?GPU CUDASW++ Multi-GPU CUDASW++ SW-Cuda (GTX 295)

SWPS3/SSE2 (10-2k) SWPS3/SSE2 (5-2k) SWPS3/Cell/BE (10-2k)

SWPS3/Cell/BE (5-2k) NCBI-BLAST(BL62, 10-2k) NCBI-BLAST(BL50, 10-3k)

FIGURE 6.3
Performance comparison between CUDASW++ and other publicly available implementations.

10768_C006.indd 12310768_C006.indd 123 6/17/2010 7:50:01 PM6/17/2010 7:50:01 PM

124 Bioinformatics: High Performance Parallel Computer Architectures

Progressive alignment (Stage 3): • O(nl2
ave+ n2lave)

On the basis of these complexities, we can make the following observa-
tions about the runtime behavior of ClustalW:

Stage 1 generally occupies a large proportion of the total runtime.•
Stage 1 generally has a longer runtime than Stage 3.•
If • n > lave, Stage 2 has a longer runtime than Stage 3.
If • n > l2

ave, Stage 2 has a longer runtime than Stage 1.

As mentioned in Chapter 1, the distance matrix computation requires
the actual optimal alignment path for each pair of input sequences, which
can be found in linear space by computing a trace-back with a divide-and-
conquer approach. However, sequential implementation of the linear-space
 trace-back algorithm uses recursion. Unfortunately, CUDA currently does
not support recursion. Therefore, we have developed a new stack-based iter-
ative implementation. MSA-CUDA [10] uses this implementation for both
pairwise alignments in Stage 1 and profi le–profi le/sequence alignments in
Stage 3.

We have also investigated intertask and intratask parallelization for pair-
wise distance computation. Coalesced global memory access patterns are
exploited for both parallelization approaches. The cell block division method
is only exploited in the forward score-only pass using the SW algorithm for
the intertask parallelization.

The comparison of time complexities of all stages indicates that the runtime
of Stage 2 can dominate the overall runtime of ClustalW for large sequence
datasets. Hence, it is important to speed up Stage 2 for large sequence data-
sets to get a good overall speedup. The basic algorithm of the neighbor-join-
ing (NJ) method is described in Chapter 1.

As mentioned in Chapter 1, NJ computes a phylogenetic tree by iteratively
picking and joining two nodes, whose joining minimizes the sum of all
branch lengths of the resulting new tree. A pair of nodes i and j is selected
if their joining minimizes Si,j = (n – 2) × Di,j – (Ri + Rj), where n is the number
of valid nodes (i.e., the remaining nodes), D is the distance matrix of valid
nodes, Ri is the sum of all values in the ith row of D, and Rj is the sum of all
values in the jth row of D. It is easily seen that for each pair of nodes i and j,
the calculation of Si,j is independent from the other pairs; that is, there is no
data dependency between the computations of any pair of nodes. Because
the distance matrix is a symmetric square matrix, the data of the cells in
the upper triangle (or lower triangle) suffi ces for NJ tree reconstruction.
Therefore, a basic and straightforward method is to map the upper triangle
of the distance matrix to a 2D grid of thread blocks and then group the cells
in the upper triangle into many equally shaped cell blocks including several
equally shaped small cell matrixes, so that all the cells can be tackled in a
coherent way. One thread block in the grid is designed to logically corre-
spond to one cell block in the distance matrix and every thread in a thread

10768_C006.indd 12410768_C006.indd 124 6/17/2010 7:50:02 PM6/17/2010 7:50:02 PM

Parallel Bioinformatics Algorithms for CUDA-Enabled GPUs 125

block is assigned to process one small cell matrix in the corresponding cell
block. This parallelization scheme is illustrated in Figure 6.4.

However, if the entire distance matrix is loaded into GPU device memory
without any modifi cation, half of the GPU memory space is wasted because
of the symmetry of the distance matrix. To improve the GPU device mem-
ory utilization, a memory compaction approach can be applied. In this
approach, the distance matrix is considered as a 2D coordinate space.
Through coordinate mapping in the distance matrix, up to a half of the
memory size is saved compared with the basic method. For n sequences, in
the basic method, the size of the memory occupied by the distance matrix is
(n + 1) × (n + 1) × 4 bytes (assuming single precision fl oating point is used),
whereas in the compact memory method, the size is reduced to (n + 1) ×
(MidPoint + 1) × 4 bytes, where MidPoint is equal to (n + 1)/2 (see Figure 6.5
for an example).

As can be seen from Figure 6.5, the compact method maps the bottom half
of the upper triangle to the lower triangle of the top half. Considering the
matrix as a 2D coordinate space on the Cartesian plane, where the origin is
located on the left-top corner, the horizontal (x) coordinates increase from
the left to the right and the vertical (y) coordinates increase from the top to
bottom. The coordinate mapping rules are as follows:

For each cell (x,y) in the upper triangle of the distance matrix,

If • y ≤ MidPoint, the coordinate is not modifi ed.
If • y > MidPoint, the coordinate is mapped to (n + 1 − x, n + 1 − y).

Hence, a coordinate transformation is required for the cells whose
y- coordinates are greater than MidPoint when accessing data in the distance
matrix. After the coordinate transformation, the cells that are in the same

(c) Per-thread cell matrix

(b) Per-block cell block

(a) Per-grid distance matrix

FIGURE 6.4
Basic and straightforward grid mapping method: (a) the distance matrix is mapped to a grid
of thread blocks; (b) one thread block is assigned to process one cell block; (c) one thread in a
thread block is assigned to process one cell matrix in the corresponding cell block.

10768_C006.indd 12510768_C006.indd 125 6/17/2010 9:56:43 PM6/17/2010 9:56:43 PM

126 Bioinformatics: High Performance Parallel Computer Architectures

row in the original distance matrix are still in the same row in the mapped
distance matrix.

At the initialization stage, the distance matrix (computed in Stage 1) is copied
from host to GPU device memory. After a node pair has been selected, the val-
ues of relevant cells in the distance matrix have to be updated for the successive
iteration. If the whole matrix is entirely reloaded, the time overhead would be
fairly high because of the relatively narrow memory bandwidth between the
host and the GPU. To signifi cantly reduce the amount of data transferred, only
the changed valid cells are updated. In this way, only the data values of one
column and one row in the distance matrix need to be transferred from host to
GPU every iteration, which makes the data transfer overhead negligible.

Shared memory is used to store the temporary results of each thread block.
Each thread in one thread block compares and selects the node pair (imin, jmin),
whose joining into a new node gives the smallest branch length among the node
pairs allocated to it, and then stores the selected node pair and its value Simin,jmin
into the storage space in the shared memory. Texture memory is exploited to
store the distance matrix and the row and column sums of all valid nodes.

After reconstructing the NJ tree, the NJ tree is rerooted to calculate the
weights of sequences and to traverse the rooted tree to identify the align-
ment steps for Stage 3. The unrooted NJ tree is rerooted using a “mid-point”
method [11]. The root is placed at the position where the means of branch
lengths on either side of the root are identical.

Using the conventional sequential C code, all tree nodes can be stored in a
vector and the relationship between nodes is maintained through pointers.
To parallelize the rerooting using CUDA, the tree nodes must be transferred
from host memory to GPU device memory while still maintaining the tree
structure. However, pointers will be invalidated while transferring due to the
changes of memory address spaces. In this case, we substitute vector indices

(a)

0 1 2 3 4 5 6

1
2

3

0 0

0

0

0

0 0 0 0 0 0

(b)

d13d14

d15

0 1 2 3 4 5 6

1
2

3
4

5
6

0 0

0

0

0

0

0

0

0 0 0 0 0 0

d10 d11 d12

*

**

*

**

*

*

*

*

*

*

*

*

d14

d15

d2

d9

d13

d3 d4 d5

d6 d7 d8

d1

d12d11

d2

d9

d3 d4 d5

d6 d7 d8

d1

d10

FIGURE 6.5
Examples of the distance matrices in both algorithms: (a) the original distance matrix used in
the basic algorithm; (b) the new compact memory distance matrix in the improved algorithm.

10768_C006.indd 12610768_C006.indd 126 6/17/2010 7:50:06 PM6/17/2010 7:50:06 PM

Parallel Bioinformatics Algorithms for CUDA-Enabled GPUs 127

for pointers to maintain the relationship between nodes, where each node
object stores the indexes of itself, its parent, and its left and right children.

For the CUDA implementation of rerooting the NJ tree, one thread block
corresponds to one node that is selected as the reference, and is assigned to
compute the difference value of the branch length means of leaf nodes on the
left and on the right of this node. Every thread in a thread block is assigned
to perform the computation on a separate subset of leaf nodes. For each leaf
node in a subset, the corresponding thread identifi es on which side of the
selected node this leaf node lies, and then computes the distance between
this leaf node and the selected node. Shared memory is exploited by each
thread to store the results for the corresponding subset of leaf nodes. Texture
memory is used to store the tree nodes.

Stage 3 aligns larger and larger groups of sequences using pairwise align-
ment following the branching order of the rooted guided tree from the leaves
up to the root. Every leaf node of the guided tree corresponds to a sequence
and each internal node corresponds to an alignment produced from the
aligned sequences in the left subtree and in the right subtree. The alignment
corresponding to an internal node can be launched if and only if the align-
ments corresponding to the roots of its left and right subtrees have been
performed. Obviously, the alignments at the same level of the guided tree
can be performed in parallel but even alignments that are not at the same
level could also be parallelized. For example in Figure 6.6, all alignments
corresponding to internal nodes with the same patterns can be performed
in parallel.

Initially, the rooted guided tree is depth-fi rst traversed in post order to
number all the internal nodes and build the dependency relationship with
their left and right subtrees. All internal tree nodes are stored in a vector in
traversal-order. For all tree nodes, three auxiliary vectors are used to record

S1

S2 S4

S81

62

5

S94

S10
3

S3 S7

7
S5

8

S6 S11

9

10
Root

Numbered
internal nodes

FIGURE 6.6
Example of a rooted guided tree produced using the NJ method.

10768_C006.indd 12710768_C006.indd 127 6/17/2010 9:56:45 PM6/17/2010 9:56:45 PM

128 Bioinformatics: High Performance Parallel Computer Architectures

the indices of their left children, their right children, and a fl ag indicating
whether the corresponding alignment has been performed. For a leaf node,
the indices of its left and right children are set to 0. For an internal node, if
one child is a leaf, then the index of this child is also set to 0. The dummy
subtree numbered as 0 is always defi ned aligned because it corresponds to
an input sequence for an alignment. Figure 6.7 presents the three initial aux-
iliary vectors for the rooted guided tree shown in Figure 6.6.

In our CUDA implementation, the progressive alignment is conducted itera-
tively in a multipass way. For each pass, fi rstly, all undone alignments that are
able to be performed in this pass are identifi ed by checking the fl ag words of
their left and right children stored in the fl ag-vector. If both of its left and right
children have been aligned, this alignment is added to the ready alignment
list managing all the alignments to be performed in this pass; otherwise, this
alignment has to wait until both of its children have been aligned. After the
completion of the ready alignment list, the pairs of profi les corresponding
to those alignments are constructed. Second, the pairwise alignments of all
pairs of profi les are performed on the GPU in parallel. Third, gaps are added
to the sequences corresponding to each pair of profi les by tracing back its
optimal alignment. Finally, all the alignments performed in this pass will set
their fl ag words in the fl ag vector to indicate that they are aligned.

As illustrated in Figure 6.6, the guided tree is seldom well balanced and
the numbers of alignments that can be performed in one pass decreases as
the alignments move up to the root of the tree. Therefore, MSA-CUDA uses
the following parallelization strategy. When the number of alignments
to be performed in one pass is relatively large, the intertask parallelism
method is utilized, and when it is relatively small, the intratask parallel-
ism method is superior. Thus, a combination of intertask and intratask
 parallelism is used to compute all the alignments to be performed in one
pass. A threshold determines the branches of the program fl ow. If the total
number of alignments or the remaining number of alignments after one
or more passes is still more than a threshold, the intertask parallelization

Aligned flags

Left child

Right child

NIL 0 0 0 3 4 5 2 7 0 8

NIL 0 1 0 0 0 0 6 0 0 9

1 0 0 0 0 0 0 0 0 0 0

0 1 Indices of numbered internal nodes 10

FIGURE 6.7
Three initial auxiliary vectors storing the dependency relationship with their left and right
subtrees and the aligned fl ags.

10768_C006.indd 12810768_C006.indd 128 6/17/2010 7:50:10 PM6/17/2010 7:50:10 PM

Parallel Bioinformatics Algorithms for CUDA-Enabled GPUs 129

method is used, and when the total number of alignments or the remain-
ing number of alignments is less than the threshold, the intratask paral-
lelization method is used to compute those remaining alignments.

The tests of MSA-CUDA are carried out on the GTX 280 graphics card
installed in the PC with an AMD processor. The sequential ClustalW (ver-
sion 2.0.9) program is profi led on a desktop PC with a Pentium 4 3.0 GHz pro-
cessor running the Linux OS. Three protein sequence datasets are used to
evaluate the performance of MSA-CUDA. The datasets consist of sequences
selected from the Human immunodefi ciency virus dataset downloaded from
NCBI [12], as given below:

A• : 1,000 sequences of average length 858;
B• : 4,000 sequences of average length 247;
C• : 8,000 sequences of average length 73.

Figure 6.8 shows the speedups of MSA-CUDA compared with sequential
ClustalW. The graph clearly shows that the intertask parallelization outper-
forms the intratask parallelization for all datasets. Thus, if there are suffi cient
tasks and available large device memory capacity on the GPU, MSA-CUDA
chooses intertask parallelization for Stage 1. Dataset A achieves higher
speedups than datasets B and C in Stage 1 because of the larger amount of
computation performed.

Speedups for the NJ tree reconstruction substage generally increase with
the number of input sequences, but grow more slowly for the larger datasets.
Consequently, dataset C achieves the highest speedup in this stage.

3.9

1.4

2.2

3.9

2.5

4.0

7.4

21.6

23.2

10.4

6.9

1.9

47.1

27.4

26.1

41.5

19.1

10.4

0 5 10 15 20 25 30 35 40 45 50

1000(858)

4000(247)

8000(73)

Speedups

D
at

as
et

s

MSA-CUDA overall

Inter-task parallelization

Intra-task parallelization

NJTree reconstruction

NJTree rerooting

Progressive alignment

FIGURE 6.8
Speedups of MSA-CUDA compared with sequential ClustalW.

10768_C006.indd 12910768_C006.indd 129 6/17/2010 7:50:10 PM6/17/2010 7:50:10 PM

130 Bioinformatics: High Performance Parallel Computer Architectures

Speedups for Stage 3 are relatively low and vary largely, because

 1. Building of the profi les of each alignment is performed sequentially
on the CPU, which reduces the speedups achieved in the parallel-
ized parts.

 2. The speedup heavily depends on the topology of the guided tree,
which infl uences the number of alignments that can be processed in
parallel.

 3. The lengths of the profi les of an alignment also have impact on per-
formance. Generally, larger datasets and longer sequences mean
better performances.

6.5 Motif Discovery

MEME (Multiple expectation maximization [EM] for Motif Elicitation) is
an established and popular tool for motif discovery in DNA and protein
sequences [13, 14]. MEME relies on an EM approach to fi nd, which is time
consuming for large datasets. Therefore, we have developed CUDA-MEME,
a parallelization of motif discovery with MEME using CUDA.

Input is a set of related DNA or protein sequences S = {S0, S1, . . . ,Sn−1} and
a motif width W. The motif fi nding problem is to fi nd a string of length
W (a so-called motif) that occurs a certain number of times in the input
dataset. Figure 6.9(a) shows an example with the motif ATCCG occurring
exactly once in four input DNA sequences. Depending on the distribution
of occurrences in the input sequences there are three different motif search
methods:

Exactly one occurrence per sequence (• OOPS)
Zero-or-one occurrence per sequence (• ZOOPS)
Any number of occurrences•

In this chapter we only focus on OOPS and ZOOPS.
Of course, the occurrences of the motifs in the sequences are in general not

exact, but approximate; that is, a certain number of mismatches are allowed
(see Figure 6.9(b)). Therefore, MEME uses a statistical motif model. A motif is
represented as a letter frequency matrix Ψ; that is, for a motif width W and
an alphabet Σ = {x0, x1, . . . ,xA−1} with A letters, Ψ is of size A × (W + 1). The
matrix value Ψi,j is defi ned as

Probability of • xi appearing at position j − 1 in the motif for all 0 ≤ i ≤
A − 1 and 1 ≤ j ≤ W

10768_C006.indd 13010768_C006.indd 130 6/17/2010 7:50:12 PM6/17/2010 7:50:12 PM

Parallel Bioinformatics Algorithms for CUDA-Enabled GPUs 131

Probability of • xi appearing outside the motif for all 0 ≤ i ≤ A − 1 and
j = 0

Figure 6.10 shows an example of a letter frequency matrix for the example
shown in Figure 6.9(b).

The EM algorithm [15] in MEME is carried out from an initial starting point
model Ψ(0). It then runs for a fi xed number of iterations or until convergence
to fi nd a model Ψ(q) with maximal posterior probability. During the search
for a given motif width, MEME performs a multistart search, where it returns
a number of initial models. The multistart search of a given motif width W
consists of two stages:

Starting point search stage• : Iterates over all initial models derived from
the actual W-length substrings occurring in the input sequence data-
set. Firstly, the log-likelihood ratio of each possible initial model is
computed. Second, a P-value is calculated, which represents the
probability of a random string, generated from the background let-
ter frequencies, having the same score or higher. Initial models with
the highest-statistical signifi cance are selected.
EM• : An EM algorithm is executed for a fi xed number of iterations
or until convergence from each of the highest-scoring initial models
and then the best motif model is chosen.

CACA GCCTA TTG
GCCTA CTCTTAA
GTTTGGG GCCTA

A GCCTA TCGCGC

(a) (b)

CACA GCCTT TTG
GCGAA CTCTTAA
GTTTGGG CTCTA

A GACTC TCGCGC

FIGURE 6.9
(a) The motif ATCCG occurring exactly once in every input sequence; (b) the motif ATCCG
occurring once in every input sequence with up to two mismatches.

543210
00.052.000.052.005.061.0A

52.005.057.000.052.042.0C

57.000.052.000.000.042.0G

00.052.000.057.052.036.0T

FIGURE 6.10
A letter frequency matrix for the motif ATCCG occurring approximately in Figure 6.9(b). Note
that column zero models the background.

10768_C006.indd 13110768_C006.indd 131 6/17/2010 7:50:13 PM6/17/2010 7:50:13 PM

132 Bioinformatics: High Performance Parallel Computer Architectures

Profi ling of MEME shows the starting points search as the runtime bottle-
neck. It typically takes more than 98% of the overall runtime. Therefore, we
focus on parallelizing the starting point search stage, which is explained in
more detail in the following text.

Given the input sequences S = {S0, S1, . . . , Sn−1} from Σ, and the motif width W.
Li denotes the length of sequence Si, Si,j denotes the substring of length W
starting at position j in sequence Si, and Si(j) denotes the jth letter in Si, for all
0 ≤ i ≤ n−1 and 0 ≤ j ≤ Li – W. The starting point search algorithm performs an
independent computation from each W-length substring Si,j to determine a
set of initial models. It consists of three steps:

Step 1:• Compute the probability score P(Si,j, Sk,l) against each sub-
string Sk,l, which is the probability that a motif starts at position l in
Sk as well as at position j in Si.
Step 2:• Identify a substring Sk,maxk with the global maximum score for
each sequence Sk as a possible starting point.
Step 3:• Sort the highest-scoring substrings in the decreasing order
of score, and align them to identify the initial models for the given
motif width by computing their statistical signifi cance.

The probability score P(Si,j, Sk,l) is defi ned by Equation 6.1, where sbt denotes
the letter frequency matrix of size A × A.

W

i j k l i k
w

P S S sbt S j w S l w
1

, ,
0

(,) [()][()]
−

=

= + +∑

(6.1)

Computing the probability score between each pair of substrings Si,j and
Sk,l directly using Equation 6.1 results in redundant calculations. To reduce
this redundancy, Equation 6.2 can be used instead. Using Equation 6.2, the
scores {P(Si,j, Sk,l)} of Si, for 1 ≤ j ≤ Li – W and 1 ≤ l ≤ Lk – W, in the jth iteration can
be computed using the probability scores {P(Si,j-1, Sk,l-1)} computed in the (j–1) th
iteration. Only P(Si,j, Sk,0) needs to be computed individually using Equation
6.1. The number of operations for each P-computation is therefore reduced
from O(W) to O(1).

− −= + + − + −
− − −

i j k l i j k l i k

i k

P S S P S S sbt S j W S l W
sbt S j S l

, , , 1 , 1(,) (,) [(1)][(1)]
[(1)][(1)]

(6.2)

On the basis of the hybrid computing framework described in Section 6.2,
we have parallelized the starting point search using CUDA. It consists of
four components: main thread, auxiliary thread, task queue, and message
queue. The main thread invokes the CUDA kernel(s), and the auxiliary thread

10768_C006.indd 13210768_C006.indd 132 6/17/2010 7:50:13 PM6/17/2010 7:50:13 PM

Parallel Bioinformatics Algorithms for CUDA-Enabled GPUs 133

conducts the alignment of top substrings and identifi es the initial models.
The task queue stores the sorting and alignment tasks to be processed, and
the message queue facilitates the communication between the two threads.

The starting point search parallelization takes advantage of the fact that for
a given W-length substring Si,j (0 ≤ i ≤ n −1 and 0 ≤ j ≤ Li − W), the computation
of scores {P(Si,j, Sk,l)} is independent of each other for any sequence Sk (0 ≤ k ≤ n
−1 and 0 ≤ l ≤ Lk −W). We have again used the general concept of intertask and
intratask parallelization, which has been introduced in Section 6.2.2, to compute
the scores for a given width W as part of the hybrid computing framework:

Intertask parallelization:• Each thread block is assigned to compute the
scores of all W-length substrings in one sequence Si against another
sequence Sk, and all threads in a thread block cooperate to complete
the computation. In this case, the task assignment can be arranged
into a square matrix of size n × n, where Si and Sk are indexed from left
to right horizontally and from top to bottom vertically, respectively.
Cell (i,j) represents the task of computing the scores of all W-length
substrings in Si against Sk. The total number of thread blocks is n2
and the tasks are assigned to all thread blocks sequentially along the
matrix from left to right and then from top to bottom.
Intratask parallelization:• Working in the same way as the sequential
algorithm. For one substring Si,j, the scores against all the sequences
are computed by p thread blocks, where for each sequence Sk, the set
of all the W-length substrings {Sk.l} is roughly equally divided and
distributed to p thread blocks.

In most cases intertask parallelization achieves higher performance than
intratask parallelization, except for datasets with a few long sequences. As
observed in Equation 6.2, the score computation for the substring Si,j depends on
the scores for the substring Si,j-1. The scores of the substring Si,j (corresponding
to the jth iteration of sequence Si) against all substrings {Sk,l} in Sk are stored in a
score vector [P(Si,j, Sk,l)] in global memory. Both methods exploit two score vectors
[P(Si,j-1, Sk,l)] and [P(Si,j, Sk,l)] to store the scores for the (j − 1)th and jth iterations of Si,
using a simple cyclic vector swapping method. In this method, the score vector
[P(Si,j-1, Sk,l)] serves as input and [P(Si,j, Sk,l)] as output for the jth iteration of Si. For
the (j + 1)th iteration, the score vectors [P(Si,j-1, Sk,l)] and [P(Si,j, Sk,l)] are swapped.

As mentioned above, during the starting point search from a given sub-
string Si,j only one globally highest-scoring substring Sk,maxk for each sequence
Sk is selected. In this case, both parallelization approaches are designed to
determine the highest-scoring substrings while computing the scores.
Owing to the different design details, these two methods exploit differ-
ent determination methods, respectively. For each invocation of the CUDA
kernel(s), intratask parallelization performs the computation of probability
scores {P(Si,j, Sk,l)} for one substring Si,j against all the sequences and stores

10768_C006.indd 13310768_C006.indd 133 6/17/2010 7:50:14 PM6/17/2010 7:50:14 PM

134 Bioinformatics: High Performance Parallel Computer Architectures

all the scores for the next invocation. During the score computation, each
thread block selects the highest-scoring substring Sk,maxk from the set of sub-
strings {Sk,l} assigned to it for each sequence Sk and then outputs them when
exiting. After the CUDA kernel(s) return(s), the highest-scoring substrings
{Sk,maxk}for all the sequences {Sk} are determined by simply comparing the
outputted highest-scoring substrings of each thread block. After complet-
ing each pass, the substring Si,j and its corresponding highest-scoring sub-
strings are packed as a task and added to the task queue. Because intertask
parallelization works in a multipass way and is based on a task assignment
matrix, it does not guarantee that all the highest-scoring substrings {Sk,maxk}
for a substring Si,j against all the sequences{Sk} are computed in one pass. In
this case, an unprocessed starting point (USP) buffer is exploited to store all
the unprocessed highest-scoring substrings for a set of substrings {Si,j}. After
completing one pass, sequence-level parallelization combines the returned
highest-scoring substrings in this pass into the USP buffer and then performs
an analysis procedure to check whether all the highest- scoring substrings
for each substring Si,j of Si against all the sequences have been computed.
Once having determined all the highest-scoring substrings {Sk,maxk} for all the
sequences {Sk} with respect to Si, it removes those highest-scoring substrings
with respect to Si from the USP buffer, packs them as a task, and then adds
this task to the task queue. It iteratively performs the above analysis proce-
dure until no task is available to be added to the task queue, and then returns
to invoke the CUDA kernel(s) to perform the remaining computation.

On the right side of the hybrid computing framework, the auxiliary thread
always waits until either the task queue or the message queue is not empty.
When the task queue is not empty, the auxiliary thread retrieves a task from
the task queue, sorts those highest-scoring substrings in order of decreas-
ing score and then aligns different number of top substrings to identify the
initial models. Before retrieving a task from the task queue, the auxiliary
thread checks the message queue to see whether there is a message from the
main thread to itself. If yes, the auxiliary thread performs the correspond-
ing operations, and otherwise continues accessing the task queue.

CUDA-MEME is benchmarked on the GTX 280 graphics card installed in
the desktop PC with an AMD processor and 2 GB RAM running the Linux
OS. The sequential MEME (version 3.5.4) is also profi led on the same com-
puter. For all the tests, the minimum and maximum motif widths are set to
6 and 50, respectively, and other parameters use the default values. Input
datasets containing a varying number of DNA sequences are used to evalu-
ate the performance of CUDA-MEME:

The mini-drosoph dataset (with 4 sequences of an average length of •
124 824)
Three datasets of human promoter regions consisting of 100, 200, •
and 400 sequences of lengths 5,000 bps each (called HS_100, HS_200
and HS_400, respectively).

10768_C006.indd 13410768_C006.indd 134 6/17/2010 7:50:14 PM6/17/2010 7:50:14 PM

Parallel Bioinformatics Algorithms for CUDA-Enabled GPUs 135

On the basis of the hybrid computing framework, the main thread and the
auxiliary thread run concurrently on the host. The tests exploit intertask paral-
lelization for the three human promoter regions datasets and intratask paral-
lelization for the mini-drosoph dataset. The choices of grid size and thread
block size are considering that the CUDA kernel occupies only a small quantity
of device resources and that the maximum number of active threads per SM
is 1,024. For intratask parallelization, a grid consisting of thread blocks whose
number is equal to or less than the number computed by multiplying the num-
ber of SMs by (1,024/dimBlock) is bound to the kernel and launched, where the
number of threads in a thread block dimBlock is set to 64. For substring-level
parallelization and the parallel alignment, each thread block is comprised of
256 threads. Figure 6.11 shows the speedups of CUDA-MEME using the OOPS
and ZOOPS models for all the datasets. CUDA-MEME is available for down-
load at http://sites.google.com/site/yongchaosoftware/Home/cuda-meme.

6.6 Conclusion

In this chapter, we have described several techniques for algorithm design on
CUDA-enabled GPUs. These techniques serve at two levels: the system level
and the device level. At the system level, a hybrid computing framework is
suggested to fully exploit the computational power of the system by overlap-
ping the computation of GPU and CPU. At the device scale, we have suggested
intertask and intratask parallelization approaches from the macroscopic view

14.7

21.9

22.4

22.8

15.1

23.6

23.6

23.3

13.7

14.1

18.1

19.8

14.3

18.4

22.3

22.3

0 5 10 15 20 25

Mini-drosoph

HS_100

HS_200

HS_400

Speedups

D
at

as
et

s
Starting PointSearch (ZOOPS)

Overall (ZOOPS)

Starting PointSearch (OOPS)

Overall (OOPS)

FIGURE 6.11
CUDA-MEME speedups for OOPS and ZOOPS models.

10768_C006.indd 13510768_C006.indd 135 6/17/2010 7:50:14 PM6/17/2010 7:50:14 PM

136 Bioinformatics: High Performance Parallel Computer Architectures

to leverage the power of the CUDA-enabled GPUs for different application
conditions, and three techniques from the microscopic view to ameliorate the
performance by reducing the bandwidth requirements of global memory. On
the basis of these techniques, three parallel algorithms, running on many-core
CUDA-enabled GPUs, for sequence alignments and motif discovery have been
presented: CUDASW++, MSA-CUDA, and CUDA-MEME.

Our results on GPU show that it is possible to improve the performance of
bioinformatics algorithms by making full use of the compute characteristics
of the underlying commodity hardware. The very rapid growth of both bio-
logical databases and available transcription data demands even more pow-
erful high-performance sequence alignments and motif discovery solutions
in the near future. Hence, our results are especially encouraging because
GPU performance grows faster than Moore’s law as it applies to CPUs.

6.7 References

 1. Lindholm E., Nickolls J., Oberman S., Montrym J., NVIDIA Tesla: A unifi ed
graphics and computing architecture. IEEE Micro, 28, 39–55, 2008.

 2. Nickolls J., Buck I., Garland M., Skadron K., Scalable parallel programming with
CUDA. ACM Queue, 6, 40–53, 2008.

 3. Liu Y., Schmidt B., Maskell D.L., CUDASW++: optimizing Smith–Waterman
sequence database searches for CUDA-enabled graphics processing units. BMC
Research Notes, 2(73), 2009.

 4. Szalkowski A., Ledergerber C., Krahenbuhl P., Dessimoz C., SWPS3—Fast
multi-threaded vectorized Smith–Waterman for IBM Cell/B.E. and x86/SSE2.
BMC Research Notes, 1, 107, 2008.

 5. Manavski S.A., Valle G., CUDA compatible GPU cards as effi cient hardware
accelerators for Smith–Waterman sequence alignment. BMC Bioinformatics,
9(Suppl 2), S10, 2008.

 6. Altschul S.F., Madden T.L., Schaffer A.A., Zhang J., Zhang Z., Miller W.,
Lipman D.J., Gapped BLAST and PSI-BLAST: A new generation of protein data-
base search programs. Nucleic Acids Research, 25(17), 3389–3402, 1997.

 7. Farrar M.S., Optimizing Smith–Waterman for the cell broadband engine,
http://farrar.michael.googlepages.com/smith-watermanfortheibmcellbe.
Accessed February 15, 2010.

 8. Thompson J.D., Higgins D.G., Gibson T.J., CLUSTALW: Improving the sensitivity
of progressive multiple sequence alignment through sequence weighting, posi-
tion-specifi c gap penalties and weight matrix choice. Nucleic Acids Research, 22,
4673–4680, 1994.

 9. Larkin M.A., Blackshields G., Brown N.P., Chenna R., McGettigan P.A.,
McWilliam H., Valentin F., Wallace I.M., Wilm A., Lopez R., Thompson J.D.,
Gibson J.D., Higgins D.G., Clustal W and Clustal X version 2.0. Bioinformatics
Applications Note, 23(21), 2947–2948, 2007.

10768_C006.indd 13610768_C006.indd 136 6/17/2010 7:50:16 PM6/17/2010 7:50:16 PM

Parallel Bioinformatics Algorithms for CUDA-Enabled GPUs 137

 10. Liu Y., Schmidt B., Maskell D.L., MSA-CUDA: Multiple sequence alignment
on graphics processing units with CUDA, 20th IEEE International Conference on
Application-Specifi c Systems, Architectures and Processors (ASAP), 121–128, 2009.

 11. Thompson J.D, Higgins D., Gibson T.J., Improved sensitivity of profi le searches
through the use of sequence weights and gap excision. Computer Applications in
the Biosciences, 10, 19–29, 1994.

 12. NCBI Homepage, http://www.ncbi.nlm.nih.gov. Accessed February 15, 2010.
 13. Bailey T.L., Elkan C., Unsupervised learning of multiple motifs in biopolymers

using expectation maximization. Machine Learning, 21, 51–80, 1995.
 14. Bailey T.L., Williams N., Misleh C., Li W.W., MEME: Discovering and analyzing

DNA and protein motifs. Nucleic Acid Research, 34, W369–W373, 2006.
 15. Dempster A.P., Laird N.M., Rubin D.B., Maximum likelihood from incom-

plete data via the EM algorithm. Journal of the Royal Statistical Society, Series B
(Methodological), 39(1), 1–38, 1977.

10768_C006.indd 13710768_C006.indd 137 6/17/2010 7:50:17 PM6/17/2010 7:50:17 PM

139

7
CUDA Error Correction Method for
High-Throughput Short-Read
Sequencing Data

Haixiang Shi, Weiguo Liu, and Bertil Schmidt

7.1 Introduction .. 139
7.2 Spectral Alignment Approach to Error Correction 141
7.3 Parallel Error Correction with CUDA... 143

7.3.1 Bloom Filter Data Structure and Spectrum Computation 143
7.3.2 Parallel Error Correction Using CUDA 145
7.3.3 Execution Example .. 147

7.4 Performance Evaluation .. 149
7.5 Conclusion and Future Work ... 154
7.6 References ... 155

7.1 Introduction

One of the great challenges of the Human Genome Project is the DNA
sequencing problem, which is of the great importance due to the fact that it
will be of great help in exploring the human biology. With the knowledge
of DNA, one can prevent viruses attacking human health, disorders, and
diseases. However, previous standard methods of sequencing have been
labor intensive, ineffi cient, and expensive; for example, the total sequencing
output was only about 200 million base pairs (bps) in the year 1998.

To improve the throughput of sequencing machines signifi cantly, several
so-called second-generation DNA sequencing technologies have recently
been introduced [1–3]. Examples of such sequencers are products from 454
Life Sciences/Roche, Solexa/Illumina, and Applied Biosiciences/SOLiD.
The mas sive throughput of these sequencers can be illustrated using the
Illumina Genome Analyzer IIx (IGA-IIx) as an example. The IGA-IIx can
currently generate an output of up to 25 billion bps within a single run.
This output is expected to increase to around 100 billion bps by 2010.

10768_C007.indd 13910768_C007.indd 139 6/17/2010 7:51:07 PM6/17/2010 7:51:07 PM

140 Bioinformatics: High Performance Parallel Computer Architectures

Although their throughput is drastically higher, there is a signifi cant dif-
ference between the reads produced by second-generation sequencers and
traditional (Sanger) sequencers: the length of produced reads is signifi -
cantly shorter. For example, the length of reads produced by the IGA-IIx is
between 35 and 100 bps while read length of a traditional Sanger sequenc-
ers is typically between 500 and 1,000 bps. Therefore, the output produced
by second-generation sequencers is also referred to as high-throughput
short-read (HTSR) data.

Established methods and tools for DNA fragment assembly (e.g., Arachne [4])
have been designed and optimized for Sanger shotgun sequencing; that is,
they assume read lengths of around 500–1,000 bps and coverage of 6- to 10-fold.
Consequently, they are generally applicable to process HTSR because of

Scalability (i.e., the ability to process the much larger amount of •
reads) and
Much shorter read length•

Therefore, several de novo assemblers for HTSR data have been recently
introduced. They can be divided into two categories: overlap graph-based
approaches and de Bruijn graph-based approaches. Edena [5] and Taipan [6]
use an overlap graph, while Euler-SR [7, 8], Velvet [9], ALLPATHS [10], and
ABYSS [11] are examples of de Bruijn graph approaches.

HTSR graph-based assembly approaches generally use an exact overlap
of length k to generate a link in the graph and are therefore highly sensi-
tive to sequencing errors. Hence, correcting as many base-pair errors as
possible in the input read data before graph construction can signifi cantly
improve both assembly quality and runtime. To demonstrate the useful-
ness of error correction as a preprocessing step, we have generated three
datasets of 0.6 million random reads each with read length of 70 from
the genome sequence of Saccharomyces cerevisiae chromosome V using a
 per-base error rate of 1%, 2%, and 3%, respectively. We have then executed
the SHREC error correction algorithm [12] on each dataset. Afterward we
compared the assembly results produced by Edena for the original data-
sets and the error-corrected datasets in terms of N50-values. The results
shown in Figure 7.1 clearly indicate that error correction can greatly
improve assembly results.

Unfortunately, error correction, as a preprocessing step, is highly time con-
suming. The profi ling results in Table 7.1 show that the error correction step
in Euler-SR can take up to 72% of the overall runtime in the whole assembly
process. It can also be seen that the percentage goes up with increasing error
rates. This means the time spent in the error correction surges up as more
errors need to be corrected.

In this chapter, we demonstrate how the compute unifi ed device architec-
ture (CUDA) programming model can be used to accelerate error correction
for HTSR data on CUDA-compatible graphic processor units (GPUs). Our

10768_C007.indd 14010768_C007.indd 140 6/17/2010 7:51:08 PM6/17/2010 7:51:08 PM

CUDA Error Correction Method for HTSR Data 141

parallel error correction algorithm is based on the so-called spectral align-
ment problem (SAP). To take advantage of the CUDA memory hierarchy we
employ a Bloom fi lter data structure to implement hashing of k-mers. We test
the performance of our implementation in terms of sensitivity, specifi city, and
accuracy using several read datasets. Furthermore, speedups are presented
in comparison to the sequential SAP implementation of Euler-SR [7, 8].

7.2 Spectral Alignment Approach to Error Correction

Sequencing errors can produce erroneous excessive computing, for example,
in the Euler-SR algorithm; the number of erroneous edges is several times
larger than the number of real edges. Error correction is therefore an impor-
tant preprocessing step for many de novo assemblers. The approach to error

TABLE 7.1

Runtime of Error Correction for Euler-SR with
Simulated Read Dataset*

Error Rate (%) (s) Percentage (%)

1 1,527 52
2 2,506 63
3 3,324 72

Note: *Generated from Saccharomyces cerevisiae chromosome
V with an error rate range between 1% and 3%.

0
5000

10000
15000
20000
25000
30000
35000
40000
45000
50000

1% error-
rate

2% error-
rate

3% error-
rate

N
50

w/o error correction

w/ error correction

FIGURE 7.1
Comparison of N50-values produced by Edena for the three datasets with and without prior
error correction.

10768_C007.indd 14110768_C007.indd 141 6/17/2010 7:51:08 PM6/17/2010 7:51:08 PM

142 Bioinformatics: High Performance Parallel Computer Architectures

correction used in this chapter is based on the SAP [13, 14], which can be
described as follows:

Given are a set of k reads R = {r1, . . . ,rk} over the alphabet {A, C, G, T} where each
read is of length L and a tuple-length l with l < L. SAP considers every l-mer of
each read (i.e., every substring of length l) and compares them to the spectrum
T(G). The spectrum T(G) consists of all l-mers of the reference genome G, where
the reads originate from. If a read is error free, all its l-mers will have a cor-
responding exact match in T(G). If a read has a single error (mutation) at posi-
tion j, the corresponding min{l, j, L−j} overlapping l-mers have (in most cases)
a lower number of corresponding exact matches T(G). However, by mutating
position j back to the correct base pair, all l-mers have a corresponding match.
This is the basic idea of SAP, which is illustrated in Figure 7.2.

We use the following terminology for the defi nition of the SAP. An l-mer
of a read is called solid if it has an exact match in a given l-mer spectrum
T and weak otherwise. A read R is called a T-string if all its l-mers have an
exact match in the spectrum T. SAP can now be defi ned as follows:

Defi nition (SAP): Given a read ri and an l-mer spectrum T, fi nd a T-string
ri* in the set of all T-strings that minimizes the distance function d(ri, ri*).

Depending on the error model of the utilized sequencing technology the dis-
tance function d() can be either edit distance (suitable for 454 Life Sciences/
Roche) or hamming distance (suitable for Solexa/Illumina). We focus on
Illumina technology, and therefore, the latter approach is chosen in this work.

In a de novo assembly project the reference genome G is generally not
known beforehand. Therefore, the spectrum T(G) of all correct (or trusted)
l-mers needs to be approximated from the available read data. This is usu-
ally done by introducing the additional parameter m (multiplicity). The ideal
spectrum T(G) is then replaced by the approximated spectrum T(R,m), where
T(R,m) consists of all l-mers that occur at least m times in R. It should be men-
tioned that the use of an approximate spectrum is not always ideal, because

 1. Some l-tuples that are in T(G) might not necessarily be in T(R,m)
because of low coverage.

 2. Some l-tuples that are in T(R,m) might not necessarily be in T(G)
because of the same error occurring several times.

T T G T C A G C G T ARead:

L = 11

l = 4 error

l-mer spectrum = {…, TCAA, CAAC, AACG, ACGT, …}

FIGURE 7.2
Changing the single error at position 6 in the given read from G to A results in l corresponding
matches in the spectrum.

10768_C007.indd 14210768_C007.indd 142 6/17/2010 7:51:08 PM6/17/2010 7:51:08 PM

CUDA Error Correction Method for HTSR Data 143

These cases can be minimized by an optimal choice of the parameters
m and l. This choice depends on the average number of reads covering an
l-mer of the sequenced genome.

7.3 Parallel Error Correction with CUDA

7.3.1 Bloom Filter Data Structure and Spectrum Computation

A very frequent operation in SAP-based error correction is the spectrum mem-
bership test; that is, testing whether s∈T for an l-mer s and a given spectrum
T. This test has to be done for a large number of l-mers and a fi xed spectrum
and can be effi ciently performed by hashing. An effi cient way to store a fre-
quently accessed hash table in CUDA is to use the read-only texture memory.
We have found that the fastest and most space-effi cient way to implement
this membership test with CUDA is to use probabilistic hashing based on the
space-effi cient Bloom fi lter data structure. Another interesting application of
the Bloom fi lter data structure in bioinformatics is the word matching stage in
basic local alignment search tool deoxyribonucleic acid (BLASTN) on an fi eld-
programmable gate array (FPGA) (see Chapter 8 for more details).

A Bloom fi lter represents a set of given keys in a bit-vector [15]. Insertion
and querying of keys are supported using several independent hash func-
tions. Bloom fi lters gain their space effi ciency by allowing a false-positive
answer to membership queries. Space savings often outweigh this draw-
back in applications where a small false-positive rate can be tolerated, par-
ticularly when space resources are at a premium. Both criteria are met for
the CUDA error correction algorithm (and also for BLASTN word matching
in Chapter 8). In the following section we briefl y review defi nition, pro-
gramming, querying, and false-positive probability (FPP) of Bloom fi lters.

A Bloom fi lter is defi ned by a bit-vector of length b, denoted as BF[1..b]. A
family of k hash functions hi: K → A, 1 ≤ i ≤ k, is associated to the Bloom fi lter,
where K is the key space and A = {1, . . . ,b} is the address space. K is the set of
all l-mers over the alphaber {A, C, G, T} in this paper.

For a given set I of n keys, I = {x1, . . . ,xn}, I ⊆ K, the Bloom fi lter is pro-
grammed as follows. The bit-vector is initialized with zeros; that is, BF[i]
:= 0 for all 1 ≤ i ≤ b. For each key xj ∈ I, the k hash values hi(xj), 1 ≤ i ≤ k, are
computed. Subsequently, the bit-vector bits addressed by these k values are
set to one; that is, BF[hi(xj)] := 1 for all 1 ≤ i ≤ k. Note that, if one of these values
addressed a bit that is already set to one, that bit is not changed.

For a given key x ∈ K, the Bloom fi lter is queried for membership in I in
a similar way. The k hash values hi(x), 1 ≤ i ≤ k, are computed. If at least one
of the k bits BF[hi(x)], 1 ≤ i ≤ k, is zero, then x ∉ I. Otherwise, x is said to be a
member of I with a certain probability. If all k bits are found to be one but x
∉ I, x is said to be a false positive (see Figure 7.3).

10768_C007.indd 14310768_C007.indd 143 6/17/2010 7:51:10 PM6/17/2010 7:51:10 PM

144 Bioinformatics: High Performance Parallel Computer Architectures

The presence of false positives arises from the fact that the k bits in the
bit-vector can be set to one by any of the n keys. Note that a Bloom fi lter can
produce false-positive but never false-negative answers to queries. The FPP
of a Bloom fi lter is given by Equation 7.1.

k kkn kn
mFPP e

m
1

1 1 1
−    = − − ≈ −         

(7.1)

Obviously, FPP decreases as the bit-vector size m increases, and increases
as the number of inserted keys n increases. It can be shown that for a given m
and n, the optimal number of hash functions kopt is given by (m/n) ⋅ ln(2). The
corresponding FPP is then approximately 0.6158m/n.

Hence, in the optimally confi gured Bloom fi lter, the false-positive rate
decreases exponentially with the size of the bit-vector. Furthermore, to main-
tain a fi xed FPP, the bit-vector size needs to scale linearly with the inserted
key set. In our Bloom fi lter implementation using one-dimensional linear
texture memory we have chosen k = 8 and m = 64 ⋅ n, which leads to FPP =
3.63e–08.

Before correcting errors with the SAP approach, the spectrum T(R,m) con-
sisting of the set of all l–mers that have a multiplicity of at least m needs to be
computed in a preprocessing step. The spectrum is represented by the Bloom
fi lter B(T(R,m)), which is subsequently transferred to the CUDA texture mem-
ory to be used for parallel error correction. The computation of B(T(R,m)) is
done sequentially on the host central processing unit (CPU). Our implemen-
tation uses m Bloom fi lters, B1, . . . ,Bm, to represent the multiplicity m. For each
l-mer, the algorithm queries the Bloom fi lters successively in descending

T G T C A C G T A

l-mer s

0 1 0 0 0 11 1 1

h3(s)

h2(s)
h1(s)

FIGURE 7.3
Bloom fi lter data structure for querying the spectrum T for membership of the l-mer s.

10768_C007.indd 14410768_C007.indd 144 6/17/2010 7:51:10 PM6/17/2010 7:51:10 PM

CUDA Error Correction Method for HTSR Data 145

order. Once a positive query is found for some k, Bk+1 is programmed for the
given l-mer and the algorithm continues with the next l-mer.

7.3.2 Parallel Error Correction Using CUDA

The parallel CUDA algorithm for error correction with SAP uses the following
idea. An error (i.e., mutation) at position j in read ri creates min{l, j, L−j} erroneous
l-mers. Therefore, the correction of ri at position j can be associated to the trans-
formation of min{l, j, L−j} weak l-mers into solid ones. The parallel SAP error
correction searches for such corrections using a voting procedure as follows.

SAP voting procedure: Given an l-mer spectrum T and a read ri, let ri
j

denote the jth l-mer of ri; that is, ri[j . . . j + l], the substring of length l starting
at position j of ri. Firstly, all weak l-mers of ri are identifi ed; that is, all 0 ≤ j ≤
L−(j + 1) with ri

j ∉ T. Every nucleotide position of each weak l-mer ri
j is then

mutated to check whether the mutated l-mer is solid; that is, the l-mers t[k,c]
= ri[j . . . j + k−1] ⋅ c ⋅ ri[j + k + 1 . . . j + l] (“⋅” denotes string concatenation) for all
0 ≤ k ≤ l−1 and c ∈ {A, C, G, T}\{ri[j + k]} are created and tested for spectrum
membership. If t[k,c] ∈ T, the corresponding counter in the voting matrix, V(ri)
[j + k][c], is incremented by one. V(ri)[][] is of size L × 4, where V(ri)[pos][char]
represents the read ri with the nucleotide at position pos mutated to char,
denoted as ri[pos][char]. The counter value V(ri)[pos][char] represents the num-
ber of l-mers that are weak in ri but are solid in ri[pos][char]. A large value in
the voting matrix is therefore an indicator for an error at the corresponding
read position. For each read ri that is not a T-string, the maximum position
[pmax][cmax] in V(ri)[][] is determined. The read ri[pmax][cmax] is then created. If
ri[pmax][cmax] is a T-string, then ri is considered to be corrected by ri[pmax][cmax].
Otherwise, ri is trimmed or discarded. Figure 7.4 outlines an example for the
read and spectrum used in Figure 7.2.

The outlined voting procedure only considers a single mutation error; that
is, ∆ = 1. To consider several errors (i.e., ∆ ≥ 2) within the same read, the same
approach can be used where up to ∆ mutations are considered with each
l-mer.

CUDA parallelization: The parallelization approach of the voting proce-
dure with CUDA exploits the fact that V(ri)[][] can be computed indepen-
dently for each read ri ∈ R. Hence, we use a CUDA kernel to represent the
sequential processing necessary for the voting of an individual read ri. The
kernel is then invoked using a thread for each read ri ∈ R. The time complex-
ity of the kernel is determined by ∆ (∆ ≥ 1), the number of corrections within
a weak l-mer.

Our CUDA kernel for correcting exactly ∆ mutations consists of two phases.
The fi rst phase is the ∆-mutations voting algorithm. It identifi es all l-tuples
of the given read that are not in the spectrum (i.e., the Bloom fi lter). All pos-
sible ∆-point mutations of these l-tuples are then queried for membership in
the spectrum. If successful, corresponding counters in the voting matrix are
incremented.

10768_C007.indd 14510768_C007.indd 145 6/17/2010 7:51:11 PM6/17/2010 7:51:11 PM

146 Bioinformatics: High Performance Parallel Computer Architectures

After the voting matrix is computed by each thread for a given read, errors
can be fi xed based on high values in the voting matrix. In certain cases; for
example, when ∆ + 1 errors are close to each other, the ∆-mutation voting
algorithm cannot correct the errors. However, it is still possible to identify
the read as erroneous and to trim it at certain positions or discard it. This is
done using a fi xing/trimming/discarding procedure, which is the second
phase of our CUDA kernel.

The time complexity of the kernel is dominated by the fi rst phase. The
operation that determines the runtime of the ∆-mutation voting algorithm is
the Bloom fi lter membership test. The overall amount of membership queries
by a single thread is (L − l) ⋅ p ⋅ O(l∆), where p is the number of l-tuples of the
read that do not belong to the spectrum.

Our CUDA algorithm for correcting up to ∆ mutations uses a fi ltration
approach to reduce the amount of reads that are corrected with a large ∆
value. In the fi rst step, ∆-mutation voting and ∆-mutation fi xing/trimming/
discarding is performed on the GPU only for ∆ = 1. In the next step, the
CUDA kernel for ∆ = 2 is executed only for the set of reads that have been
trimmed or discarded during the ∆ = 1 computation. This approach can then
be continued for larger values of ∆.

The per-thread memory requirement for storing the voting matrix V(ri)[][]
can be reduced to l × 4 bytes using cyclic indexing. The per-thread memory
amount required for storing voting matrix and read is therefore reduced to
4 × l + L bytes. Therefore, shared memory could be used to store this data.
However, this would limit the number of threads per block to 128 (already

T T G T C A G C G T ARead ri:

L = 11

l = 4 Error at position pos

l-mer spectrum = {…, TCAA, CAAC, AACG, ACGT, …}

0 0 0 0 0 0 4 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0

A
C
G
T

0 1 2 3 4 5 6 7 8 9 10Voting
matrix
V(ri)[][]:

T T G T C A A C G T ACorrected read ri[6][A]:

FIGURE 7.4
The single error at position pos = 6 in the read ri results in a high value in the corresponding
position in the associated voting matrix V(ri)[6][A].

10768_C007.indd 14610768_C007.indd 146 6/17/2010 7:51:12 PM6/17/2010 7:51:12 PM

CUDA Error Correction Method for HTSR Data 147

for relatively small values of l and L, such as L = 35 and l = 20). Further-
more, it would negatively affect the maximum number of thread blocks
per multiprocessor (MTBPM). In general, there is a trade-off between par-
titioned-based spatial-merge (PBSM) usage and MTBPM: increased PBSM
usage decreases MTBPM. Lower MTBPM results in a lower warp occu-
pancy and effi ciency. The CUDA occupancy calculator tool recommends
a usage of less than 4 KB PBSM for our implementation. Therefore, we
have decided not to store the voting matrix in PBSM but in local memory.
Furthermore, if the number of reads exceeds the total number of threads
used in the kernel our implementation allows processing several reads per
thread.

7.3.3 Execution Example

Figure 7.5 illustrates all steps of our CUDA error correction (CUDA-EC)
implementation for ∆ = 1 and ∆ = 2 using a fl ow chart.

Start

Count spectrum

Allocate memory and copy
data (CPU to GPU)

Execute kernel ∆ = 1

Copy results (GPU to CPU)

Fix one error
only? Execute kernel ∆ = 2 No

Write results to file

End

Copy results (GPU to CPU)

Yes

FIGURE 7.5
CUDA error correction algorithm fl ow chart.

10768_C007.indd 14710768_C007.indd 147 6/17/2010 7:51:12 PM6/17/2010 7:51:12 PM

148 Bioinformatics: High Performance Parallel Computer Architectures

CUDA-EC fi rst performs the precomputation on the CPU host. The pre-
computed spectrum and the reads are then transferred to device and the
CUDA kernel is executed. The individual steps are as follows:

 1. Precomputation of spectrum list: Using the input parameters l and m, a
spectrum list is compiled with all l-mers occurring at least m times
in the read dataset.

 2. Hashing the spectrum list into Bloom fi lter: Before transferring the spec-
trum to the GPU, all l-mers in the spectrum list are hashed into
Bloom fi lter. We then bind the Bloom fi lter to the texture memory on
the GPU. Each item in the spectrum list will be added to the Bloom
fi lter using the hash functions given below.

//Step 1: get hash value
hash = hash_function_list[j](tempTuple,TUPLE_SIZE) %
(table_size * char_size);
//Step 2: add to the bloom filter
hash_table[hash / char_size] |= bit_mask[hash % char_size];

The size of the Bloom fi lter is dependent on the number of hashed
items. As discussed in Section 7.3.1, we use k = 8 and m = 64 ⋅ n, with
FPP = 3.63e–08. Assume the total number of l-mers in the spectrum is
N, then the Bloom fi lter requires 8N bytes in total. As the Bloom fi lter is
stored as a read-only 1D char array, we can fi t the Bloom fi lter to GPU
texture memory for fast fetch.

 3. Bind the Bloom fi lter to 1D texture on the GPU:

 // allocate data on device
 unsigned char *dev_hash;
 cudaMalloc((void**)&dev_hash, table_size);
 // copy memory to device
 cudaMemcpy(dev_hash, hash_table, table_size,

cudaMemcpyHostToDevice);
 // bind texture
 cudaBindTexture(0, tex, dev_hash);

 4. Allocate memory on the GPU and transfer the reads from CPU to GPU: Reads
are allocated in 1D character array and copied to device memory.

 5. Parallel error correction on GPU: By applying each-thread-one-read
policy, the CUDA threads are mapped to the read data using thread
indices. With each thread processing one read, there will be no non-
coalesced global memory accesses. Each thread may also be used to
fi x several reads depending on the number of reads. The results are
stored in the output reads array with fl ags to differentiate between
fi xed and discarded reads.

10768_C007.indd 14810768_C007.indd 148 6/17/2010 7:51:14 PM6/17/2010 7:51:14 PM

CUDA Error Correction Method for HTSR Data 149

 6. Transfer from GPU to CPU and write results to fi les: The reads are trans-
ferred from GPU to CPU and are written to two separate output fi les,
one for fi xed and one for discarded reads.

The command line to run the error correction application program is as
follows:

/cuda-ec -f {inputfilename} -t {tuplesize} -o {fixed-filename}
–d {discarded-filename} -r {read_length}[-maxTrim {maximum_
trim}] [-minVotes {minimum votes}] [-minMult {multiplicity}]
[-search {num_error_to_fix]]

The required parameters are defi ned as follows:

-f {inputfi lename}: path and name of the read input fi le in FASTA •
format
-t {tuplesize}: length of a tuple (or• l-mer)
-o {fi xed-fi lename}: name of output fi xed fi le•
-d {discarded-fi lename}: name of output discarded fi le•
-r {read_length}: length of the input reads•

The optional parameters are defi ned as follows:

-maxTrim: maximum number of trimmed character allowed at the •
beginning and at the end of a read (default 20)
-minVotes: minimal number of votes required for error correction •
(default 2)
-minMult: multiplicity (default 6)•
-search: number of error to be fi xed in each read (default ∆ = 1)•

7.4 Performance Evaluation

We have evaluated the performance of our CUDA-EC approach for datasets
with varying coverage, error rate, and read length using simulated Illumina-
style datasets as well as two real Illumina datasets. The simulated datasets
have been produced by generating random reads with a given error rate
from a reference genome sequence. To test scalability, we have selected ref-
erence genomes of various lengths (ranging from 0.58 Mbp to 4.71 Mbp).
Three datasets have been created for each reference genome sequence using
per-base error rates of 1%, 2%, and 3%, respectively. The features of the simu-
lated input datasets are summarized as follows in the format IDs: Reference
genome (GenBank ID), Genome length, Coverage, read length, number of
reads. (Note that the ID Ai indicates a per-base error rate of i%.)

10768_C007.indd 14910768_C007.indd 149 6/17/2010 7:51:14 PM6/17/2010 7:51:14 PM

150 Bioinformatics: High Performance Parallel Computer Architectures

SA1, SA2, SA3: S.cer 5 (NC_001137), 0.58 M, 70×, 35, 1.1 M•
SB1, SB2, SB3: S. cer7 (NC_001139), 1.1 M, 70×, 35, 2.2 M•
SC1, SC2, SC3: H.inf (NC_007146), 1.9 M, 70×, 35, 3.8 M•
SD1, SD2, SD3: E.col (NC_000913), 4.7 M, 70×, 35, 9.4 M•

The real datasets consist of 3.5 M unambiguous reads (i.e., they do not
contain any nondetermined nucleotide) of length 35 each and have been
downloaded from http://www.genomic.ch/edena.php and of 8.2 M unam-
biguous reads of length 36 downloaded from http://sharcgs.molgen.mpg.
de/download.shtml. The former has been obtained experimentally by
Hernandez et al. [5] using the Illumina Genome Analyzer for sequencing
the Staphylococcus aureus strain MW2 (H. Aci). The latter has been tested
by Dohm et al. [16] for sequencing Helicobacter acinonychis. We have esti-
mated the error rate of the two real dataset as 1.0% and 1.6%, respectively,
by aligning each read to the reference genome using RMAP [17]. The real
datasets are summarized in the format IDs: Reference genome (GenBank
ID), Genome length, Coverage, read length, number of reads, estimated
per-base error rate.

RA: S. aureus (NC_003923.1), 2.8 M, 43×, 35, 3.5 M, 1%•
RB: Helicobacter (NC_008229), 1.6 M, 190×, 8.2 M, 1.6%•

To evaluate the time effi ciency of CUDA-EC, we have measured the run-
time of these datasets on an NVIDIA GeForce GTX 280 with CUDA version
2.0. The card is connected to an AMD Opteron dual-core 2.2 GHz CPU with
2 GB RAM running Linux Fedora 8 by the PCIe 2.0 bus. The performance
of CUDA-EC is compared with the single-threaded C++ code running on
the same CPU from the SAP error correction implementation of in Euler-SR
(available at http://euler-assembler.ucsd.edu). The code is a serial imple-
mentation of the ∆-mutation error correction algorithm. However, different
from our parallel method, it stores the spectrum in a sorted vector and then
calls the standard template library (STL) function “std::lower_bound()
for membership queries. Runtime comparisons between the sequential and
the CUDA implementation for all datasets have been performed using the
default parameters l = 20 and m = 6. The CUDA timings include precom-
putation time on the CPU, CUDA kernel time, and CPU–GPU data transfer
time. CUDA kernels are executed using 256 thread-blocks and 256 threads
per block. The Euler-SR code is compiled using GNU GCC 4.1.2 with the
full optimization (-O3) enabled. Figures 7.6 and 7.7 show the speedup for
the simulated datasets for ∆ = 1 and ∆ = 2, respectively.

Speedups are shown for the parallel part only (i.e., the voting proce-
dure running on the GPU) and for the complete application (i.e., par-
allel voting plus sequential precomputation of the Bloom filter on the
CPU). Figure 7.8 shows the corresponding speedups for the two real
datasets.

10768_C007.indd 15010768_C007.indd 150 6/17/2010 7:51:14 PM6/17/2010 7:51:14 PM

http://sharcgs.molgen.mpg.de/download.shtml
http://sharcgs.molgen.mpg.de/download.shtml

CUDA Error Correction Method for HTSR Data 151

The speedups indicate the following trends

 1. The speedup increases for higher error rates.
 2. The speedup increases for ∆ = 2.

Trend 1 can be explained as follows. The voting algorithm tests each l-mer
ri

j for spectrum membership and therefore contains a corresponding data-
dependent conditional branch (if ri

j ∉ T then) that is executed for each l-tuple
of the given read. This leads to ineffi ciencies in the CUDA implementa-
tion due to the single-instruction multiple-thread (SIMT) execution model.
Threads for which this statement is true execute another O(l) membership
queries. Threads for which this statement is false need to wait for these

0

5

10

15

20

25

30

35

SA SB SC SD

Sp
ee

du
p

1% (parallel)

2% (parallel)

3% (parallel)

1% (total)

2% (total)

3% (total)

FIGURE 7.6
Speedups for the simulated datasets using ∆ = 1 ((parallel) is the speedup for the parallelized
part only; while (total) is the speedup for the complete application).

0

5

10

15

20

25

30

35

40

SA SB SC SD

Sp
ee

du
p

1% (parallel)

2% (parallel)

3% (parallel)

1% (total)

2% (total)

3% (total)

FIGURE 7.7
Speedups for the simulated datasets using ∆ = 2.

10768_C007.indd 15110768_C007.indd 151 6/17/2010 7:51:15 PM6/17/2010 7:51:15 PM

152 Bioinformatics: High Performance Parallel Computer Architectures

threads within the same warp to fi nish these tests. The number of error-free
reads is generally decreasing for higher error rates. Thus, the number of idle
threads per warp is decreasing for higher error rates, which in turn improves
the effi ciency of the CUDA implementation.

Trend 2 is due to of the fi ltration approach used in the parallel error cor-
rection algorithm. The double-mutation voting algorithm is only applied to
the subset of reads that contain at least two errors (i.e., all reads that have
not been be fi xed by the single-mutation voting algorithm). Therefore, the
data-dependent conditional branch is true in most threads within a warp,
resulting in a higher-parallel effi ciency compared to ∆ = 1.

We have further analyzed the accuracy of our CUDA implementation in
terms of

Identifi cation• ; that is, identifying reads as erroneous or error free
Correction• ; that is, correcting reads that have been identifi ed as
erroneous

The identifi cation of erroneous reads can be defi ned as a binary classifi cation
test. The corresponding defi nitions of true positive (TP), false positive (FP),
true negative (TN), and false negative (FN) are as follows.

TP• : erroneous read that is fi xed, trimmed, or discarded by CUDA-EC
FP• : error-free read that is fi xed, trimmed, or discarded by CUDA-EC
TN• : error-free read that is kept unchanged by CUDA-EC
FN• : erroneous read that is kept unchanged by CUDA-EC

Sensitivity and specifi city measures are then defi ned as: sensitivity = TP/
(TP + FN); specifi city = TN/(TN + FP).

18.3 14.4

3.5
9.3

57.7

15

32.4

9.3

RBRA

Speedup

D=1 (parallel) D=1 (total) D=2 (parallel) D=2 (total)

FIGURE 7.8
Speedups for the real datasets.

10768_C007.indd 15210768_C007.indd 152 6/17/2010 7:51:16 PM6/17/2010 7:51:16 PM

CUDA Error Correction Method for HTSR Data 153

Figure 7.9 shows the specifi city and sensitivity measures for selected data-
sets. It can be seen that the algorithm identifi es erroneous reads with very
high accuracy. We have further analyzed the reads that have been classifi ed
as TP. The amount of corrected/trimmed reads relative to the number of
discarded reads is shown Figure 7.10.

Figure 7.10 shows that in 1-error and 2-error corrections, the percentage
of corrected/trimmed reads decreases compared to the discarded reads for

91.00%
92.00%
93.00%
94.00%
95.00%
96.00%
97.00%
98.00%
99.00%

100.00%
101.00%

SA1 SA2 SA3 SD1 SD2 SD3 RA RB

Sensitivity

Specificity

FIGURE 7.9
Performance of the read identifi cation classifi cation test measured in sensitivity and specifi city
for selected datasets after executing the CUDA voting algorithm.

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

SA1 SA2 SA3 SD1 SD2 SD3 RA RB

Corrected (D=1)

Trimmed (D=1)

Corrected (D=2)

Trimmed (D=2)

FIGURE 7.10
Percentage of reads in TP that have been corrected, trimmed, or discarded for selected
datasets.

10768_C007.indd 15310768_C007.indd 153 6/17/2010 7:51:16 PM6/17/2010 7:51:16 PM

154 Bioinformatics: High Performance Parallel Computer Architectures

higher error rates. This can be explained by the larger number of erroneous
reads with more than one error for higher error rates. These reads cannot
be corrected with the single-mutation voting algorithm, and will therefore
be either trimmed or discarded. For 2-error corrections, it can be seen that
the percentage of corrected reads increases and the trimmed and discarded
reads decrease for higher error rates compared with 1-error correction.

A further observation is that the percentage of corrected/trimmed reads is
lower for the real dataset. The likely reason for this is that errors in real reads
are not as evenly distributed as in our simulated reads. It has been reported
[18] that error rates in Illumina reads range from 0.3% at the beginning of a
reads to 3.8% at the end of reads.

7.5 Conclusion and Future Work

The emergence of new HTSR sequencing technologies establishes the need
for new tools and algorithms that can process massive amounts of short reads
in reasonable time. In this chapter we have addressed this challenge by writ-
ing scalable CUDA error correction software for modern many-core archi-
tectures, which is an important but time-consuming preprocessing step for
many de novo assembly tools. To derive an effi cient CUDA implementation
we have used a space-effi cient Bloom fi lter for hashing to take advantage of
the CUDA memory structure. Our performance evaluation on a commodity
GPU shows speedups around one order of magnitude for various datasets
at high-correction accuracy. Our CUDA-EC implementation is available at
http://cuda-ec.sourceforge.net.

A weakness of the described error correction method is that the l-mer
spectrum of the reference genome T(G) is only approximated by T(R,m); that
is, the set of all l-mers with multiplicity ≥m in the input read dataset. Our
future work includes the incorporation of base-call quality scores to the
spectrum construction to improve this approximation. The speedup of the
current CUDA implementation is reduced by the sequential precomputation
of the Bloom fi lter on the CPU. Therefore, another part of our future work is
to investigate more effi cient methods for the sequential preprocessing stage.
Furthermore, it would be interesting to compare the SAP-based error correc-
tion approach to other approaches such as the recently introduced SHREC
method [12], which uses a suffi x tree of all input reads to identify and correct
sequencing errors.

10768_C007.indd 15410768_C007.indd 154 6/17/2010 7:51:17 PM6/17/2010 7:51:17 PM

CUDA Error Correction Method for HTSR Data 155

7.6 References

 1. Mardis, E.R. 2008. The impact of next generation sequencing on genetics. Trends
in Genetics 24(3), 133–141.

 2. Pop, M., and Salzberg, S.L. 2008. Bioinformatics challenges of new sequencing
technology. Trends in Genetics 24(3), 142–149.

 3. Strausberg, R.L., Levy, S., and Rogers, Y.H. 2008. Emerging DNA sequencing tech-
nologies for human genomic medicine. Drug Discovery Today 13(13/14), 569–577.

 4. Batzoglou, S., et al. 2002. ARACHNE: A whole-genome shotgun assembler.
Genome Research 12(1), 177–189.

 5. Hernandez, D., et al. 2008. De novo bacterial genome sequencing: Millions
of very short reads assembled on a desktop computer. Genome Research 18(5),
802–809.

 6. Schmidt, B., Sinha, R., Beresford-Smith, B., and Puglisi, S. 2009. A fast hybrid
short read fragment assembly algorithm. Bioinformatics 25(17), 2279–2280.

 7. Chaisson, M.J., and Pevzner, P.A. 2008. A short read fragment assembly of bac-
terial genomes. Genome Research 18(2), 324–330.

 8. Chaisson, M.J., Brinza, D., and Pevzner, P.A. 2009. De novo fragment assembly
with short mate-paired reads: Does the read length matter? Genome Research
19(2), 336–346.

 9. Zerbino, D.R., and Birney, E. 2008. Velvet: Algorithms for de novo short read
assembly using de Bruijn graphs. Genome Research 18(5), 821–829.

 10. Butler, J., et al. 2008. ALLPATHS: De novo assembly of whole-genome shotgun
microreads. Genome Research 18(5), 810–820.

 11. Simpson, J.T., Wong, K., Jackman, S.D., Schein, J.E., Jones, S.J., and Birol, I. 2009.
ABySS: A parallel assembler for short read sequence data. Genome Research 19(6),
1117–1123.

 12. Schröder, J., Schröder, H., Puglisi, S., Sinha, R., and Schmidt, B. 2009. SHREC: A
short-read error correction method. Bioinformatics 25(17), 2157–2163.

 13. Chaisson, M.J., Tang, H., and Pevzner, P.A. 2004. Fragment assembly with short
reads. Bioinformatics 20(13), 2067–2074.

 14. Pevzner, P.A., Tang, H., and Waterman M.S. 2001. An Eulerian path approach
to DNA fragment assembly. Proceedings of the National Academy of Science 98(17),
9748–9753.

 15. Bloom, B. 1970. Space/time trade-offs in hash coding with allowable errors.
Communications of the ACM 13(7), 422–426.

 16. Dohm, J.C., Lottaz, C., Borodina, T., and Himmelbauer, H. 2007. SHARCGS, a
fast and highly accurate short-read assembly algorithm for de novo genomic
assembly. Genome Research 17(11), 1697–1706.

 17. Smith, A.D., Xuan, Z., and Zhang, M.Q. 2008. Using quality scores and longer reads
improves accuracy of Solexa read mapping. BMC Bioinformatics 9(128), 2008.

 18. Dohm, J.C., Lottaz, C., Borodina, T., and Himmelbauer, H. 2008. Substantial
biases in ultra-short read data sets from high-throughput DNA sequencing.
Nucleic Acid Research 36(16), e105.

10768_C007.indd 15510768_C007.indd 155 6/17/2010 7:51:17 PM6/17/2010 7:51:17 PM

157

8
FPGA Acceleration of Seeded
Similarity Searching

Arpith C. Jacob, Joseph M. Lancaster, Jeremy D.
Buhler, and Roger D. Chamberlain

8.1 The BLAST Algorithm .. 161
8.1.1 Seed Generation ... 162
8.1.2 Ungapped Extension ... 163
8.1.3 Gapped Extension .. 164
8.1.4 Execution Profi le of the BLAST Algorithm 164

8.2 A Streaming Hardware Architecture for BLAST 165
8.2.1 Seed Generation ... 166

8.2.1.1 Nucleotide Seed Generation Architecture 166
8.2.1.2 Protein Seed Generation .. 168

8.2.2 Ungapped Extension ... 170
8.2.3 Gapped Extension .. 172

8.3 Results ... 174
8.3.1 BLASTP ... 175
8.3.2 BLASTN ... 176

8.4 Conclusions ... 177
8.5 References ... 179

Biological sequence comparison studies the relationship between DNA or
protein sequences. A pairwise alignment algorithm matches fragments in a
sequence of unknown function, termed the query, to similar fragments in a
reference sequence from a large database. Biologically relevant matches may
represent genes, structural domains, regulatory elements, or other sequence
features that provide clues to the biochemical function and structure of the
query. Biosequence databases, such as GenBank from the U.S. National Center
for Biological Information (NCBI), provide an annotated list of reference
sequences that form the basis for comparative analysis. High-throughput com-
parison is widely used to annotate functional elements in newly sequenced
genomes, to assemble sequence reads against a reference genome, to compare
related genomes, or to analyze sequence reads from microbial communities.

The best match between two sequences, as determined by some score met-
ric, can be computed using the Smith–Waterman algorithm [1], which uses

10768_C008.indd 15710768_C008.indd 157 6/17/2010 9:57:55 PM6/17/2010 9:57:55 PM

158 Bioinformatics: High Performance Parallel Computer Architectures

dynamic programming to effi ciently examine an exponential alignment
space. Even so, its computational cost, which is proportional to the product
of the lengths of the two sequences, is prohibitively expensive for comparing
two genomes or a query to a large database. To address this problem the bio-
logical community has developed heuristic methods that produce satisfactory
alignments, though not necessarily the best as found by Smith–Waterman, at
a fraction of the computational expense. One such heuristic, seeded alignment,
implemented in the Basic Local Alignment Search Tool (BLAST) family of
algorithms [2, 3] is a sequence fi ltering technique that limits Smith–Waterman
comparison to subsets of the database that are highly likely to be similar to
the query. BLAST fi rst identifi es pairs of short, fi xed-length substrings in
the query and reference sequences known as seeds. Progressively expensive
computations fi lter these seeds and their corresponding reference sequences
so that full Smith–Waterman comparison is done on only a small fraction
of the database. Unlike the classical Smith–Waterman algorithm, BLAST is
capable of identifying many alignments between two sequences, which may
represent distinct sequence features. Owing to its speed advantage, BLAST
has been widely adopted by the biological community as a replacement for
the Smith–Waterman algorithm.

While BLAST is roughly two orders of magnitude faster than Smith–
Waterman, it too is subject to ever-increasing computational demands driven
by low-cost sequencing and the emerging data-intensive fi eld of meta-
genomics. New technologies can sequence larger genomes at a cost order
of magnitude lower than the technology used during the Human Genome
Project a decade ago. Publicly available databases have seen an exponen-
tial growth over the last decade as a large number of organisms have been
sequenced and new genes have been identifi ed. Figure 8.1 shows the growth
of the GenBank Non-Redundant DNA database [4], increasing at the rate of
1 billion bases per month. The National Human Genome Research Institute
envisions an era of affordable individual human genome sequencing for less
than $1,000 by 2014, potentially enabling the sequencing and analysis of any
person’s genome.

Metagenomics is an emerging fi eld that studies the genetic diversity of a
complex mixture of microbial species in an ecosystem through large-scale
sequencing. The generated DNA reads are analyzed by comparing them
against reference databases using sequence analysis tools such as BLAST.
Already, several times as many genes have been generated from metagenomic
samples in a few years as from complete genomes in a decade of sequencing.
Comparative metagenomics studies the infl uence of environmental factors
on microbial communities by comparing samples from different environ-
ments. The bottleneck in all these analyses is the BLAST computation. As
sequencing costs drop further, the metagenomics approach can be applied to
study any microbial community on earth.

Given this situation, most large-scale projects use a cluster of commodity
workstations for high-throughput sequence comparison [5–7]. In a cluster,

10768_C008.indd 15810768_C008.indd 158 6/17/2010 7:51:58 PM6/17/2010 7:51:58 PM

FPGA Acceleration of Seeded Similarity Searching 159

the workload is distributed among nodes that perform largely independent
computations, together producing a linear speedup. As an example, the
BLAST web server made available by NCBI for processing query sequences
from the community used a Linux cluster of around 200 CPUs in 2004. On
a typical weekday in 2004 the cluster processed 1.4 × 105 query sequences,
and NCBI projected doubling the number of nodes to keep up with demand
[8]. While clusters are widely used, they have important limitations. They
require a considerable initial investment, are expensive to maintain, occupy
large amounts of fl oor space, have signifi cant power requirements, and need
effective cooling solutions.

Special-purpose architectures on graphic processor units (GPUs) and fi eld-
 programmable gate arrays (FPGAs) address some of these limitations. These
technologies are well suited for data-intensive algorithms that operate on
large volumes of data, and have ample fi ne-grained parallelism. FPGAs have
programmable logic, interconnects, and specialized arithmetic units on-
chip, that can be used to build high-computational density architectures spe-
cialized to an application. In addition, FPGAs have customizable, massively
parallel on chip memory elements that can be used as an effi cient “cache.”
Many data-intensive applications have seen orders of magnitude better per-
formance on FPGAs than on general-purpose microprocessors; for these
applications FPGAs consume less energy and cost less than an equivalent
workstation cluster.

A large body of existing work accelerates the Smith–Waterman compu-
tation on FPGAs [9, 10]. Unfortunately, these accelerators are not suitable
for large-scale sequence comparison because they are not performance
competitive with heuristic tools. For example, Smith–Waterman acceler-
ated 100-fold is about as fast as a software implementation of BLAST on a

0

20

40

60

80

100

120

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

Ba
se

s (
bi

lli
on

s)

FIGURE 8.1
Growth of the GenBank Non-Redundant DNA database over the last decade.

10768_C008.indd 15910768_C008.indd 159 6/17/2010 7:51:58 PM6/17/2010 7:51:58 PM

160 Bioinformatics: High Performance Parallel Computer Architectures

modern workstation. In fact, Smith–Waterman is just one of many stages
in a modern heuristic pipeline; seed generation, the stage that identifi es
word matches between the query and a reference sequence is the bottle-
neck in the BLAST computation. Seeded alignment is more challenging
to accelerate because, unlike Smith–Waterman, the various stages are not
fully data parallel; therefore, we must rely on pipeline parallelism and
novel hardware-friendly memory data structures to achieve an apprecia-
ble speedup.

In this chapter we will describe an FPGA accelerator for sequence com-
parison that exploits the characteristics of the streaming model. A stream
program operates on a large data stream of items using a chain of self-
contained computation stages. Each stage reads a data item; performs a
predictable, fi nite set of operations on it; and sends the item to the next
stage in sequence, or alternatively discards it. Because there is no reuse of
data items in a stage, and the chain of stages usually does not have feed-
back or other interactions, stream programs can achieve high throughput
on GPUs and FPGAs. In addition, stream programs exhibit abundant data,
task, and pipeline parallelism that can be effi ciently exploited on FPGAs.
Data parallelism (commonly found in loops) refers to the execution of the
same set of instructions on distinct data items with either no dependencies
or those that are statically defi ned. Task parallelism refers to a multiplic-
ity of independent tasks that do not exchange data and can be mapped to
independent processing units. Finally, pipeline parallelism is available in
a linear chain of stages that execute simultaneously. The BLAST streaming
architecture we will describe is organized as a pipeline of linear stages
that operates on a stream of database sequences. Each stage acts as a fi lter,
passing only reference sequences that match the query on to the next stage
in the pipeline.

An often ignored, yet critical task, is the validation of a sequence com-
parison accelerator, that is, comparing the quality of its output against
BLAST. Biologists have come to accept the results of BLAST as a de facto
standard (even over Smith–Waterman) and have little reason to trust
an accelerator that deviates from the original algorithm. Preserving the
behavior of each stage while making it more hardware friendly is a recur-
ring theme in this chapter. We validate the results of the implementa-
tion on large-scale, realistic biological datasets to build confi dence in our
accelerator.

The rest of this chapter is organized as follows: Section 8.1 introduces
two versions of the BLAST algorithm: one for pairwise (DNA) comparison
(BLASTN) and another for comparing protein sequences (BLASTP). We
describe specialized hardware architectures for each version in Section 8.2
that capitalize on their unique properties. We validate the speedup of the
accelerator and quality of its results in Section 8.3. We conclude in Section
8.4 with general principles that can be applied to design accelerators for
seeded pipelines of other sequence analysis tools.

10768_C008.indd 16010768_C008.indd 160 6/17/2010 7:51:59 PM6/17/2010 7:51:59 PM

FPGA Acceleration of Seeded Similarity Searching 161

8.1 The BLAST Algorithm

An alignment is a side-by-side comparison of pairs of sequence charac-
ters, referred to as nucleotides in a DNA sequence; amino acids in a pro-
tein sequence; or, collectively, residues. Figure 8.2 shows an example of an
alignment between two protein sequences. A good alignment maximizes
the number of pairs of identical or biologically similar residues while keep-
ing dissimilar pairs and unaligned residues called gaps to a minimum. The
score of an alignment is computed by adding the individual score of paired
residues, found in a table 8, and the penalty of introducing gaps.

BLAST compares a query sequence Q to every reference sequence D in a
database, identifying one or more statistically signifi cant alignments. The
BLAST computation is divided into three stages: seed generation, ungapped
extension, and gapped extension (see Figure 8.3). The key observation
exploited by the BLAST heuristic is that strong alignments between a query
and a reference sequence are likely to contain pairs of consecutive residues

 Query: CVRAERAMQEEFYLELKEGLLEPLAVTERL----AIIS
 | | +| | ++| || +|| | +|||
Reference: CSR--ELIQHELDQVVEE--LEKIAVVNLLRHRRSIIS

FIGURE 8.2
An alignment between a query and a reference protein. Pairs of biologically similar and identi-
cal residues are marked by pluses and vertical lines, respectively. Two word matches, or seeds,
of length 3 are highlighted in the alignment.

Stage 2Stage 1b

TWO HITWORD
MATCHING

SEED GENERATION

D
at

a
Cost

UNGAPPED
EXTENSION

GAPPED
EXTENSION

Stage 1a

Database Word Seeds HSPs Alignments

matches

Stage 3

FIGURE 8.3
The BLAST heuristic is a three stage pipeline that fi lters reference sequences using progres-
sively more expensive computations. Seeded alignment is illustrated using four dot-plots, with
the query and reference sequence positions on the X- and Y-axes, respectively. Features are
marked along antidiagonals. Stage 1 identifi es word matches and two-hits, stage 2 high-scor-
ing ungapped alignments, and stage 3 gapped alignments.

10768_C008.indd 16110768_C008.indd 161 6/17/2010 7:51:59 PM6/17/2010 7:51:59 PM

162 Bioinformatics: High Performance Parallel Computer Architectures

in each sequence that are highly similar. The seed-generation stage identifi es
these word matches, or seeds, and focuses the search around them. Figure 8.2
highlights two seeds, though only the one on the right is an identical word
match. Seed generation is split into two substages with a two-hit unit that is
used only for protein comparison. Ungapped extension extends a seed by
aligning residues surrounding the word match without introducing gaps,
producing a high-scoring segment pair (HSP). HSPs whose alignment score
exceeds a threshold are passed on to the next stage. Finally, gapped exten-
sion applies the full Smith–Waterman algorithm to extract the highest scor-
ing alignment centered on a seed. The BLAST stages employ progressively
more expensive computations, but each stage also discards close to 90% of
its input. In what follows, when we refer to an HSP or a gapped alignment,
we are referring to the seed contained in the HSP or alignment.

From the family of BLAST programs we will focus on accelerating
BLASTN and BLASTP, used, respectively, for nucleotide-to-nucleotide and
 protein-to-protein sequence comparison. BLASTN and BLASTP are similar
in many aspects, but differ in the way seeds are identifi ed in the fi rst stage.
We will now describe the BLAST algorithm in detail, with special attention
given to the differences between the two.

8.1.1 Seed Generation

Seed generation produces tuples (q, d) that represent a word match at position
q in the query and d in the reference sequence. Word matches may undergo
further processing, as in the case of BLASTP, after which they are passed as
seed matches to the ungapped extension stage.

In the case of BLASTN, a seed is simply an exact word match of length w
between the query and the reference sequence. The typical word length is
11, a good compromise between speed and quality of results. Requiring an
exact match is appropriate for DNA sequences, for which mismatched resi-
due pairs hold relatively little information about sequence similarity. Many
amino acids in proteins, however, share similar chemical properties and so
have a high likelihood of being substituted by each other. BLASTP therefore
uses inexact matching that generates seeds in a two-step process: word match-
ing (Stage 1a) and two-hit (Stage 1b). Word matching in BLASTP fi nds pairs
of words of fi xed length, usually 3, in the two sequences that are similar
according to a biologically meaningful score table δ. Word pairs that satisfy
the condition 11

([], [])
ω δ
=

+ + ≥∑ ai
Q q i D d i T are classifi ed as matches. Here T1a

is a neighborhood threshold score selected by the user. The default threshold
value is 11.

When a short word length is used, word matching generates a large num-
ber of matches purely by chance that have no relation to biologically mean-
ingful alignments. A two-hit stage is therefore employed to fi lter this stream
by exploiting the observation that a high-scoring ungapped alignment is
likely to contain multiple word matches in close proximity. A seed match in

10768_C008.indd 16210768_C008.indd 162 6/17/2010 7:52:02 PM6/17/2010 7:52:02 PM

FPGA Acceleration of Seeded Similarity Searching 163

BLASTP occurs only when two word matches (q1, d1) and (q2, d2) are found
such that (a) they are on the same ungapped alignment represented by a so-
called diagonal d1 − q1 = d2 − q2, and (b) they lie within a user-defi ned window
of Y residues, that is, w ≤ d1 − d2 < Y. The word match (q2, d2) is designated as
the seed in BLASTP. Though word matching in BLASTN also generates false
positives, the two-hit fi lter is less effective, and so is not used.

For effi cient computation, the word-matching stage uses a lookup table
containing a precomputed neighborhood of the query sequence. The neigh-
borhood is a list of all possible database words that match query words,
along with their positions q in the query. In the case of exact matching there
are  Q − w + 1 database words that match the query. In BLASTP, all possible
database words are fi rst compared with every query word, and pairs that
score at least T1a become part of the neighborhood. The neighborhood of a
query word is shown in Figure 8.4.

8.1.2 Ungapped Extension

Ungapped extension investigates query and reference sequence pairs that con-
tain seed matches. Residues in the two sequences on either side of a seed match
are aligned, permitting matches and substitutions. As gaps are disallowed,
this stage is less expensive than full Smith–Waterman. Aligning a residue pair
contributes a score, which may be negative, and is determined by the table δ,
to a running total. The highest-scoring forward and backward extension from
the seed match constitutes its HSP. Note that this HSP threads through the
seed match and contains it. We can therefore have multiple, possibly overlap-
ping HSPs in the same query-reference pair associated with distinct seeds. If
the score of an HSP is above a user-defi ned threshold, it is passed along to the
next stage (more precisely, the location of its seed is passed on).

To guarantee fi nding the highest-scoring subsequence pair, residue pairs
must be scored till the end of the sequences, which is computationally
expensive. BLAST therefore terminates extension early using an X-drop
mechanism that fi nds a high-scoring substring pair, though not neces-
sarily the highest. The X-drop approach notes the score of the best HSP
after each residue pair extension. Extension is terminated early if the score
of the HSP containing the current pair of residues falls X below that of
the highest-scoring HSP. The X-drop procedure is able to reduce useless

...MNN MNS MNT MNV MST...

M N T I H L R C L F R M N P L V W

FIGURE 8.4
Part of the neighborhood of the fi rst word MNT of a protein computed using inexact matching.
The neighborhood of a DNA word is simply the word itself.

10768_C008.indd 16310768_C008.indd 163 6/17/2010 7:52:02 PM6/17/2010 7:52:02 PM

164 Bioinformatics: High Performance Parallel Computer Architectures

computations on the majority of seed matches that lie on poorly scoring
ungapped alignments.

8.1.3 Gapped Extension

This stage uses the Smith–Waterman recurrence to compute the highest-
scoring gapped alignment that passes through a seed. BLAST’s imple-
mentation includes minor variations from the classical Smith–Waterman
algorithm. BLAST performs gapped forward and backward extension from
the fi rst pair of residues in the input HSP’s seed. The recurrence is modi-
fi ed to ensure that the alignment always threads through this pair. Here
too, an X-drop procedure is employed for early termination. If a gapped
alignment scores above a threshold value, it is reported to the user. We
refer the interested reader to Chapter 4 for details on the Smith–Waterman
recurrence.

8.1.4 Execution Profile of the BLAST Algorithm

Before building a specialized architecture for a stream program, it is impor-
tant to study its execution profi le and data-consumption characteristics. We
used the GNU profi ler to generate runtime statistics of BLAST on typical
nucleotide and protein datasets. Table 8.1 shows these results. In BLASTN
more than 80% of the application runtime is spent in seed generation, so
its corresponding hardware architecture is critical for an improved appli-
cation performance. Seed generation dominates despite requiring an order
of magnitude less time to process an input than in later stages. This can be
attributed to the large disparity in the input data volume—seed generation
processes the entire database, while the extension stages operate on a small
fi ltered subset. In fact, the fi lter is so effective that gapped extension, com-
putationally the most involved stage in the pipeline, is active less than 1% of
the runtime. Protein search, in contrast, spends signifi cant time in all three
stages.

Application disk input/output (I/O) and postprocessing are less expensive
than the stages in the BLAST pipeline. We must be careful, however, and not
completely ignore them. If the BLAST pipeline is accelerated enough, I/O or
postprocessing, may become the bottleneck. The accelerator platform must
support high-throughput data transfer from disk to FPGA, and the software
functions may need to be executed on a small multicore system to keep up.

Next, we study the fi ltering characteristics of the stages. We denote the
match rate in word matching, ungapped, and gapped extension respectively
as the number of seeds, HSPs, and alignments crossing a stage’s threshold
score per database residue. Every stage, with the exception of two, discards
more than 95% of its input. Gapped extension in BLASTN accepts 14% of its
input, but as the fi nal stage in the pipeline, it has no bearing on the compu-
tational expense.

10768_C008.indd 16410768_C008.indd 164 6/17/2010 7:52:03 PM6/17/2010 7:52:03 PM

FPGA Acceleration of Seeded Similarity Searching 165

Word matching in BLASTP is a net expander of data, generating on aver-
age over three matches to the query per residue of the database. In contrast,
most database words do not match the query in BLASTN. We exploit these
observations to design both an effi cient fi ltering data structure for BLASTN
and a high-throughput table lookup architecture for BLASTP. The two-hit
stage, though a simple computation, must be capable of accepting multiple
word matches per unit time if it is to keep up with its input rate.

8.2 A Streaming Hardware Architecture for BLAST

We now describe the architecture of Mercury BLAST, our FPGA implemen-
tation of the BLAST algorithm on the high-speed stream processing Mercury
platform [11]. A Mercury BLAST search compares a set of queries against
a database of reference sequences. Initially, user-programmable parameters
are sent to the FPGA, after which the fi rst query is loaded on-chip. Reference
sequences of the database separated by a special character are streamed in
a single pass from the disk through the hardware. Each stage of the BLAST
pipeline runs in parallel, with suffi cient buffering to smooth bursty matches
likely to occur in biological sequence comparison. The results of the fi nal
FPGA stage are delivered to a host CPU for postprocessing. This procedure
is repeated for every query sequence in the set.

The BLASTN deployment has seed generation and ungapped extension
running in hardware; gapped extension remains in software and can easily
keep up with its workload. In contrast, all stages of BLASTP are deployed in
hardware. We use an ungapped extension design that is similar in both cases;
seed generation, however, has major differences. Next we give a high-level
overview of the various hardware architectures. Implementation details and

TABLE 8.1

Execution Profi le of BLAST

Word
Matching Two-Hit

Ungapped
Extension

Gapped
Extension

BLASTN % time 83.89% — 15.88% 0.22%
Match Rate 0.0205 — 0.0000619 0.141

BLASTP % time 30.96% 19.29% 15.85% 33.60%
Match Rate 3.873× 0.043 0.003 0.031

Source: Jacob, A. et al., ACM Transactions on Reconfi gurable Technology and Systems, 1(2):1–44,
2008. With permission. © 2008 ACM, Inc.

Note: The match rate of word matching and two-hit is specifi ed as seeds per database residue.
For ungapped and gapped extension the match rate units are HSPs and alignments per
database residue, respectively.

10768_C008.indd 16510768_C008.indd 165 6/17/2010 7:52:04 PM6/17/2010 7:52:04 PM

166 Bioinformatics: High Performance Parallel Computer Architectures

the process of selecting appropriate parameter values can be found in the
referenced papers [12–15].

8.2.1 Seed Generation

As mentioned in Section 8.1.1, every word in the database is looked up in
the neighborhood table to retrieve matching query positions. Due to its size,
this table must be stored in memory external to the FPGA device. External
memory has relatively low bandwidth into the FPGA, so the lookup oper-
ation becomes a bottleneck and an impediment to any meaningful accel-
eration of the BLAST application. Fortunately, we can exploit the unique
characteristics of nucleotide and protein comparisons to alleviate this prob-
lem. In the former, we use a Bloom fi lter, an on-chip, highly parallel, set
membership testing data structure to effi ciently discard a majority of data-
base words that do not match the query. Thereafter, a low memory band-
width lookup stage is suffi cient for words that pass the prefi lter. Because the
longer word lengths used in BLASTN would require a prohibitively large
direct lookup table, we instead use a space-effi cient hash table in our mem-
ory lookup stage.

In protein search, every database word is highly likely to match the query,
making set membership testing redundant—external memory references
are inevitable. To support high-throughput word matching in BLASTP we
must replicate the lookup table computation using as many external memory
devices as possible; we can attain a reasonable speedup using two. The short
word length used in BLASTP allows the use of a direct lookup table to store
the query neighborhood.

8.2.1.1 Nucleotide Seed Generation Architecture

A Bloom fi lter [16] is a highly parallel, space-effi cient data structure invented by
Burton Bloom that tests for an exact match to any element in a set. Originally
used for spell checking, recently it has found use in network packet process-
ing, content summarization, and database caching. The fi lter is ideal for a hard-
ware implementation because it uses simple arithmetic operations and can be
deeply pipelined for a high-throughput architecture. We employ Bloom fi lters
as a specialized “cache” to effi ciently determine if a database word matches
some word in the query (although it cannot give the location of the match).

A Bloom fi lter consists of k hash functions that in our implementation
probe their corresponding memory bit-vectors. Each hash function is a
 many-to-one linear transformation from the larger nucleotide word space to
a smaller memory address space. A Bloom fi lter has two operating modes:
program and test. In the initial state the bit-vectors are cleared. When pro-
gramming, a query word is hashed to generate k addresses that indicate the
locations in the corresponding bit-vectors to be set. This is repeated for every
word in the query. A database word matches the query in a test operation if

10768_C008.indd 16610768_C008.indd 166 6/17/2010 7:52:05 PM6/17/2010 7:52:05 PM

FPGA Acceleration of Seeded Similarity Searching 167

the bit locations computed by the hash functions are all set. The operation of
a Bloom fi lter is shown in Figure 8.5.

A Bloom fi lter may produce false positives but never produces false negatives.
The false positive rate is given by /(1)−= − Nk m kf e , where N is the number of
query words programmed, k is the number of hash functions, and m is the size
of each bit-vector. A high false-positive rate will result in a poor prefi lter, over-
whelming the subsequent lookup stage. To restrict the false-positive rate to a
low value, we empirically selected m = 32, 768 and k = 6 for a query size of 17
kbases (34 kbases when the query is reverse complemented). Each bit-vector is
stored in two dual-ported memories on our FPGA and is shared between two
independent test operations. A single Bloom fi lter uses only 96 Kbits of stor-
age, an order of magnitude less than that required for the entire neighborhood
table. We can therefore replicate the fi lter setup to support sixteen parallel test
operations on-chip. The key to our successful acceleration of BLASTN lies in
reducing the subsequent lookup rate to about one in sixteen database words,
enabling us to process over 109 database residues per second.

The hash lookup stage retrieves query positions that match a database word.
As a large fraction of possible 11 residue database words do not match the
query, we can reduce the storage requirement for the query neighborhood by
using a hash table instead of a direct lookup table. We have two important

1 1

k k

Query
word

k hash
functions

k m-bit
memories

Set

Reference
word

k hash
functions

k m-bit
memories

Test

1: possible match
0: not a match

1 1

k k

FIGURE 8.5
The Bloom fi lter acts as a specialized cache to discard reference words that do not match query
words. (Adapted from Jacob, A. and Gokhale, M., HPRCTA'07: Proceedings of the 1st International
Workshop on High-Performance Reconfi gurable Computing Technology and Applications, New York,
2007, pp. 31–37. With permission. © 2007 ACM, Inc.)

10768_C008.indd 16710768_C008.indd 167 6/17/2010 7:52:05 PM6/17/2010 7:52:05 PM

168 Bioinformatics: High Performance Parallel Computer Architectures

considerations for the hash lookup architecture. First, the number of external
memory probes for each database word must be reduced so that, on average,
one database word can be processed every clock cycle. Second, the hashing
functions must be computable using limited on-chip resources. We use a
near-perfect hashing scheme, that is, one with almost no collisions, that is a
variant of Tarjan and Yao’s displacement hashing [17].

The hash table is organized into primary and collision tables. Each query
word s is mapped into the primary table at the address.

 h s A s B s1() () [()]τ= ⊕

In the case of a collision, it is mapped to

 h2(s) = C(s)

in the collision table. The symbol ⊕ represents the XOR operation. We
choose hardware friendly H3 hash functions [18], which are essentially
linear transformations over the fi eld of integers modulo 2, for A, B, and C.
These functions are unique for every query sequence: A and B are selected
so that the pair [A(s), B(s)] is distinct for every query word s. Our near-per-
fect hashing scheme attempts to resolve collisions using a small displace-
ment table τ of integers, which is also unique for every query sequence.
When two query words s1 and s2 have A(s1) = A(s2) but B(s1) ≠ B(s2), we try to
choose distinct values for τ[B(s1)] and τ[B(s2)] so that h1(s1) ≠ h1(s2). This tech-
nique is able to resolve most collisions using 8 Kbits of on-chip storage;
nevertheless, on occasion we must still probe the collision table. Finally,
a duplicate table is used to store excess matching query words. In an 1 MB
SRAM we are able to store the neighborhood of query sequences ranging
in size up to 17 kbases (34 kbases reverse complemented).

8.2.1.2 Protein Seed Generation

An important decision we made after studying the fi ltering characteristics of
BLASTP was to increase the word length and neighborhood threshold from
3 and 11, respectively, to 4 and 13. As a consequence, the number of expected
matches to a database word is halved to two, greatly reducing the work-
load for downstream stages. To validate this parameter change we tested
BLASTP with the new parameters, comparing the GenBank Non-Redundant
protein database (2,321,957 sequences; 787,608,532 residues) against the entire
Escherichia coli k12 proteome (4,242 sequences; 1,351,322 residues). With a
word length of 4, more than 99.60% of the gapped alignments reported with
the shorter word length were still located.

Seed generation for protein comparison uses a straightforward direct lookup
table architecture to retrieve matching query positions. For our chosen word
size w = 4, the table is too large to fi t in on-chip memory, so we use external

10768_C008.indd 16810768_C008.indd 168 6/17/2010 7:52:06 PM6/17/2010 7:52:06 PM

FPGA Acceleration of Seeded Similarity Searching 169

SRAM. The memory is organized into a primary lookup table with 20w
entries, one for every possible database word (the alphabet is 20 amino acids).
Matching query positions are stored in compressed form in each 32-bit entry
of the table. Excess positions are appended in a duplicate table. Our imple-
mentation supports a maximum protein sequence length of 2,048.

To implement the two-hit fi lter, we use an array, which stores the database
position of the most recently encountered word match, on its diagonal. On
arrival of a new word match (q1, d1), its corresponding diagonal d−q in the array
is referenced to see if it is a two-hit. As we are streaming the database over
a query of maximum length 2,048, we need a sliding window of only 4,096
diagonals for the active computation; these are stored in eight on-chip memo-
ries on our FPGA. Our two-hit architecture is a three-stage pipeline (with data
forwarding to eliminate hazards) able to process one word match per clock.

Recall that seed generation is expected to emit two word matches per
database position, but the two-hit design can process only one of them at a
time. To avoid a bottleneck in the two-hit stage we must replicate it. A naive
method is to replicate the two-hit block, with each block having a copy of the
entire diagonal array. Keeping all arrays coherent, however, requires a mul-
ticycle sequential update operation, which seriously degrades throughput.
Rather than replicate, we partition the diagonals across b two-hit units so
that a word match (q, d) is processed by two-hit unit j if d − q ≡ j − 1 (mod b).
As a two-hit computation depends only on its diagonal, each two-hit unit
now operates independently, and maintaining coherency is not an issue.
Furthermore, word matches in biological sequences tend to be clustered
within a band of diagonals; the modulo scheme naturally distributes these
matches more evenly among the two-hit units.

Finally, we increase the throughput of seed generation by using a number
h of parallel lookup stages that access independent external memories. The
complete architecture is illustrated in Figure 8.6. An important component is
the switching architecture to route matches from one of the h lookup stages
to a number b of two-hit units. Each lookup stage uses a switching network

 1

 h

1 1
1

bh b

Table
lookup Switch 1 Switch 2 Two

hit

Database Seeds

FIGURE 8.6
Seed generation logic, showing routing of word matches. (From Jacob, A. et al., ACM Transactions
on Reconfi gurable Technology and Systems, 1(2):1–44, 2008. With permission. © 2008 ACM Inc.)

10768_C008.indd 16910768_C008.indd 169 6/17/2010 7:52:06 PM6/17/2010 7:52:06 PM

170 Bioinformatics: High Performance Parallel Computer Architectures

(Switch 1) to route its word matches to one of the b two-hit input queues. A
two-hit stage then receives its input from one of h queues, one from every
lookup stage, using a second switching network (Switch 2). The switching
network allows us to implement a high-throughput, load-balanced seed gen-
eration architecture by varying b and h. In our implementation we use h = 2
lookup stages and b = 4 two-hit units.

An unintended consequence of using multiple lookup stages concerns the
order of word matches entering the two-hit and the subsequent stages. As
the time to process a database word varies with the number of matches to
the query, the independently operating lookup stages may lose synchro-
nization and generate matches that are out of order with respect to their
database positions. The downstream stages expect in-order word matches
to guarantee performance, and in the case of two-hit, to maintain correct-
ness. To alleviate this problem we limit the maximum number of matching
query positions per database word to at most 15 (this has negligible effect
on sensitivity). Additionally, we augment the two-hit heuristic to handle
out-of-orderness as follows: if a word match is at most Y database residues
before the most recently seen match on the diagonal, discard it, as it is likely
a part of a cluster of matches; else, it is likely part of a distinct HSP, so accept
it. Using this additional check, we are able to reduce the negative effect on
sensitivity.

8.2.2 Ungapped Extension

As described in Section 8.1.2, ungapped extension as implemented in soft-
ware uses the X-drop heuristic, where extension proceeds indefi nitely until
the running score falls X below a previous high. The length of an extension
is data dependent—in the extreme case it proceeds till the end of the query
or reference sequence. For the ungapped extension loop, we desire a fully
unrolled, pipelined architecture that is able to accept a seed match every clock.
To fully unroll the loop we must know a priori the length of every extension.
We therefore decided to only inspect a fi xed window of L residues in the two
sequences that is centered on a seed. Furthermore, unlike in software, exten-
sion proceeds in one pass from the start to the end of the window.

Selecting L and the threshold T2 presents an interesting tradeoff. On the one
hand, increasing L produces a better fi lter as the stage is able to distinguish
statistically signifi cant HSPs from random noise. We can increase T2 in tandem
to reduce the workload of the downstream stage without a loss in sensitivity.
Unfortunately, increasing the size of the window also increases the resource
requirements. To fi nd suitable values for these parameters, we compared
sequences from the E. coli proteome against the GenBank Non-Redundant pro-
tein database. We found that the X-drop heuristic terminates 95% of unsuccess-
ful seed extensions, which are mostly noise, within a 60 residue window. We
settled on the parameter values L = 64 and T2 = 16, which minimize resource
requirements while maximizing the fi ltering rate of this stage. In a small

10768_C008.indd 17010768_C008.indd 170 6/17/2010 7:52:07 PM6/17/2010 7:52:07 PM

FPGA Acceleration of Seeded Similarity Searching 171

fraction of cases the window is too small to determine the score of the best HSP
of a seed, that is, the best HSP extends beyond the window boundaries; we sim-
ply pass these inputs along to the next stage to avoid a loss in sensitivity.

An overview of the architecture for this stage is shown in Figure 8.7. We
store the entire query on-chip, but a circular buffer is used for the database
stream. Care must be taken to ensure that the circular buffer always main-
tains the window of database residues required by every input seed, includ-
ing those that are still in the pipeline of seed generation. A locally connected
array with L

2
 processing elements implements the dynamic programming

recurrence shown in Algorithm 1.

Algorithm 1 Ungapped extension loop

 1: Γ0 ← γ0 ← 0
 2: for i ← 1, L do ▷ Iterate across window [QW, DW]
 3: if i < SEEDstart then ▷ Extend HSP by one residue pair
 4: ▷ If HSP’s score is negative force to zero and

start new HSP at i + 1
 5: γi ← max {γi-1 + δ ([] [])QW i DW i, , 0}
 6: else
 7: γi ← γi-1 + δ ([] [])QW i DW i, ▷ HSP cannot restart once

the seed is reached
 8: end if
 9:
10: if i > SEEDend then
11: Γi ← max{Γi-1,γi}
12: else
13: Γi ← 0 ▷ Record score of best HSP that crosses the

seed (i > SEEDend)
14: end if
15: end for

Each processor implements two steps of the recurrence and uses saturation
arithmetic to reduce resource requirements. The score of every residue pair
in the window, δ(QW[i], DW[i]), is precomputed and pipelined to its corre-
sponding processor i

2 . The processor i
2 computes the score of the best HSP γi

Scoring array

Seeds

Query

db
circular
buffer

Score
table

1 2 3 L/2 Threshold
comparator

HSPs
qw

dw

FIGURE 8.7
Overview of the architecture of stage 2. (From Jacob, A. et al., ACM Transactions on Reconfi gurable
Technology and Systems, 1(2):1–44, 2008. With permission. © 2008 ACM, Inc.)

10768_C008.indd 17110768_C008.indd 171 6/17/2010 7:52:07 PM6/17/2010 7:52:07 PM

172 Bioinformatics: High Performance Parallel Computer Architectures

terminating at position i. If the HSP terminating at i has a negative score, the
computation restarts the HSP at i + 1. The processor also tracks Γi, the score
of the best HSP terminating at or before i. The pipeline registers shown in the
fi gure are used to keep the δ values in lock-step with the scores computed
in the processors. We use two new constraints, shown in Lines 7 and 13 of
Algorithm 1, to force an HSP to contain its seed. This ensures that a “weak”
ungapped alignment will not be masked by a “stronger” one when both lie on
the same diagonal (but are associated with distinct seeds). The array outputs
ΓL, the score of the best HSP in the entire window, which is compared to the
threshold score.

8.2.3 Gapped Extension

Owing to the excellent fi ltering properties of the fi rst two stages in the BLAST
pipeline, most query-reference sequence pairs have already been eliminated,
so much so that we can use a software implementation of this stage for
BLASTN without introducing a bottleneck. While we must still accelerate
this stage in BLASTP, we have at our disposal hundreds of clock cycles per
input. Consequently we do not fully unroll the computational loop of this
stage, unlike ungapped extension.

At its core, gapped extension in software implements the familiar Smith–
Waterman computation but with a speed optimization that restricts activ-
ity to an irregular pattern of cells around the seed; an example is shown in
Figure 8.8a. To design a hardware-friendly architecture, we choose to restrict
the Smith–Waterman computation to a band of fi xed-size antidiagonals cen-
tered on the seed, that is, sets of cells (i, j) that have the same value of i + j.
Figure 8.8b illustrates an example of the rectangular band of antidiagonals
with length λ and width ω. The regular activity pattern reduces the com-
plexity of control circuitry while still providing signifi cant time savings over
full Smith–Waterman. Similar to ungapped extension, we have a tradeoff
between area, throughput, and the fi ltering capacity when fi xing the band
geometry. A larger band improves the discriminating power of this stage;
the size of the parallel array, however, grows with ω, and lengthening λ
decreases the throughput. Using empirical measurements we balance this
tradeoff using parameter values ω = 65 and λ = 1,601.

The design of the banded Smith–Waterman array is similar to standard
implementations and will not be expounded here; instead we will high-
light the unique properties of our design. In a standard implementation,
the size of the array is equal to the length of the query and computation
proceeds vertically, consuming a single database residue every clock cycle
(see Figure 8.8). In contrast, we use an array of ω processing elements that
simultaneously computes all cells on the same antidiagonal using a stair-
step computation pattern that proceeds diagonally along the length of the
band. This pattern requires shifting in of ω + λ/2 query and database resi-
dues, one of each every two clock cycles—the former in even and the latter

10768_C008.indd 17210768_C008.indd 172 6/17/2010 7:52:09 PM6/17/2010 7:52:09 PM

FPGA Acceleration of Seeded Similarity Searching 173

in odd cycles. The best gapped alignment computed must contain the input
seed; that is, the gapped alignment must start before the antidiagonal at the
center of the seed and terminate after it. We enforce the former constraint
by not resetting the score of negatively scoring alignments to zero, as does
the standard Smith–Waterman recurrence, after the center of the seed is
crossed. To enforce the latter constraint we record only the score of gapped
alignments that cross the seed. As a speed optimization, extension is ter-
minated early if we observe only negative scores in all cells of two consecu-
tive antidiagonals. The worst-case latency for gapped extension of a seed

1 2 3 MReference

Reference

Query

ω

λ

(a)
(b)

1
2

Query
Refe

ren
ce

ω

FIGURE 8.8
Example of gapped extension in (a) NCBI and (b) hardware-accelerated BLASTP, with cells
computed by each method shaded. The query and reference sequence positions are along the x-
and y-axes respectively. Computation is centered on a seed match shown in white. The canoni-
cal Smith–Waterman array shown at the top uses M processors, where M is the length of the
query, and streams in a residue of the database every clock. The banded array shown below
uses ω processors, where ω is the width of the band, and has a stair-step computation pattern
that streams both query and reference sequence residues through it. (From Jacob, A. et al., ACM
Transactions on Reconfi gurable Technology and Systems, 1(2):1–44, 2008. With permission. © 2008
ACM, Inc.)

10768_C008.indd 17310768_C008.indd 173 6/17/2010 9:57:55 PM6/17/2010 9:57:55 PM

174 Bioinformatics: High Performance Parallel Computer Architectures

is 5 + ω + λ clocks, but early termination contributes to a latency savings
 averaging 56%.

8.3 Results

We have coded the BLAST hardware accelerator in VHDL and implemented
it on the Mercury system. This is a prototyping platform that provides
 high-throughput data transfer from disk to reconfi gurable logic at more than
800 MB/sec. Our system uses two dual-core 2.4 GHz AMD Opteron proces-
sors with 16 GB of memory running 64-bit Linux (CentOS 4). Two Xilinx
Virtex-II 6000–6 FPGAs, each with three synchronous 1 MB SRAM modules,
are connected via the PCI-X bus to the host.

We integrated the BLAST FPGA accelerator with NCBI BLAST version 2.2.9.
The software initializes the hardware stages with the search parameters,
loads a query and its associated memory tables, and streams the database
through the FPGA in a single pass. Output from the hardware is collected
and processed by the unmodifi ed, ungapped, and gapped extension stages
in software. These pre- and postprocessing activities run concurrently in
different threads of execution. The tight integration of our hardware accel-
erator with the original NCBI codebase preserves the user interface, includ-
ing command-line options and I/O formats, allowing Mercury BLAST
to be used as a drop-in replacement in existing bioinformatics analysis
pipelines.

Hardware BLASTN can support a DNA query of length up to 17 kbases
(34 kbases including both the sequence and its reverse complement) while
hardware BLASTP supports proteins up to 2,048 residues long; very large
sequences must be split into smaller overlapping chunks. The software per-
forms a query packing optimization to effi ciently process small queries.
Here, smaller sequences are packed using a bin-packing approximation algo-
rithm into a single composite query over which the search is executed. This
reduces the number of passes of the database stream through the hardware,
signifi cantly decreasing the overall search time.

We compared hardware BLAST to the software, using large comparisons
that are typical of genome annotation. In addition to the speedup, we report
the quality of the accelerator output, given by the sensitivity of the hard-
ware, measured as the fraction of software baseline’s alignments detected
by hardware BLAST. For this test, alignments from the same query-reference
sequence pair that overlap more than 50% of their bounding rectangles are
considered to be the same. All sequences in our experiments were fi ltered for
low-complexity regions, and BLAST was run with default parameters, except
for a lower E-value threshold of 10−5, which is reasonable for large-scale

10768_C008.indd 17410768_C008.indd 174 6/17/2010 7:52:09 PM6/17/2010 7:52:09 PM

FPGA Acceleration of Seeded Similarity Searching 175

comparison. Runtimes reported exclude time spent formatting the output
for printing.

8.3.1 BLASTP

Owing to its high resource requirements, hardware BLASTP uses both of the
Virtex-II FPGAs on the prototyping system: seed generation and ungapped
extension runs on the fi rst, and gapped extension runs on the second. The
three stages were synthesized to run at 110 MHz, 85 MHz, and 90 MHz,
respectively. They occupy 63% of the slices and 77% of the on-chip block
RAM memories on the fi rst FPGA and 33% of the slices and 48% of the block
RAMs on the second. Most of the block RAM memories in the design are
used to hold the score table for the extension stages. All three stages, how-
ever, fi t on a single newer generation FPGA device.

The baseline system we used to run NCBI BLASTP is an eight-node com-
pute cluster, with each node having two 2.4 GHz AMD Opteron processors
and 4 GB of memory. The runtime of the baseline system is the total of the
individual execution times on each node, which gives the single core per-
formance. We used a recent version of NCBI BLASTP (2.2.17) for speed com-
parisons, which is more than twice as fast as the version we have integrated
with hardware BLAST. For sensitivity measurements we compared against
the version integrated with our accelerator.

To evaluate the performance of our accelerator, we ran the following
two experiments, typically performed on proteins predicted from a newly
sequenced genome.

 1. E. coli K12 proteome (1.35 Mresidues) versus GenBank Non-
Redundant (NR) protein database (1.39 Gresidues);

 2. B. thetaiotaomicron proteome (1.85 Mresidues) versus GenBank NR.

Table 8.2 shows hardware-accelerated BLASTP executing more than an
order of magnitude faster than the baseline system. Moreover, in both exper-
iments our hardware had a sensitivity more than 99.40%.

TABLE 8.2

Execution Time of Hardware-Accelerated BLASTP Compared to the
Baseline System

Experiment Baseline Time Hardware Time Speedup

E. coli vs. NR 28.7 h 1.9 h 15.11×

B. theta vs. NR 40.5 h 2.7 h 15.29×

 Source: Jacob, A. et al., ACM Transactions on Reconfi gurable Technology and
Systems, 1(2):1–44, 2008. With permission. © 2008 ACM, Inc.

10768_C008.indd 17510768_C008.indd 175 6/17/2010 7:52:10 PM6/17/2010 7:52:10 PM

176 Bioinformatics: High Performance Parallel Computer Architectures

8.3.2 BLASTN

A single Virtex-II FPGA is suffi cient to implement the BLASTN design. The
seed generation and ungapped extension stages operate at clock frequen-
cies of 140 MHz and 60 MHz, respectively, while occupying 40% of the
FPGA slices and 93% of the on-chip block RAM memories. Scalability of the
BLASTN implementation is limited by the memories available to implement
the Bloom fi lter stage.

For comparison we ran the baseline experiments using the newer, enhanced
version of NCBI BLAST on a single core of a 3.0 GHz Pentium D CPU with
1.5 GB of RAM. Note that this CPU is more powerful than the AMD Opteron
used in the previous section. Furthermore, we are comparing the more pow-
erful CPU to the older Virtex-II FPGA, which is two generations behind the
currently available state of the art.

We performed two experiments that used the following datasets:

 1. 3,975 randomly sampled human cDNA sequences (9 Mbases after
removing known repeats and Ns) from release 21 of the NCBI RefSeq
cDNA library, against all other vertebrate cDNAs (586 Mbases after
removing known repeats and Ns).

 2. Human chromosome 22 (hg18, 21 MBases after removing known
repeats and Ns) against the entire mouse genome (mm8, 1.5 Gbases
after removing known repeats and Ns).

Table 8.3 shows the speedup of the hardware accelerator, which ranges
from 5× to more than an order of magnitude over the software baseline. The
hardware is able to fi nd 98.6% and 99.0% of the alignments, respectively, for
the two experiments.

The order-of-magnitude speedup of the hardware design and its valida-
tion on large-scale DNA and protein comparisons gives us confi dence in its
use as a replacement for a small workstation cluster running NCBI BLAST.
We expect the design to scale on newer generations of FPGA devices with
an increased number and storage capacity of off-chip memories used for the
lookup table. This will allow the packing of more sequences into a composite

TABLE 8.3

Execution Time of Hardware Accelerated BLASTN Compared to the
Baseline System

Experiment Baseline Time Hardware Time Speedup

Human cDNA vs.
RefSeq

101 min 20 min 5.05x

Human Chr22 vs.
Mouse

218 min 19 min 11.47x

10768_C008.indd 17610768_C008.indd 176 6/17/2010 7:52:10 PM6/17/2010 7:52:10 PM

FPGA Acceleration of Seeded Similarity Searching 177

query, reducing the number of passes of the database stream through the
hardware, thus decreasing overall execution time.

8.4 Conclusions

Many alternate FPGA designs that accelerate the BLAST computation have
been published. Unfortunately, most accelerate one or only a few of the stages
in the pipeline, which is insuffi cient to appreciably speedup the entire appli-
cation. An alternate design for seed generation is to store the lookup table
on-chip. The low capacity of on-chip memories, however, limit this design
to short queries or word lengths that generate small neighborhoods. Using
a shorter word length, however, increases the workload for downstream
stages. A second option is to compute a word match to the query online
without using a precomputed neighborhood. This approach exposes more
parallelism and scales better with newer generation FPGA devices. It is use-
ful if large external memories are unavailable on the accelerator platform.
Nevertheless, both these designs will require a large fraction of reconfi g-
urable logic on modern FPGAs, limiting the acceleration of ungapped and
gapped extension on the same device.

We believe the streaming paradigm is well suited for sequence analysis
applications because they use self-contained integer arithmetic operations
with simple control structures, operate on a localized portion of the input,
show little data reuse, and have no feedback between stages. In the case of
BLAST, we were able to exploit pipeline parallelism by streaming in refer-
ence sequences over a linear chain of stages running concurrently on an
FPGA and a microprocessor core. It is important to study the profi le of the
stream program and consider the implications of design choices of a stage on
the entire pipeline’s throughput. For example, using a word length of four
in BLASTP’s seed generation module greatly reduces the workload for two-
hit and ungapped extension; fully unrolling the loop in ungapped exten-
sion allows this stage to keep up with input seeds; and a multicycle latency
gapped extension stage that conserves resources is suffi cient to keep up with
its input rate. Hardware-accelerated BLASTP has its bottleneck in the seed
generation stage, as does BLASTN, though the latter is currently limited by
input system bandwidth.

An important goal we have stressed throughout our design process is
the maintenance of the quality of results as compared to the de facto stan-
dard implementation. This is especially necessary when accelerating well-
accepted heuristics; replacing them by more hardware-friendly ones is
diffi cult to justify to the user community. Any deviation from these heuris-
tics, for example, using more favorable parameter values, requires measure-
ment of the output quality on substantial size datasets. In keeping with this

10768_C008.indd 17710768_C008.indd 177 6/17/2010 7:52:10 PM6/17/2010 7:52:10 PM

178 Bioinformatics: High Performance Parallel Computer Architectures

goal, we have for the most part stuck to a faithful duplication of the original
BLAST algorithm.

The principles we have illustrated and the architecture presented in
this chapter extend to other seeded sequence comparison tools. Biological
sequences can be organized into families that have a similar function or
structure. An alignment of sequences in the family reveals patterns of con-
servation or divergence and contains more useful information for a search
than any one of its members in isolation. A sequence family is represented
by an ordered list of columns of its alignment, termed a position-specifi c scor-
ing matrix (PSSM). Each column in a PSSM describes the distribution of resi-
dues at one position in the alignment. For example, a PSSM for a family of
proteins may show that 50% have residue R in their fi rst column, 30% have
residue Q, and so forth. Search tools such as PSI-BLAST [3] and IMPALA [19]
can compare families represented by PSSMs to sequences and help identify
additional members of a family. PhyloNet [20] compares PSSMs to each other
to discover similarity between families.

The design of hardware BLASTP extends to comparison using a PSSM.
The main difference is in the scoring function δ, which will now operate on
a residue and a PSSM column or on pairs of PSSM columns. The neighbor-
hood in the seed generation stage is redefi ned as all ω length sequence words
that score at least T when compared to some ω contiguous columns in the
PSSM. When both the query and database consist of PSSMs, as in PhyloNet,
vector quantization is used to map residue distributions in each column to a
small number of characters. This will result in a search similar to pairwise
sequence comparison, but with a larger alphabet than that of proteins. In
both these cases the neighborhood is computed offl ine so the seed genera-
tion design will remain unchanged. Ungapped and gapped extension will
have to be modifi ed to use the new scoring procedure.

A hidden-Markov model (HMM) is a generalization of a PSSM that more
accurately describes an alignment of members in a family. The power in this
representation lies in its probabilistic representation and formal treatment.
Analogous to Smith–Waterman for pairwise comparison, the Viterbi algo-
rithm uses dynamic programming to compare an HMM and a sequence,
generating a probability that the sequence is a member of the family. A
recent heuristic, HMMERHEAD [21], employs a multistage fi lter to accelerate
search with Viterbi. Neighborhood generation for the fi rst stage is similar
to that described for PSSMs. The second stage directly applies ungapped
extension to seeds and is likely to require replication to keep up with its high
workload. We can use the modulo input distribution scheme similar to that
of the two-hit stage in BLASTP. A third stage in HMMERHEAD then uses
two-hit on seeds that pass ungapped extension. The defi nition of a two hit is
modifi ed to include pairs of seeds that are within a window of Y residues in
the database and within Z diagonals of each other. Owing to the upstream
ungapped extension stage, it may be possible to use a two-hit design that
does not require replication.

10768_C008.indd 17810768_C008.indd 178 6/17/2010 7:52:10 PM6/17/2010 7:52:10 PM

FPGA Acceleration of Seeded Similarity Searching 179

Acceleration of BLAST is challenging because the heuristic already has a
time complexity that is linear in the size of the database and the software
implementation is memory bound. We have used the streaming paradigm
with a specialized hardware design to expose and exploit parallelism and
a large number of distributed on-chip memories as a “cache” to improve
memory performance. Our implementation accelerates the entire BLAST
pipeline, which is important, as application runtime is distributed among
all the stages. We have integrated our FPGA-microprocessor accelerator with
the existing NCBI BLAST codebase. End-to-end performance measurements
show that DNA and protein BLAST comparisons achieve a 5–15× speedup
over the software on a modern workstation. Furthermore, close to 99% of the
software alignments were also detected by the hardware. We are in the pro-
cess of increasing the length of the composite query four-fold using higher
capacity external memories and current-generation FPGAs, thus requiring
one-fourth as many passes of the database and producing an additional 4×
speedup.

8.5 References

 1. T. F. Smith and M. S. Waterman. Identifi cation of common molecular subse-
quences. Journal of Molecular Biology, 147(1):195–197, March 1981.

 2. S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. Basic local
alignment search tool. Journal of Molecular Biology, 215:403–410, 1990.

 3. S. F. Altschul, T. L. Madden, A. A. Schäfer, J. Zhang, Z. Zhang, W. Miller, and
D. J. Lipman. Gapped BLAST and PSI-BLAST: A new generation of protein
database search programs. Nucleic Acids Research, 25:3389–3402, 1997.

 4. National Center for Biological Information. Growth of GenBank, 2008. http://
www.ncbi.nlm.nih.gov/Genbank/genbankstats.html Accessed February 20,
2010.

 5. A. E. Darling, L. Carey, and W. C. Feng. The design, implementation, and eval-
uation of mpiBLAST. In 4th Int’l Conf. on Linux Clusters, 2003.

 6. H. Lin, X. Ma, P. Chandramohan, A. Geist, and N. Samatova. Effi cient data
access for parallel BLAST. In Proc. 19th Int’l Parallel and Distributed Processing
Symposium, 2005.

 7. H. Rangwala, E. Lantz, R. Musselman, K. Pinnow, B. Smith, and B. Wallenfelt.
Massively parallel BLAST for the Blue Gene/L. In High Availability and
Performance Computing Workshop, 2005.

 8. S. McGinnis and L. Thomas Madden. BLAST: At the core of a powerful and
diverse set of sequence analysis tools. Nucleic Acids Research, 32:20–25, 2004.

 9. D. T. Hoang. Searching genetic databases on Splash 2. In IEEE Workshop on
FPGAs for Custom Computing Machines, pages 185–191, 1993.

 10. Y. Yamaguchi, T. Maruyama, and A. Konagaya. High speed homology search
with FPGAs. In Pacifi c Symposium on Biocomputing, 7:271–282, 2002.

10768_C008.indd 17910768_C008.indd 179 6/17/2010 7:52:10 PM6/17/2010 7:52:10 PM

180 Bioinformatics: High Performance Parallel Computer Architectures

 11. R. D. Chamberlain, R. K. Cytron, M. A. Franklin, and R. S. Indeck. The Mercury
system: Exploiting truly fast hardware for data search. In Proc. of Int’l Workshop
on Storage Network Architecture and Parallel I/Os, pages 65–72, September 2003.

 12. J. D. Buhler, J. M. Lancaster, A. C. Jacob, and R. D. Chamberlain. Mercury
BLASTN: Faster DNA sequence comparison using a streaming hardware archi-
tecture. In Reconfi gurable Systems Summer Institute, 2007.

 13. A. Jacob, J. Lancaster, J. Buhler, B. Harris, and R. D. Chamberlain. Mercury
BLASTP: Accelerating protein sequence alignment. ACM Transactions on
Reconfi gurable Technology and Systems, 1(2):1–44, 2008.

 14. P. Krishnamurthy, J. Buhler, R. Chamberlain, M. Franklin, K. Gyang, A. Jacob,
and J. Lancaster. Biosequence similarity search on the Mercury system. Journal of
VLSI Signal Processing Systems, 49(1):101–121, 2007.

 15. J. Lancaster, J. Buhler, and R. D. Chamberlain. Acceleration of ungapped exten-
sion in Mercury BLAST. Microprocessors and Microsystems, 33(4):281–289, 2009.

 16. B. Bloom. Space/time trade-offs in hash coding with allowable errors.
Communications of the ACM, 13(7):422–426, May 1970.

 17. R. E. Tarjan and A. C. C. Yao. Storing a sparse table. Communications of the ACM,
22(11):606–611, 1979.

 18. M. V. Ramakrishna, E. Fu, and E. Bahcekapili. Effi cient hardware hashing func-
tions for high performance computers. IEEE Transactions on Computers, 46:1378–
1381, 1997.

 19. A. A. Schaffer, Y. I. Wolf, C. P. Ponging, E. V. Koonin, L. Aravind, and S. F.
Altschul. IMPALA: Matching a protein sequence against a collection of PSI-
BLAST-constructed position-specifi c score matrices. Bioinformatics, 15:1000–
1011, 1999.

 20. T. Wang and G. D. Stormo. Identifying the conserved network of cis-regulatory
sites of a eukaryotic genome. Proceedings of the National Academy of Science USA,
102:17400–17405, 2005.

 21. E. Portugaly, S. Johnson, M. Ninio, and S. R. Eddy. Improved HMMER-HEAD
for better sensitivity. RECOMB 07 Poster, 2008.

10768_C008.indd 18010768_C008.indd 180 6/17/2010 7:52:10 PM6/17/2010 7:52:10 PM

181

9
Seed-Based Parallel Protein Sequence
Comparison Combining Multithreading,
GPU, and FPGA Technologies

Dominique Lavenier and Van-Hoa Nguyen

9.1 Introduction .. 181
9.2 Principles of the Algorithm .. 184

9.2.1 Overview ... 184
9.2.2 Bank Indexing .. 186
9.2.3 Ungap Extension .. 188
9.2.4 Gap Extension ... 188
9.2.5 Generic Hardware Implementation .. 189

9.3 Parallelization ... 190
9.3.1 UNGAP Parallelization on GPU .. 191
9.3.2 UNGAP Parallelization on FPGA ... 191
9.3.3 SMALL GAP Parallelization on GPU ... 193

9.4 Comparison of the GPU/FPGA Technologies 194
9.4.1 GPU Platform ... 194
9.4.2 FPGA Platform ... 194
9.4.3 Software and Dataset .. 195
9.4.4 Comparison of the Execution Times ... 195
9.4.5 GPU Implementation ... 196
9.4.6 FPGA Implementation .. 197

9.5 Conclusion .. 197
9.6 References ...200

9.1 Introduction

Despite the increasing diversity of genomic data now available through
many different biotechnologies, DNA or protein sequences remain one of the

10768_C009.indd 18110768_C009.indd 181 6/17/2010 7:52:45 PM6/17/2010 7:52:45 PM

182 Bioinformatics: High Performance Parallel Computer Architectures

main materials for bioinformatics studies. The basic treatment performed on
these data is often a comparison process for detecting any kind of similari-
ties. Traditionally, given a single request, the scan of large databases aims to
report all related sequences. On the other hand, more specifi c applications,
such as genome annotation, for instance, have a large set of sequences (pro-
teome) to compare with a complete genome. In both cases, the heart of the
algorithms, from a computational point of view, is the same: detection of
similarities between strings of characters.

For almost two decades, the sizes of the genomic banks have steadily
increased, nearly doubling every 18 months. From 1999 to 2009, for example,
the size of UniProtKB/TrEMBL database [1] has been multiplied by 43 (release
July 11, 1999, 199,794 entries). Today it contains 8,594,382 sequence entries com-
prising 2,774,832,018 amino acids (release 40.4, June 16, 2009). Practically, dur-
ing the last 10 years, TrEMB has grown by a factor 1.9 every 18 months. From
the DNA size, the situation is similar. In 1999, GenBank [2] (release 111, April
1999) contained 2.56 billions of nucleotides. Today, Genbank (release 171, April
2009) contains 103 billions of nucleotides. Its size has been multiplied by 40.

Furthermore, recent progresses in biotechnologies, and specifi cally fast
improvements of sequencing machines, have revolutionized the genomic
research fi eld [3]. The equivalent (in raw data) of the human genome can
now be generated in a single day. Billions of nucleotides spread in millions of
very short fragments (25–70 nucleotides) are thus available, allowing a large
spectrum of new large-scale applications to be set up: genome resequenc-
ing, metagenomic analysis, molecular bar coding, and so on. Bioinformatics
treatments related to these new types of data often deals, in their earlier
steps, with intensive sequence comparison.

Hence, together, exponential growth of the databases and next-generation
sequencing (NGS) technology make the processing of this avalanche of data
a more and more challenging task. This is also currently strengthened by
the relative stagnation of the microprocessor clock frequencies that cannot
help any longer, as it was the case for more than 20 years, to compensate the
exponential growth of the genomic data. Today, to keep things on track, the
use of parallelism is essential.

As a main task in bioinformatics, the parallelization of genomic sequence
comparison algorithms has been widely investigated. When large volumes of
data need to be processed, a straightforward way is to split data into smaller
packets and to dispatch the computation on independent processing units.
This parallelization scheme fi ts well with platforms of cluster and is com-
monly implemented in most bioinformatics research centers. Main advan-
tages of this approach are (1) an effi cient parallelization: each node works
independently and does not require intensive communication with other
nodes; (2) good scalability: computation may be deployed on large clusters or
targets grid environments.

Nonetheless, other alternatives exist for parallelizing this basic bioinformat-
ics treatment. They rely on internal potential parallelism of the algorithms.

10768_C009.indd 18210768_C009.indd 182 6/17/2010 7:52:46 PM6/17/2010 7:52:46 PM

Seed-Based Parallel Protein Sequence Comparison 183

As opposed to cluster or grid implementations, where each processing unit
works independently on different data, comparison of two sequences—or
a group of sequences—is shared between different processing units tightly
interconnected. This fi ne-grained implementation targets specifi c hardware
platforms such as reconfi gurable accelerators (fi eld-programmable gate array
[FPGA]) or graphical processing units (GPU). Their great advantages, com-
pared to cluster machines, are their lower cost and their high performance.
Standard computers enhanced, for example, with two recent GPU boards or
one medium-level FPGA board can then be 10–20 times faster.

These two schemes of parallelization (cluster/grid vs. GPU/FPGA), how-
ever, are not antagonists and can be combined to provide optimal use of
computer resources. A few nodes of a general purpose cluster can be advan-
tageously equipped with such accelerators. When intensive comparisons are
required, the system automatically assigns these nodes to these specifi c pro-
cesses, freeing the rest of the machines for other tasks.

The class of genomic sequence comparison algorithms implemented on
these accelerators is mainly related to dynamic programming methods. Two
main reasons can be emphasized: (1) algorithms are very time consuming,
yielding a real need for speeding them up; (2) computations are very regular
and fi t well with highly parallel hardware structures. Description of such
parallelization techniques can be found in [4].

Another class of algorithms, designed with a powerful heuristic based
on the use of seeds to limit the search space, allows the computation to be
drastically reduced, compared to dynamic programming algorithms. Two
famous software, widely adopted by the scientifi c community, are FASTA
[5] and basic local alignment search tool (BLAST) [6–7]. Unfortunately, very
few attempts to parallelize them onto hardware accelerators have been done
[8–13]. Again, two reasons can be proposed: (1) these algorithms are very
fast, and the pressure to speed them up is lower; (2) computations are not
regular and are much better suited to sequential processors than to paral-
lel machines. With the NGS data surge, the fi rst reason will rapidly become
obsolete and fast solutions are now needed to parallelize these softwares at
any levels, from transistor to grid! The second reason may represent a serious
bottleneck for parallelization: algorithms have been designed for sequential
machines and cannot be directly mapped to parallel hardware. They need
to be redesigned, at a fi ne-grained level, to benefi t from current technologies
such as GPU or FPGA.

This chapter presents a parallel seed-based algorithm for comparing pro-
tein banks, and its instantiation into two technologies: GPU boards and
reconfi gurable accelerators. The algorithm has been thought to express the
maximum of parallelism and to be easily speeded up by specifi c hardware
platforms. As opposed to BLAST or FASTA, it does not aim to scan data-
bases. It takes as input two banks and performs an all-by-all sequence com-
parison. Speedup from 10 (GPU) to 30 (FPGA) is measured compared to the
latest optimized NCBI BLAST version.

10768_C009.indd 18310768_C009.indd 183 6/17/2010 7:52:46 PM6/17/2010 7:52:46 PM

184 Bioinformatics: High Performance Parallel Computer Architectures

The chapter is organized as follows: Section 9.2 presents the principle of the
parallel seed algorithm, called parallel local alignment search tool (PLAST).
Section 9.3 details implementations on GPU and FPGA. Section 9.4 compares
performances of both technologies. Section 9.5 concludes the chapter.

9.2 Principles of the Algorithm

9.2.1 Overview

For detecting similarities, PLAST assumes that two protein sequences shar-
ing suffi cient similarities include, at least, one common word of W residues.
From these specifi c words, larger similarities can be computed by extending
the search on their left and right hand sides. These words are called seeds
because they are the starting point of the alignment procedure.

To anchor two sequences with common seeds, the two banks are fi rst
indexed into two separate index-tables having exactly the same structure.
The number of entries represents the number of all possible seeds (20W).
Content of one specifi c entry memorizes all the positions where the associ-
ated seed appears in the bank. As an example, suppose a bank composed of
the two following sequences, s1 and s2:

s1 = AGGTGCTAGCTCT s2 = TCTGCATCTGCAT

The content of the entry associated to the seed TGC will be (s1,4); (s2,3);
(s2,9) because the word TGC appears in position 4 in sequence s1 and in posi-
tions 3 and 9 in sequence s2.

Taking the same entry of the two index-tables immediately gives the posi-
tions where the sequences have a common word (a hit) and, thus, potential
local similarity. The next step is then to extend the similarity search in the
hit neighborhood. This is done within two distinct phases: the fi rst phase
performs a simple extension by considering only substitution errors (ungap
extension). A score is calculated regarding the number of matches and mis-
matches in the immediate neighborhood. If the score exceeds a threshold
value, then the second phase is activated. This phase is more complex and
considers insertion and deletion errors (gap extension). Again, a score is com-
puted. If it exceeds a threshold value, the alignment is reported as a signifi -
cant one.

Practically, the PLAST algorithm can be described as follows:

Algorithm 1 PLAST principle
 0: GapAlignList = Ø
 1: IndexTable1 = index_bank(Bank1)
 2: IndexTable2 = index_bank(Bank2)

10768_C009.indd 18410768_C009.indd 184 6/17/2010 7:52:46 PM6/17/2010 7:52:46 PM

Seed-Based Parallel Protein Sequence Comparison 185

 3: for all possible seed sk
 4: AAStringList1 = make_string(IndexTable1[sk])
 5: AAStringList2 = make_string(IndexTable2[sk])
 6: for all s1 in AAStringList1
 7: for all s2 in AAStringList2
 8: UngapAlign = ungap_extension(s1,s2)
 9: if UngapAlign.score > T1 and UngapAlign not in
 GapAlignList
10: then GapAlign = gap_extension(UngapAlign)
11: if GapAlign.score > T2
12: then GapAlignList.add_and_sort(GapAlign)

Lines 1 and 2 build the two bank indexes. Line 3 iterates on all possible seeds.
Then, for each seed, two lists of short amino acid strings are constructed
(lines 4, 5). These strings are made from the left and right neighborhoods of
the seeds, and have a fi xed length. Pairwise extensions of all elements of the
two lists are performed (lines 6, 7, 8). If the ungap alignment resulting from
the ungap extension procedure has a score greater than a threshold value
(T1) and if it is not included in an alignment already computed (line 9), then
the gap procedure is launched. If the score of this new alignment exceeds
a new threshold value (T2) then it is added and sorted in the fi nal list of
alignments.

The test checking if an ungap alignment is included in the fi nal list of
alignments (line 9) is essential: usually, signifi cant alignments contain sev-
eral anchoring sites from where fi nal alignments can be generated. This test
avoids the duplication (and the computation) of gap alignments. To speedup
the inclusion search (line 9) the fi nal list of alignments is sorted by their
diagonal number (line 12).

Actually, this algorithm has great potentiality for parallelism because the
3 for all nested loops are independent. Basically, each seed extension can
be performed concurrently. A fi rst medium-grained parallelism, oriented to
multicore architecture, is thus to consider a multithreading programming
model for the outer for all loop (line 3). N Threads can thus be associated
to N different seed extensions. The parallel multithreaded version of the
algorithm is the following:

Algorithm 2 Parallel scheme
Main Thread
0: GapAlignList = Ø
1: IndexTable1 = index_bank(bank1)
2: IndexTable2 = index_bank(bank2)
3: create N extension threads
4: SK = 0
5: wait until SK >= MAX_SK
Extension Thread
1: while (SK<MAX_SK)
2: sk = SK++

10768_C009.indd 18510768_C009.indd 185 6/17/2010 7:52:47 PM6/17/2010 7:52:47 PM

186 Bioinformatics: High Performance Parallel Computer Architectures

3: AAStringList1 = make_string(IndexTable1[sk])
4: AAStringList2 = make_string(IndexTable2[sk])
5: for all s1 in AAStringList1
6: for all s2 in AAStringList2
7: UngapAlign = ungap_extension(s1,s2)
8: if UngapAlign.score > T1 and UngapAlign not in

GapAlignList
9: then GapAlign = gap_extension(UngapAlign)
10: if GapAlign.score > T2
11: then GapAlignList.add_and_sort(GapAlign)

The main thread constructs 2 index tables before creating N threads ded-
icated to the computation of the alignments. It sets a share variable SK to
0 (line 4) representing the fi rst seed and wait until all the seeds have been
processed. The extension threads increment the variable SK and compute
the alignments associated to this specifi c seed. The instruction sk = SK++ is
an atomic operation to avoid two threads from getting the same SK value.

A second level of parallelism is brought by the two inner for all loops
(lines 5 and 6). If i is the number of elements of IndesxList1 and j the num-
ber of elements of IndexList2, then there are systematically i × j ungap
independent extensions to compute. To exploit the regularity of the computa-
tion, the lines 5–11 can be decomposed as follows:

5: for all s1 in AAStringList1
6: for all s2 in AAStringList2
7: UngapAlign = ungap_extension(s1,s2)
8: if UngapAlign.score > T1
9: then UngapAlignList.add(UngapAlign)
10: for all x in UngapAlignList
11: if x not in GapAlignList
12: then GapAlign = gap_extension(UngapAlign)
13: if GapAlign.score > T2
14: then GapAlignList.add_and_sort(GapAlign)

The computation is split into two distinct parts: lines 5 to 9 compute ungap
extensions and store the successful ungap alignments into the ungap align-
ment list. This list is then scanned for the gap extension procedure (line 10
to 14). For large databases, it appears that most of the computation time is
spent in the fi rst part. Hence, the computation performed by these 2 nested
loops (lines 5 to 9) can be deported on specifi c hardware that is able to sup-
port a very high parallelization of this task.

9.2.2 Bank Indexing

The bank indexing process consists of modifying raw genomic data struc-
tures (sequence of characters) into more complex structures favoring the fast

10768_C009.indd 18610768_C009.indd 186 6/17/2010 7:52:47 PM6/17/2010 7:52:47 PM

Seed-Based Parallel Protein Sequence Comparison 187

location of hits between sequences. The protein indexing scheme is based on
the concept of subset seeds [14–15]. A subset seed is a word of W characters
over an extended alphabet: the extra characters represent a specifi c set of
amino acids. Below, a subset seed of size 4 is presented:

character 1: A,C,D,E,F,G,H,I,K,L,M,N,P,Q,R,S,T,V,W,Y•
character 2: c={C,F,Y,W,M,L,I,V}, g={G,P,A,T,S,N,H,Q,E,D,R,K}•
character 3: A,C,f={F,Y,E}, G, i={I,V}, m={M,L}, n={N,H}, P, q={Q,E,D}, •
r={R,K}, t={T,S}
character 4: A,C,D,E,F,G,H,I,K,L,M,N,P,Q,R,S,T,V,W,Y•

As an example, the subset seed AcGL represents the words ACGL, AFGL,
AYGL, AWGL, AMGL, ALGL, AIGL, and AVGL in the amino acid alphabet.
Compared to the BLAST algorithm that requires two neighboring seeds of
three amino acids to start the computation of an alignment, we use only one
subset seed of four characters. The great advantage is that the computation
is highly simplifi ed by eliminating data dependencies and making it much
more suitable for parallelism. An extension immediately starts when two
identical subset seeds are found in two different protein sequences, avoid-
ing extra computation for managing a couple of seeds. In [16], it is shown
that this subset seed structure and the BLAST approach have comparable
sensitivity.

The principle of the bank indexing with subset seed is illustrated in Figure 9.1.
Each entry of an index table points to a list of subset seed positions. Each word
of four amino acids in the bank needs to be translated into its equivalent subset
seed. For example, the words AYIL, AMVL, and AVVL, respectively, at posi-
tions 0, 12, and 20 are translated into the subset seed word AciL. The entry
AciL points to a list of integers where such words occur in the bank. Actually,

A c A A

W g t W

A c i L 0, 12, 20

A Y I L M T A S D P G L A M V L H P N S A V V L N S

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Index array

FIGURE 9.1
Principle of the indexing with subset seeds.

10768_C009.indd 18710768_C009.indd 187 6/17/2010 7:52:47 PM6/17/2010 7:52:47 PM

188 Bioinformatics: High Performance Parallel Computer Architectures

for memory optimization purpose, the positions are encoded in a relative way:
only the difference between two consecutive positions is reported, leading to a
16-bit encoding. For comparing a protein bank and a DNA bank, the DNA bank
is translated into its six reading frames and then indexed in the same way.

The advantage of this index structure is that it immediately provides all
the hits between two protein sequences. Coming back to Algorithm 1, line 3,
it can be seen that building the two index lists is straightforward.

9.2.3 Ungap Extension

The ungap extension procedure aims to rapidly check if a hit can give raise
to a signifi cant alignment. Thus, starting from the hit, left and right investi-
gations are done to measure the similarity of the close neighborhood. In our
approach, the neighborhood is fi xed to a predefi ned length of L1 amino acids
in both directions, and the score of an ungap alignment is only computed on
this restricted area as follows:

Algorithm 3 ungap extension
1: ungap_extension(s1,s2)
2: score = 0
3: max_score = 0
4: for x = 1 to L1+W
5: score = score + SUB(s1[x],s2[x])
6: max_score = max(score,max_score)
 7 score = max_score
 8: for x = L1+W+1 to 2*L1+W
 9: score = score + SUB(s1[x],s2[x])
10: max_score = max(score,max_score)
11: return score

The ungap extension procedure takes as input two strings of amino acids.
Their sizes are equal to 2*L1 + W with L1 the length of the neighborhood and
W the length of the seed. The fi rst W characters represent the seed, the L1
following ones represent the right neighborhood, and the last L1 characters
represent the left neighborhood. Hence, lines 4 to 6 compute the right exten-
sion (including the seed) and lines 8 to 10 compute the left extension. After
various tests, L1 has been set to 22 (1) for practical implementation issues and
(2) because it provides satisfactory results, but the size of the neighborhood
could be set to any other values.

This computation is very regular (no if statement) and, consequently, well
suited for an implementation on highly parallel hardware.

9.2.4 Gap Extension

The gap extension procedure increases the search space by allowing gaps to
be included in the fi nal alignment. It is launched only if the previous step

10768_C009.indd 18810768_C009.indd 188 6/17/2010 7:52:47 PM6/17/2010 7:52:47 PM

Seed-Based Parallel Protein Sequence Comparison 189

detects enough similarity near the hits. Algorithms for computing align-
ments with gaps are based on dynamic programming techniques, which are
time-consuming procedures. And, as shown in [17], in some cases, this step
may represent up to 30% of the total computation time. Parallelizing this
procedure is thus sometimes interesting to minimize the overall computa-
tion time.

Again, with the objective of making the computation as regular as possible,
this step is split into two phases. The fi rst phase, called small gap extension,
restricts the search both on a close-hit neighborhood and on a specifi c number
of allowed gaps. A dynamic programming algorithm is run, starting from both
sides of the hit, but on a limited number of diagonals, as shown Figure 9.2.

L2 is the length of the neighborhood and λ the size of the banded diago-
nals. The search space is represented by the shadow polygon. If the score of
the restricted gap alignment exceeds a threshold value (T3), then a full gap
extension (second phase) is computed using the standard NCBI-BLAST pro-
cedure, leading to similar results with this software.

The main reason to break this step into two phases is that the fi rst step
exhibits high potential parallelism. As a matter of fact, the small gap exten-
sion can be done concurrently on many different sequences of size W + 2*L2
because each computation requires identical search space.

Again, this phase can be computed in a parallel way.

9.2.5 Generic Hardware Implementation

The implementation of PLAST combines the multithreaded level approach
with the fi ne-grained FPGA or GPU parallelization. The extension thread of

L2

2*l

FIGURE 9.2
Search space for the fi rst phase of the gap extension procedure.

10768_C009.indd 18910768_C009.indd 189 6/17/2010 7:52:47 PM6/17/2010 7:52:47 PM

190 Bioinformatics: High Performance Parallel Computer Architectures

Algorithm 2 is modifi ed as shown below, the main thread staying the same.
For a given seed, two lists of amino acid strings are built from the index
tables (lines 3 and 4). These two lists are processed by the UNGAP function,
which sent back a list of ungap alignments exceeding a threshold value T1
(line 5). The UNGAP function can be parallelized using two different tech-
nologies: FPGA accelerator or GPU.

Elements of the list that are not included in the list of fi nal alignments
are put on a temporary list (lines 6–8). Actually, this list contains couples
of sequences of size W + 2*L2 ready for the next step. When the size of this
list overcomes its capacity, the fi rst phase of the gap extension is activated.
All the ungap alignments inside the temporary list are processed by the
SMALL_GAP function. Again, this function can be parallelized on specifi c
hardware taking as input a large set of sequences and sending back a list of
alignments having a score greater than a threshold value T3. These align-
ments are then extended using the standard NCBI BLAST procedure.

Algorithm 4 Multithreaded and fine-grained parallelism
Extension thread
 0: TmpList = Ø
 1: while (SK<MAX_SK)
 2: sk = SK++
 3: AAStringList1 = make_string(IndexTable1[sk])
 4: AAStringList2 = make_string(IndexTable2[sk])
 5: UngapAlignList = UNGAP (AAStringList1,AAStringList2,T1)
 6: for all UngapAlign in UngapAlignList
 7: if UngapAlign not in GapAlignList
 8: then add UngapAlign in TmpList
 9: if size(TmpList) >= N
10: then SmallGapAlignList = SMALL_GAP (TmpList,T3)
11: for SmallGapAlign in SmallGapAlignList
12: GapAlign = NCBI_BLAST_ALIGN (SmallGapAlign)
13: if GapAlign.score > T2
14: then GapAlignList.add_and_sort(GapAlign)
13: TmpList = Ø

This generic hardware implementation allows the PLAST software to adapt
itself regarding the available parallel resources.

9.3 Parallelization

Whatever the target technology, the UNGAP function takes as input two
lists of short amino acid strings and detects the couple of sequences
having an ungap alignment score above a threshold value. An all-by-all
pairwise comparison is done between all sequences of the two lists, as

10768_C009.indd 19010768_C009.indd 190 6/17/2010 7:52:47 PM6/17/2010 7:52:47 PM

Seed-Based Parallel Protein Sequence Comparison 191

explained earlier. This function has been parallelized both on GPU and
FPGA platforms.

The SMALL _GAP function acts as a preprocessing step for computing small
gap alignments. It takes as input a list of pairs of sequences and computes a
score including gap errors. The search space is however limited by the length
of the sequences and by the number of allowed gaps. Parallelization of this
function has been done only on GPU.

9.3.1 UNGAP Parallelization on GPU

The parallelization of the UNGAP function on GPUs is an adaptation of the
matrix multiplication algorithm proposed in the CUDA documentation
[18]. Matrices of numbers are simply replaced by blocks of strings of amino
acids. More precisely, for each function call, there are two lists of amino acid
sequences to process: List1 and List2. Suppose that block B1[N1, L] and block
B2[N2, L] correspond, respectively, to List1 and List2, with L the length of the
amino acid sequences and N1 (N2) the number of sequences in List 1 (List2).
The result of the computation is a third block C[N1, N2] which stores the scores
of all the computation between block B1 and block B2. In other words, C[i][j]
hold the score of the ith sequence of List1 and the jth sequence of List2.

The overall treatment is done by partitioning the computation into blocks
of threads computing only a subblock of C, called Csub. Each thread within the
block processes one element of Csub dimensioned as a 16 × 16 square matrix.
This size has been chosen to optimize the memory accesses, allowing the GPU
internal fast memory to store 2 × 16 amino acid sequences that can simultane-
ously be shared by 256 threads. Figure 9.3 gives the CUDA kernel code opti-
mized for sequence of length equal to 48 amino acids (BLOCK_SIZE = 16).

Each score is computed by fi rst loading the two corresponding 16 × 16
subblocks from global memory to shared memory with one thread load-
ing one element of each block and by having each thread getting one sub-
stitution cost. Each thread accumulates this cost to the current score and
performs a maximum operation. When it is done, the result is written to
the global memory. By doing the computation in such a way, the shared
memory is highly solicited, saving a lot of global memory bandwidth as
blocks B1 and B2 are read from global memory only three times. For a max-
imal effi ciency, the substitution matrix is stored in the texture memory.

Practically, the UNGAP function consist in sending to the GPU board two
lists of amino acid sequences and getting back an N1xN2 matrix of scores. A
sequential postprocessing is however required to extract signifi cant scores.

9.3.2 UNGAP Parallelization on FPGA

The reconfi gurable architecture implementing the computation of the
UNGAP procedure is a linear array of processing elements (PEs) dedicated
to the calculation of a score between two amino acid sequences. If P is the

10768_C009.indd 19110768_C009.indd 191 6/17/2010 7:52:48 PM6/17/2010 7:52:48 PM

192 Bioinformatics: High Performance Parallel Computer Architectures

UNGAP _ kernel(char* C, char* B1, char* B2, int N1, int N2)
{
 int bx = blockIdx.x; // block index
 int by = blockIdx.y;

 int tx = threadIdx.x; // thread index
 int ty = threadIdx.y;

 int Begin1 = N1 * BLOCK_SIZE * by; // B1 index
 Begin1 += N1 * ty + tx;

 int Step1 = BLOCK_SIZE; // B1 iteration step

 int Begin2 = __mul24(BLOCK_SIZE,bx); // B2 index
 Begin2 += N2 * ty + tx;
 int Step2 = __mul24(BLOCK_SIZE,N2); // B2 iteration step

 int Csub = 0; // initialize results

block
 int CsubMaxi = 0;

 __shared__ int SB1[BLOCK_SIZE][BLOCK_SIZE]; // to store sub-

block of B1
 __shared__ int SB2[BLOCK_SIZE][BLOCK_SIZE]; // to store sub-

block of B2

 for (int j=0; j<3; j++)
 {
 SB1(ty, tx) = B1[Begin1 + j*Step1]; // load the

matrices from
 SB2(ty, tx) = B2[Begin2 + j*Step2]; // device to

shared memory

 __syncthreads(); // make sure the

blocks are loaded

 for (int k=0; k<BLOCK_SIZE; k++) // score computation
 {
 Csub = Csub + texfetch(matrix, SB1(ty, k), SB2(k, tx));
 if(Csub>CsubMaxi) CsubMaxi = Csub;
 }
 __syncthreads();
 }

 int c = Step2 * by + Begin2; // write the block to

global memory,
 C[c] = CsubMaxi; // each thread writes

one element
}

FIGURE 9.3
CUDA code for the UNGAP function.

10768_C009.indd 19210768_C009.indd 192 6/17/2010 7:52:48 PM6/17/2010 7:52:48 PM

Seed-Based Parallel Protein Sequence Comparison 193

number of PEs, then P scores can be computed simultaneously between one
sequence and P sequences. Figure 9.4 depicts the architecture principle of
the accelerator. More details can be found in [19]. It works as follows: if N2
is the number of sequences of List2, then N2/P iterations are required. One
iteration loads P sequences into P different PEs in a systolic way. Then all
sequences of List1 are broadcasted to all PEs, character by character, every
clock cycle. Each time a PE receives a new amino acid, it updates its score.
P scores are then available after L cycles (L is the length of the amino acid
string). The scores are sent to a result management module that selects the
PEs having scores greater than a predefi ned threshold value (T1). These
scores are pushed through a fi rst-in-fi rst-out (FIFO) to the output channel.

For effi ciency purpose, the array has been split into subarrays of fi xed size
that can be pipelined together. The advantages of this structure are twofold:
(1) the architecture can be adapted to many FPGA platforms according to the
available reconfi gurable resources; (2) the performance of the system only
depends of the number of PEs; the frequency remains identical whatever the
number of subarrays (Figure 9.4).

Compared to the GPU approaches, the host does not need to extract the high-
est scores. This is done online by the result management module. Instead, the
host receives a couple of integers indicating which pair of amino acid sequence
has generated a signifi cant score. This mechanism contributes to signifi cantly
decrease the need for a high-data bandwidth as small amount of information
needs to be transferred from the FPGA accelerator to the host memory.

9.3.3 SMALL GAP Parallelization on GPU

The parallelization of the SMALL _GAP function on GPU is straightforward.
The host downloads the GPU memory with couples of strings of identical

P
E

CTRL
List1

CTRL
List2

CTRL
SCORE

P
E

P
E

P
E

P
E

P
E

P
E

P
E

Result management module Result management module

FIGURE 9.4
Principle of the FPGA architecture.

10768_C009.indd 19310768_C009.indd 193 6/17/2010 7:52:48 PM6/17/2010 7:52:48 PM

194 Bioinformatics: High Performance Parallel Computer Architectures

size (2*L2 + W). Then, a thread is devoted to the computation of one score
between couples of strings. Each thread performs a dynamic programming
treatment using a banded Smith–Waterman algorithm. All the scores are
sent back to the host, which needs to postprocess these data before trigger-
ing, if necessary, a full gap extension.

9.4 Comparison of the GPU/FPGA Technologies

The aim of this section is to evaluate the different approaches on a com-
mon base and to discuss the advantages and the drawbacks for each of them
having in mind the minimization of the execution time. Here, the sensitiv-
ity aspect will not be discussed. A detailed study showing that PLAST and
BLAST have an equivalent sensitivity can be found in [16]. Briefl y, both algo-
rithms use the same family of heuristics. They slightly differ on the seed
choice and, consequently, do not generate exactly the same list of alignments.
A few percentages of alignments are found by BLAST and not by PLAST.
Inversely, a few are found by PLAST and not by BLAST. The difference is
mainly expressed by alignments of weak similarity and represents less than
2% for an e-value of 10–3.

The reference is the execution time of the BLAST software running on a
multithreaded mode. It should allow the readers (1) to measure the contribu-
tions of the various technologies over a conventional but highly optimized
implementation and (2) to appreciate the difference of performances between
GPU and FPGA technologies. Two hardware platforms are considered: a
GPU platform and a FPGA platform.

9.4.1 GPU Platform

The GPU platform is a Dell Server, 2.6 GHz Xeon Core 2 Quad processor with
8 GB of RAM running Linux Fedora 7. It is equipped with two NVIDIA Tesla
C870 boards interconnected through peripheral component interconnect (PCI)
express buses. Each board houses 1.5 GB of GDDR3 memory and a graphic
chip including 128 multithreaded processors. The programming language is
CUDA. The UNGAP and SMALL_GAP functions are run on the GPU boards.

9.4.2 FPGA Platform

The FPGA platform is a SGI ALTIX 350 machine composed of an Intel
Itanium2 Core2 (1.6 GHz) with 4 GB of RAM, running SUSE Linux, and
equipped with a RASC-100 accelerator (reconfi gurable application-specifi c
computing). This device is interconnected to the host system through a
NUMAlink bus and is made of two Xilinx Virtex-4 FPGA components. The

10768_C009.indd 19410768_C009.indd 194 6/17/2010 7:52:48 PM6/17/2010 7:52:48 PM

Seed-Based Parallel Protein Sequence Comparison 195

programming language is VHDL. Only the UNGAP function is run on the
FPGA board. The SMALL_GAP function is processed by the host.

9.4.3 Software and Dataset

Like BLAST, PLAST is declined into several programs targeting various
 datasets. Here, the comparison between TBLASTN/TPLASTN is only pre-
sented. Reasons are as follows:

Sequence comparison performed by this program is time consum-•
ing because of the translation of the DNA bank into its six reading
frames, and consequently very well suited for demonstrating the
effi cient contributions of GPU or FPGA accelerators.
The gap extension step in these two programs represents generally •
a minor percentage of the execution time. As an FPGA implementa-
tion does not exist for the SMALL_GAP function, the FPGA approach
will not be too disadvantaged.

The GPU and FPGA version of TPLASTN are, respectively, referenced as
GPU-TPLASTN (GPU) and RCC-TPLASTN (reconfi gurable computing).

The dataset is composed as follows:

The human chromosome 1 (220 × 10• 6 bp): hchr1
Four protein banks randomly constructed from the GenBank Non-•
Redundant protein database:

P1K : 1,000 protein sequences (0.336 × 10• 6 aa)
P3K : 3,000 protein sequences (1.025 × 10• 6 aa)
P10K : 10,000 protein sequences (3.433 × 10• 6 aa)
P30K : 30,000 protein sequences (10.335 × 10• 6 aa)

The BLAST (release 2.2.18) options have been set as follows:

blastall –p tblastn –d hchr1 –i pxxK –o rxxK –m 8 –a 2 –e 0.001

The –m 8 option provides a tabulated output synthesizing the features of
the alignments. The –a 2 option runs BLAST in a multithreaded mode (two
threads). The –e 0.001 option sets the e-value to 10–3.

9.4.4 Comparison of the Execution Times

Tables 9.1 and 9.2 report the execution times of the NCBI TBLASTN, GPU-
TPLASTN, and RCC-TPLASTN

Note that the NCBI TBLASTN execution time is different for the two plat-
forms. However, this time serves as a reference to compare the speedup with

10768_C009.indd 19510768_C009.indd 195 6/17/2010 7:52:48 PM6/17/2010 7:52:48 PM

196 Bioinformatics: High Performance Parallel Computer Architectures

accelerators (GPU or FPGA). To be fair, for each experiment, NCBI TBLASTN,
GPU-TPLASTN, and RCC-TPLASTN have been run in a multithreaded mode
with two threads. In the GPU mode, each thread drives a NVIDIA Tesla C870
board and progresses independently as explained in Section 9.2. Similarly, in
the RCC mode, each thread controls a separate FPGA Virtex-4 device.

Globally, it can be seen that performances increase with the size of the
data, whatever the technology or the platform used. A plateau is, however,
reached for huge computations (a few hours). This can be explained by the
fact that, in that case, the UNGAP and SMALL_GAP functions represent a
very high percentage of the total execution time, which is effi ciently paral-
lelized on the accelerators. On the other hand, when the volume of data is
low, the ratio between the sequential part and the parallel part increases
and, following the Amdahl’s law, limits the potential speedup.

9.4.5 GPU Implementation

Adding two NVIDIA C870 Tesla boards provides a speedup factor of 10 for
intensive protein sequence comparison compared to the NCBI BLAST mul-
tithreaded version. Each board integrates a GPU chip (G80) housing 128 pro-
grammable processing units. A question is: can we do better? A fi rst answer
is to take the following generation of graphic boards to test the scalability

TABLE 9.1

Execution Time (in Seconds) of NCBI TBLASTN and GPU-
TPLASTN on the GPU Platform (2 × C870 TESLA NVIDIA
Boards—128 PEs per Chip)

NCBI TBLASTN
(2 threads)

GPU-TPLASTN
(2 boards) Speedup

P1K 754 140 5.38
P3K 2,172 258 8.41
P10K 7,436 744 9.99
P30K 21,951 2165 10.13

TABLE 9.2

Execution Time (in Seconds) of NCBI TBLASTN and RCC-TPLASTN on
the FPGA Platform (SGI RASC-100–2 × Xilinx Virtex 4–192 PEs per Chip)

NCBI TBLASTN
(2 threads)

RCC-TPLASTN
(2 FPGA) Speedup

P1K 1,162 363 3.20
P3K 3,441 398 8.64
P10K 11,733 643 18.29
P30K 37,088 1323 28.03

10768_C009.indd 19610768_C009.indd 196 6/17/2010 7:52:48 PM6/17/2010 7:52:48 PM

Seed-Based Parallel Protein Sequence Comparison 197

of this approach. Experimentations with the NVIDIA GTX-280 board (T10
chip - 240 processing units) are reported Table 9.3.

In this experiment, the multithreaded mode is disabled for only highlight-
ing the difference of performance between two successive generations of
graphic boards. Several comments can be made as follows:

The threads overhead is negligible. The speedup with two threads •
and two boards (Table 9.1) is very close to the speedup with one
thread and one board (Table 9.3, column 7).
Moving to the next board generation provides an immediate increas-•
ing of performance (columns 7 and 8) without any modifi cation of
the CUDA code.
The • UNGAP function represents an important percentage of the total
execution time. Thus, there are still some rooms for further speedup
improvements. In the P30K confi guration, the theoretical maximum
speedup compared with the NCBI TBLASTN software is about 40
(col2/(col5–col6)). This value is estimated as the NCBI BLASTN exe-
cution time divided by the sequential part of GPU-TPLASTN.

9.4.6 FPGA Implementation

Table 9.2 reports the results for 2 × 192-PE arrays implemented on both FPGA
devices. This is the maximum of PEs we were able to fi t inside the FPGA
device. However, we experiment the performances on various array sizes, as
shown in Table 9.4.

Again, the multithreaded mode is disabled to only measure the contribu-
tion of the FPGA accelerator. It can be seen that the number of PEs is inversely
proportional to the execution time of the UNGAP function. For example, if the
UNGAP speedup is measured relatively to 64 PEs, we get a linear speedup, as
shown in Table 9.5.

Larger arrays are thus still possible to decrease signifi cantly the overall
execution time. The SGI RASC-100 accelerator houses Virtex-4 Xilinx compo-
nents of 200 K logic cells with 336 × 18 Kb RAM Blocks (Virtex-4 LX 200). With
the next generation of Xilinx components, a faster 384 PE array could be eas-
ily implemented in a single FPGA (Virtex6: XC6VLX550T) and would at least
provide a speedup ranging from 5 to 6 compared to a 100 MHz 64 PE array. In
that case, the overall speedup would be somewhere between 45 and 50.

9.5 Conclusion

PLAST is a parallel software for intensive protein comparison. Unlike BLAST,
it does not target the scan of genomic databases. It has been designed for

10768_C009.indd 19710768_C009.indd 197 6/17/2010 7:52:49 PM6/17/2010 7:52:49 PM

19
8

Bioinform
atics: H

igh Perform
ance Parallel C

om
puter A

rchitectures

TABLE 9.3

Performance Comparison between the NVIDIA Tesla C870 Board and the NVIDIA GTX-280 Board (Time Is Given in Seconds)

NCBI
TBLASTN
(1 thread)

GPU Tesla C870 TPLASTN GPU GTX-280 TPLASTN NCBI Speedup GTX-280 Speedup

Total UNGAP Total UNGAP Tesla GTX 280 Total UNGAP

P1K 1,369 250 114 216 80 5.47 6.33 1.15 1.42
P3K 4,009 474 306 383 215 8.45 10.36 1.23 1.42
P10K 13,391 1,341 971 1,053 681 9.98 12.71 1.27 1.42
P30K 40,444 3,932 2,917 3,077 2,057 10.38 13.14 1.27 1.42

10768_C
009.indd 198

10768_C
009.indd 198

6/17/2010 7:52:49 PM
6/17/2010 7:52:49 PM

Seed-Based Parallel Protein Sequence C
om

parison
19

9

TABLE 9.4

Execution Time (in Seconds) of RCC-TPLASTN with Different Numbers of PEs

NCBI
TBLASTN
(1 thread)

RCC-TPLASTN 64 PEs RCC-TPLASTN 128 PEs RCC-TPLASTN 192 PEs

Total UNGAP
Speed
up Total UNGAP Speedup Total UNGAP Speedup

P1K 2,185 476 220 4.59 421 176 5.19 414 169 5.27

P3K 6,448 738 462 8.73 554 280 11.63 496 223 13.00

P10K 21,888 1,763 1,366 12.41 1,104 720 16.02 890 510 24.59

P30K 65,461 4,463 3,932 14.66 2,744 2,015 23.85 2,099 1,373 31.86

10768_C
009.indd 199

10768_C
009.indd 199

6/17/2010 7:52:49 PM
6/17/2010 7:52:49 PM

200 Bioinformatics: High Performance Parallel Computer Architectures

processing two large banks of sequences. Different versions are available
depending on the nature of the data: PLASTP (protein/protein), PLASTX
(DNA/protein), TPLASTN (protein/DNA), and TPLASTX (DNA/DNA).
DNA sequences are translated into six reading frames. The heart of these
programs and their parallelization scheme are, however, identical.

Like FASTA and BLAST, PLAST uses the concept of seeds to reduce the
search space. The main difference is that two index tables are built, allow-
ing groups of identical hits to be immediately identifi ed. Each group can
be processed independently on a multithreaded architecture (fi rst level of
parallelism), and the computation of each group can be deported on a GPU
or FPGA accelerator (second level of parallelism). The combination of these
two levels of parallelism fi t well with current machines made of multicore
processors and this can easily be enhanced with hardware accelerators con-
nected through fast interfaces, like PCI express buses.

The originality of PLAST is that its design has been thought, in its earlier
steps, as a parallel algorithm able to target the current and the next genera-
tions of computer systems. To compensate the end of systematical increase
of the microprocessor clock frequency, to optimize the electric power con-
sumption, and to continue to follow the Moore’s law, the future chips will
be highly parallel systems. The GPGPU architectures are probably an inter-
mediate (and necessary) phase before more fl exible parallel structures of
hundreds of PEs. Bioinformatics algorithms need to be revisited to benefi t
from maximal effi ciency provided by these new architectures to face the
exponential demand in terms of genomic data processing.

9.6 References

 1. UniProt Consortium, The Universal Protein Resource (UniProt), Nucleic Acids
Research 37 (Database issue): D169–D174, 2009.

 2. Benson DA, Karsch-Mizrachi I, Lipman DJ, Ostell J, Wheeler DL, GenBank,
Nucleic Acids Research, 36 (Database issue): D25–D30, 2008.

 3. Shendure J, Hanlee J, Next-generation DNA sequencing, Nature Biotechnology,
26(10): 1135–1145, 2008

TABLE 9.5

Speedup Compared to the Number of PEs

proc 64 PEs 128 PEs 192 PEs

UNGAP
(second) 3,992 2,015 1,373

Speedup
(relatively to 64 PEs) 1 1. 98 2.9

10768_C009.indd 20010768_C009.indd 200 6/17/2010 7:52:49 PM6/17/2010 7:52:49 PM

Seed-Based Parallel Protein Sequence Comparison 201

 4. Lavenier D, Giraud M, Bioinformatics applications. In Reconfi gurable Computing:
Accelerating Computation with Field-Programmable Gate Arrays, MB Gokhale, PS
Graham, editors, chapter 9, Springer, 2005.

 5. Pearson W, Lipman D, Improved tools for biological sequence comparison,
Proceedings of the National Academy of Science, 85(8): 2444–2448, 1988.

 6. Altschul S, Gish W, Miller W, Myers E, Lipman D, Basic local alignment search
tool, Journal of Molecular Biology, 215(3): 403–410, 1990.

 7. Altschul S, Madden T, Schäffer A, Zhang J, Zhang Z, Miller W, Lipman D,
Gapped BLAST and PSI-BLAST: a new generation of protein database search
programs, Nucleic Acids Research, 25: 3389–3402, 1997

 8. Muriki K, Underwood K, Sass R, RC-BLAST: towards a portable, cost-effec-
tive open source hardware implementation. In 19th International Parallel and
Distributed Processing Symposium IPDPS05, 2005.

 9. Lancaster J, Jacob A, Buhler J, Harris B, Chamberlain R, Mercury BLASTP:
accelerating protein sequence alignment, ACM Transactions on Reconfi gurable
Technology and Systems, 1(2), 2008.

 10. Lavenier D, Gille Georges G, Xinchu L, A reconfi gurable index fl ash memory
tailored to seed-based genomic sequence comparison algorithms, VLSI Signal
Processing, 48(3): 255–269, 2007.

 11. Fei X, Yong D, Jinbo X, Hardware BLAST algorithms with multi-seeds detection
and parallel extension. In Reconfi gurable computing: Architectures, tools and
applications, 4th International Workshop, ARC 2008, 39–50, 2008.

 12. Kasap S, Ying L, Benkrid K, High performance FPGA-based core for BLAST
sequence alignment with the two-hit method. In 8th IEEE International Conference
on BioInformatics and BioEngineering, 1–7, 2008.

 13 Herbordt M, Model J, Gu Y, Sukhwani B, Van-Court T, Single pass, BLAST-
like, approximate string matching on FPGAs. In IEEE Symposium on Field-
Programmable Custom Computing Machines, 217–226, 2006.

 14. Roytberg M, Gambin A, Noé L, Lasota S, Furletova E, Szczurek E, Kucherov G,
On subset seeds for protein alignment, IEEE/ACM Transactions on Computational
Biology and Bioinformatics, 99(1): 2009.

 15 Peterlongo P, Noe L, Lavenier D, Georges G, Jacques J, Kucherov G, Giraud
M, Protein similarity search with subset seeds on a dedicated reconfi gurable
hardware. In Proceedings of the 2nd Workshop on Parallel Bio-Computing Workshop
(PBC’07), Springer, 2007, 1240–1248.

 16. Nguyen V, Lavenier D, PLAST: Parallel local alignment search tool for database
comparison, BMC Bioinformatics, to appear, 2009.

 17. Nguyen V, Lavenier D, Fine-grained parallelization of similarity search between
protein sequences, INRIA Report, RR-6513, 2008.

 18. NVIDIA CUDA compute unifi ed device architecture, Programming guide, ver-
sion 1.0, June 23, 2007.

 19. Nguyen V, Cornu A, Lavenier D. Implementing protein seed-based compari-
son algorithm on the SGI RASC-100 platform, 16th Reconfi gurable Architectures
Workshop, May 25–26, Rome, Italy, 2009.

10768_C009.indd 20110768_C009.indd 201 6/17/2010 7:52:49 PM6/17/2010 7:52:49 PM

203

10
Database Searching with Profi le-Hidden
Markov Models on Reconfi gurable
and Many-Core Architectures

John Paul Walters, Vipin Chaudhary, and Bertil Schmidt

10.1 Introduction .. 203
10.2 Background ... 204
10.3 FPGA Parallelization and Results ... 209

10.3.1 System Design .. 209
10.3.2 Performance Evaluation .. 213

10.4 GPU Parallelization and Results.. 215
10.4.1 CUDA Hardware ... 216
10.4.2 Results ... 216

10.4.2.1 Database Sorting ... 217
10.4.2.2 Memory Layout Optimizations 217
10.4.2.3 Memory Hierarchy Optimizations 218
10.4.2.4 Host Optimizations .. 219

10.5 Discussion ... 220
10.6 References ... 221

10.1 Introduction

Hidden Markov models (HMMs) have been applied as statistical models in
the area of speech recognition since the early 1970s. The use of HMMs for
protein modeling was introduced in the early 1990s by Haussler et al. [1] and
Krogh et al. [2]. The general HMM structure to model protein sequence fam-
ilies is known as profi le HMM. A possible way to construct (or learn) such
profi le HMMs is by using a multiple sequence alignment (MSA) of proteins
belonging to the same family as an input (which is explained in more details
in Section 10.2).

A profi le HMM M can emit any given protein sequence x with a certain
probability P(xM). A common way to defi ne P(xM) is by the probability of
a path of highest likelihood through M emitting x, which can be computed

10768_C010.indd 20310768_C010.indd 203 6/17/2010 7:53:20 PM6/17/2010 7:53:20 PM

204 Bioinformatics: High Performance Parallel Computer Architectures

using the well-known Viterbi algorithm [3]. An alternative way to defi ne
P(xM) is by summing up the probabilities of all possible paths through M
emitting x, which can be computed by the Forward algorithm. In any case,
the probability P(xM) can be used as a basic building block for two common
database search tasks:

 1. Searching a profi le HMM database with a query protein sequence: signif-
icant matches to profi le HMMs can identify the query as a member
of the modeled protein families. This search procedure is hence fre-
quently used for annotating the protein sequences.

 2. Searching a protein sequence database with a query profi le HMM: signifi -
cant matches to the query HMM can identify additional homologous
proteins of the family modeled by the query HMM.

Both search tasks frequently employ the Viterbi or Forward algorithm
to compare (or align) each sequence/HMM to the query HMM/sequence.
Owing to the quadratic time complexity of both algorithms the search proce-
dure is therefore highly time consuming. Actual runtime of course depends
on the actual database/query sizes.

Prime examples where database searching with profi le HMMs requires
acceleration are metagenomic sequencing studies such as the global ocean
sampling (GOS) expedition [4]. By aligning all generated GOS protein
sequences to the Pfam [5] and TIGRFAM [6] profi le HMM databases Yooseph
et al. [4] were able to identify and annotate a large amount of new proteins and
protein families. However, this procedure required 327 hours on a hardware
system with multiple fi eld-programmable gate array (FPGA) accelerators.

In this chapter we will show how the Viterbi algorithm for profi le HMM
database searching can be effi ciently parallelized on reconfi gurable hardware
(FPGAs) as well as on many-core architectures (GPUs) with the compute uni-
fi ed device architecture (CUDA) programming model. The remainder is orga-
nized as follows: Section 10.2 provides more detailed background on profi le
HMMs and the associated Viterbi algorithm. The reconfi gurable hardware
design and the CUDA implementation are presented and evaluated in Sections
10.3 and 10.4, respectively. Finally, Section 10.5 concludes the chapter.

10.2 Background

In this section we briefl y explain how a profi le HMM relates to an MSA. Each
HMM state captures position-specifi c information about the likelihood of
each residue in the corresponding MSA column. Figure 10.1 illustrates this
in the case where gaps are not considered: an ungapped profi le of length four
is derived from an ungapped MSA of length four.

10768_C010.indd 20410768_C010.indd 204 6/17/2010 7:53:21 PM6/17/2010 7:53:21 PM

Database Searching with Profi le-Hidden Markov Models 205

The derived simple ungapped profi le consists of linear sequences of states.
States correspond to columns in the associated MSA. Also note that there are
two types of probabilities associated with each state: transition probabilities
and emission probabilities. All transition probabilities in ungapped profi les are
one (as there is only one possible path). Emission probabilities are based on
the probability of an amino acid occurring in the corresponding column in
the multiple alignment. Pseudocounts are usually used to avoid over-fi tting;
that is, the determination of emission probabilities adds pseudocounts to the
distribution of the observed amino acids.

The extension of the ungapped profi le to a profi le HMM needs to model
gaps. This extension can be best explained by looking at the alignment of
a protein sequence to a profi le HMM as a basic operation. This alignment
considers gaps in the two following ways:

Insertions:• correspond to regions of the sequence that are not present
in the profi le.

V H E H

V N E D

V D E H

V T E D

V N G H

F N E D

I N E H

V E E D

A: 0/8, C: 0/8
D: 0/8, E: 0/8
F: 1/8, G: 0/8
H: 0/8, I: 1/8
K: 0/8, L: 0/8
M: 0/8, N: 0/8
P: 0/8, Q: 0/8
R: 0/8, S: 0/8
T: 0/8, V: 6/8
W: 0/8, Y: 0/8

Begin End
1.0

A: 0/8, C: 0/8
D: 1/8, E: 1/8
F: 0/8, G: 0/8
H: 1/8, I: 0/8
K: 0/8, L: 0/8
M: 0/8, N: 4/8
P: 0/8, Q: 0/8
R: 0/8, S: 0/8
T: 1/8, V: 0/8
W: 0/8, Y: 0/8

1.0 1.0

A: 0/8, C: 0/8
D: 0/8, E: 7/8
F: 0/8, G: 1/8
H: 0/8, I: 0/8
K: 0/8, L: 0/8
M: 0/8, N: 0/8
P: 0/8, Q: 0/8
R: 0/8, S: 0/8
T: 0/8, V: 0/8
W: 0/8, Y: 0/8

A: 0/8, C: 0/8
D: 0/8, E: 7/8
F: 0/8, G: 1/8
H: 0/8, I: 0/8
K: 0/8, L: 0/8
M: 0/8, N: 0/8
P: 0/8, Q: 0/8
R: 0/8, S: 0/8
T: 0/8, V: 0/8
W: 0/8, Y: 0/8

1.0 1.0

FIGURE 10.1
An ungapped profi le of length four derived from an ungapped MSA with four columns.

10768_C010.indd 20510768_C010.indd 205 6/17/2010 7:53:21 PM6/17/2010 7:53:21 PM

206 Bioinformatics: High Performance Parallel Computer Architectures

Deletions• : correspond to states in the profi le that do not correspond
to amino acids in the sequence.

Thus, the simple structure of the ungapped profi le is extended as fol-
lows: three states at each position k (called node k) are used: a match
(Mk), insert (Ik), and delete state (Dk). These states have the following
functionalities.

M-states:• emit a single residue (correspond to the states described in
Figure 10.1).
I• -states: emit a single amino acid (correspond to columns with a lot of
gaps in the associated multiple alignment).
D• -states: do not emit (i.e., they are silent).

Furthermore, transitions are included so that at each node either the M-state
or the D-state is traversed exactly once. I-states also have a self- transition,
allowing one or more inserted residues to occur between consensus columns.
The general transition structure of a profi le HMM with four nodes is shown
in Figure 10.2. The transition structure in Figure 10.2 displays profi le HMM
for global alignments. To allow for other types of alignments (most notably
local and multihit alignments) a more fl exible HMM structure is required.
Therefore, the popular HMMER software [7] uses the so-called Plan7 archi-
tecture [8, 9] (see Figure 10.3). Plan7 extends the general profi le HMM struc-
ture shown in Figure 10.2 as follows.

Flanking of the linear sequence of nodes by a begin state (• B) and an
end state (E)
Inclusion of the special states: • S, N, C, T, and J

E

M1

R

-

N

M2

-

M3

S

-

T

M4

Begin

I0

M1

I1

D1

M2

I2

D2

M3

I3

D3

M4

I4

D4

End

FIGURE 10.2
General transition structure of a profi le HMM and a possible alignment of the protein sequence
ERNST to the model.

10768_C010.indd 20610768_C010.indd 206 6/17/2010 7:53:22 PM6/17/2010 7:53:22 PM

Database Searching with Profi le-Hidden Markov Models 207

These additions allow the control of alignment-specifi c features; for exam-
ple, how likely the model is to generate various sorts of global, local, or even
multihit alignments.

Many alignment algorithms (e.g., Smith–Waterman [10], basic local align-
ment search tool [BLAST] [11, 12], Needleman–Wunsch [13]) only use posi-
tion-independent scoring parameters; that is, substitution matrix and gap
penalties are fi xed for all positions. Profi le HMMs on the other hand capture
position-dependent information; that is, amino-acid score and gap penalties
can vary depending on the position in the associated multiple alignments.
Consequently, databases containing a large number of profi le HMMs are
available that are applied extensively for genome analysis. The most popular
database is Pfam [5], which covers common protein domains and families.
The latest version at the time of writing (Pfam 24.0, October, 2009) contains
11,912 profi le HMMs in Plan7 format. Construction and usage of Pfam is
tightly coupled to the HMMER software package [7].

Profi le HMMs can be used for two types of database search tasks. One
task is to search a database of profi le HMMs against a set of input query
sequences. The other one is to search a sequence database for matches to an
input profi le HMM. For both cases, the similarity score sim(H,S) of a profi le
HMM H and a protein sequence S is used to rank all sequences/HMMs in the
queried database. The highest ranked sequences/HMMs are then returned
as the hits identifi ed by the corresponding database search task.

The key to effective database searching is the accuracy of the similar-
ity score sim(H,S). The similarity score can therefore be recast into fi nding
the Viterbi score of the profi le HMM H and the protein sequence S. The
Viterbi score is defi ned as the most probable path through H that generates a

S N C TM1 M2 M3

D2 D3

I1 I2 I3

J

B M4 E

FIGURE 10.3
The Plan7 architecture for a profi le HMM of length four.

10768_C010.indd 20710768_C010.indd 207 6/17/2010 7:53:23 PM6/17/2010 7:53:23 PM

208 Bioinformatics: High Performance Parallel Computer Architectures

sequence equal to S. The Viterbi dynamic programming (DP) algorithm for
Plan7 profi le HMMs is shown in Algorithm 1.

Algorithm 1 Plan7 Viterbi algorithm
Input: A profile HMM H of length k in Plan7 format (see
Figure 10.3) and a protein sequence S of length n. We describe
the profile HMM in terms of transitions between two states and
emissions of amino acids at particular states. For example,
tr(State1,State2) implies the transition score from State1 to
State2. Similarly, e(State1,s) implies the emission score from
emitting s at State1.
Output: The similarity score, sim(H,S).

for j = 1, k do M(0,j) = I(0,j) = D(0,j) = −∞ end for
for i = 1, n do M(i,0) = I(i,0) = D(i,0) = −∞ end for
XN(0) = 0
XB(0) = tr(N,B) {See Figure 10.3 for tr(N,B)}
XE(0) = XJ(0) = XC(0) = −∞
for i = 1, n do

for j = 1, k do

−

−

−

−

− − +
 − − += +  − − +
 − +

− +
= +  − +

− +
=

1

1

1

1

(1, 1) (,)

(1, 1) (,)
(,) (, []) max

(1, 1) (,)

(1) (,)

(1,) (,)
(,) (, []) max

(1,) (,)

(, 1) (,)
(,) max

j j

j j
j

j j

j

j j
j

j j

j j

M i j tr M M

I i j tr I M
M i j e M i

D i j tr D M

XB i tr B M

M i j tr M I
I i j e I i

I i j tr I I

M i j tr M D
D i j

S

S

−


 − + 1(, 1) (,)j jD i j tr D D

 end for

≤ ≤

= − +
= +

− +
=  +

+
=  +

− +
= 



1

() (1) (,)

() max{ (,) (,)}

(1) (,)
() max

() (,)

() (,)
() max

() (,)

(1) (,)
() max

()

j
j k

XN i XN i tr N N

XE i M i j tr M E

XJ i tr J J
XJ i

XE i tr E J

XN i tr N B
XB i

XJ i tr J B

XC i tr C C
XC i

XE i

end for
Return Final Score: sim(H,S) = XC(n) + tr(C,T)

10768_C010.indd 20810768_C010.indd 208 6/17/2010 7:53:24 PM6/17/2010 7:53:24 PM

Database Searching with Profi le-Hidden Markov Models 209

In Algorithm 1, there are three two-dimensional matrices: M, I, and D.
M(i,j) denotes the score of the best path emitting the subsequence S[1 . . . i]
of S ending with S[i] being emitted in state Mj. Similarly, I(i,j) is the score of
the best path ending with S[i] being emitted in state Ij, and D(i,j) for the best
path ending in state Dj. Furthermore, there are fi ve one-dimensional matri-
ces: XN, XE, XJ, XB, and XC. XN(i), XJ(i), and XC(i) denote the score of the
best path emitting S[1 . . . i] ending with S[i] being emitted in special state N, J,
and C, respectively. XE(i) and XB(i) denote the score of the best path emitting
S[1 . . . i] ending in E and B, respectively. Finally, the score of the best path
emitting the complete sequence S is determined by XC(n) + tr(C,T). These
matrices and their corresponding dependencies are also used for our paral-
lel implementations in the following sections.

10.3 FPGA Parallelization and Results

10.3.1 System Design

Our fi rst step in designing an FPGA system for databases searching with
profi le HMMs has been to analyze the data dependencies in the recurrence
relations presented in the previous section. Direct and indirect data depen-
dencies for computing the cell (i,j) in DP matrices M, I, and D are shown
in Figure 10.4. The direct dependences for this cell requires the left, upper,
and upper-left neighbor as well as XB(i−1). This leads to an indirect depen-
dency on XJ(i−1), which in turn depends on XE(i−1). XE(i−1) then depends on

M(i, j)
I(i, j)
D(i, j)

M(i, j−1)
D(i, j−1)

i−1i−1

i−1

j

i

XB XE

XJ

M(i−1, j−1)
I(i−1, j−1)
D(i−1, j−1)

M(i−1, j)
I(i−1, j)

FIGURE 10.4
Data dependencies for computing the values M(i,j), I(i,j), and D(i,j) solid lines are used for direct
(indirect) dependencies are represented by solid (dashed) lines.

10768_C010.indd 20910768_C010.indd 209 6/17/2010 7:53:25 PM6/17/2010 7:53:25 PM

210 Bioinformatics: High Performance Parallel Computer Architectures

all cells in row i−1 in matrix M. Thus, to satisfy all dependencies the two-
 dimensional matrices M, I, and D must be fi lled one cell at a time, in row-
major order because of the feedback loop induced by the J state.

A typical strategy used when implementing the Viterbi algorithm in hard-
ware (see e.g., [14, 15]) has therefore been to eliminate the J state. The advan-
tage of this approach is that effi cient parallelism can be achieved with an
FPGA using a linear systolic array of identical simple processing elements
(PEs). Unfortunately, this approach comes at the cost of the implementation’s
inability to fi nd multihit alignments such as repeat matches of subsequences
of S to subsections of H, which in turn can result in a severe loss of sensitiv-
ity (in particular for proteins with multiple domains). Therefore, our FPGA
solution implements a full Plan7 model. The individual PE design is shown
in Figure 10.5. It contains the following features:

Registers to store the temporary DP matrix values • M(i−1,j−1), I(i−1,j−1),
D(i−1,j−1), M(i,j−1), I(i,j−1), D(i,j−1).
M• (i,j), I(i,j), and D(i,j) are not stored explicitly, instead they are the
inputs to the M(i,j−1), I(i,j−1), and D(i,j−1) registers, respectively.
Emission (• e(Mj,si) and e(Ij,si)) and transition probabilities (tr(Mj−1,Mj),
tr(Ij−1,Mj), tr(Dj−1,Mj), tr(Ij,Mj), tr(Ij,Mj), tr(Mj−1,Dj), tr(Dj−1,Mj), and
tr(Mj,E)) are read from the internal FPGA RAM (Block RAM).
Transition probabilities (• tr(B,Mj), tr(N,N), tr(E,J), tr(J,J), tr(J,B), tr(N,B),
tr(C,C), and tr(C,T)) are stored in registers.
The PE has a four stage pipeline: • Fetch, Comp1, Comp2, and Store. In
Fetch, transition, emissions, and intermediate DP matrix values are
read from the Block RAM. All necessary computations are performed
in the two compute stages Comp1 and Comp2. Results are written to
the Block RAM in Store. Computation of the special state matrices
uses intermediate values for XE(i) that are computed according to
Equation 10.1.

XE(i,j) = max{XE(i,j−1), M(i,j) + tr(Mj,E))} (10.1)

Updating of • XN, XJ, XB, and XC is only performed at the end of the
DP matrix row; that is, if j = k.

The PE design has the following implementation details:

Numbers are represented in 2’s complement form.•
Adders use saturation arithmetic.•
Number representation uses two tags to encode special cases: num-•
ber (00), +max (01), −max (10), and not-a-number (NaN) (11). Adders
and max-circuits take advantage of theses tags to compute special

10768_C010.indd 21010768_C010.indd 210 6/17/2010 7:53:25 PM6/17/2010 7:53:25 PM

D
atabase Searching w

ith Profi le-H
idden M

arkov M
odels

2
11

+

tr(Mj,Ij)

+

tr(Ij,Ij)

+

M(i–1,j) tr(Mj-1,Mj)

+

I(i–1,j) tr(Ij-1,Mj)

+

D(i-1,j) tr(Dj-1,Mj)

+

tr(B,Mj)

XB (i−1)

max

+

e (Ij,S [i])

XB (i−1)

M(i−1, j−1) I(i−1, j−1) D(i−1, j−1)

max

+

e (Mj,S [i])

M(i,j−1)

+ + + + +

tr(Mj,E)
tr(E,C)tr(C,C)tr(Dj-1,Dj) tr(Mj-1,Dj)

max

D(i,j−1)

max

XC (i−1)

+

tr(C,T)

sim (H,S)

max

XE (i−1, j−1)

+ + +

tr(E,J) tr(J,J) tr(N,N)

max

XJ (i−1) XN(i−1)

tr(J,B)

+ +

tr(N,N)

max
tr(N,B)

sel

FIGURE 10.5
HMM processing element (PE) design.

10768_C
010.indd 211

10768_C
010.indd 211

6/17/2010 7:53:26 PM
6/17/2010 7:53:26 PM

212 Bioinformatics: High Performance Parallel Computer Architectures

cases in a very simple and effi cient way (e.g., if any of the operand’s
tags are set in an addition, a simple bit-wise OR operation suffi ces to
compute the result).

Our system design exploits parallelism by aligning different query/sub-
ject pairs with the Plan7 Viterbi algorithm independently in separate PEs.
Figure 10.6 shows the design for four PEs.

The following features are used in the design:

Intermediate value storage• (IVS): Each PE has an IVS that stores one
row of previously computed results of the matrices M, I, and D.
Emission and transition storage• : We assume that the same profi le HMM
has to be aligned to different protein sequences. Therefore, PEs are
synchronized to process the same HMM state in each cycle, which
reduces the bandwidth requirement to access the transition storage
to a single state.
Score collect and score buffer• : These units are designed to handle cases
where PEs produce results in the same clock cycle.

Host interface

Sequence loaderHMM loader Score buffer

Score collectTransition storageEmission storage

PE1
IVS

PE2
IVS

PE1
IVS

PE4
IVS

25
4 8

FIGURE 10.6
HMM system design for four PEs.

10768_C010.indd 21210768_C010.indd 212 6/17/2010 7:53:26 PM6/17/2010 7:53:26 PM

Database Searching with Profi le-Hidden Markov Models 213

HMM loader• : The task of this unit is to transfer emission and transi-
tion values into their respective storage.
Sequence loader• : Sequence elements are fetched from external mem-
ory to the sequence loader. It then forwards them to the emission
selection multiplexers.
Host interface• : The system is connected to a host via an universal
serial bus (USB) interface.

Loading and storing of data to/from the FPGA and postprocessing of rel-
evant hits is performed by the host software. The host portion is described
in Algorithm 2. The FPGA is used as a fi rst-pass fi lter; that is, large data-
base chunks are quickly scanned and narrowed down to a few interesting
hits. These hits are then processed on the central processing unit (CPU)
host.

Algorithm 2 FPGA integration for HMM-based database searching.
Input: T (threshold), E (cutoff value), HMM array hmm[],
Protein sequence array seq[]
Output: Top matches
for all Current HMMs, hmm[j] do

repeat
 Pack_and_score()
 for all Current sequences, seq[i] do
 FPGA_score = score[i]
 if (FPGA_score ≥ T) and (e-value ≤ E) then
 Software_score = P7Viterbi(seq[i], H)
 if (Software_score ≥ T)and (e-value ≤ E)then
 PostprocessSignificantHit(seq[i])
 until No More Sequences
until No More HMMs

10.3.2 Performance Evaluation

Our PE design has been described in the Verilog HDL. To investigate the
effect of the amount of logic slices and memory on the scalability of our
design, we have targeted it to two members of the Xilinx Spartan-3 fam-
ily: XC3S1500 and XC3S4000. The amount of available logic slices and Block
RAMs are 13,312 and 32 for the XC3S1500 and 27,648 and 96 for the XC3S4000,
respectively. The achieved size of a single PE is 451 logic slices using Xilinx
ISE tools for synthesis, mapping, placement, and routing.

Rather than the amount of logic slices, memory is the crucial resource
determining the number of PEs. The amount of memory required is

Fifty RAM entries per HMM state, comprising 42 emissions and 8 •
transitions
Three entries per HMM state for each PE’s IVS•

10768_C010.indd 21310768_C010.indd 213 6/17/2010 7:53:27 PM6/17/2010 7:53:27 PM

214 Bioinformatics: High Performance Parallel Computer Architectures

Thus, the overall amount of Block RAM entries required is 50 ⋅ k + 3 ⋅ k ⋅ N,
where k is the HMM length and N is the number of PEs. Therefore, the
maximum number of PEs that we are able to fi t onto an FPGA depends
on the HMM lengths. The largest power-of-two HMM lengths we are able
to support on an XC3S1500 and XC3S400 are k = 256 and k = 1,024, respec-
tively. In both cases the number of PEs is limited by the number of Block
RAM in the targeted FPGA. The number of PEs can therefore be increased
for shorter HMM lengths; for example, for k = 512 it is possible to fi t 30 PEs
on an XC3S4000. Further improvement over the 512-state version is then
limited by logic slices on the XC3S4000; for example, for 256 states the max-
imal PE number is still 30. The results can be summarized as follows:

XC3S1500:• clock frequency = 70 MHz; number of PEs = 10; maximal
supported HMM = 256; theoretical peak performance = 10 PEs × 70
MHz = 700 MCUPS (million cell updates per second)
XC3S4000:• clock frequency = 70 MHz; cumber of PEs = 30; maximal
supported HMM length = 512; theoretical peak performance = 30
PEs × 70 MHz = 2.100 GCUPS (billion cell updates per second)

We have implemented the FPGA integration as described in Algorithm 2.
The acceleration board used for this study is a very low-cost Spartan-3
XC3S1500 board with 64 MB SDRAM and USB 2.0 interface. Figure 10.7
shows the achieved speedups for searching a sequence database with a query
profi le HMM on an FPGA. Furthermore, Figure 10.8 shows the speedups

0

5

10

15

20

25

30

35

45 112 222 244

Sp
ee

du
p

HMM length

FIGURE 10.7
Speedups for searching a sequence database with profi le HMMs of different lengths on a
Spartan-3 XC3S1500 board compared to the sequential HMMER 2.3.2 software (hmmsearch).
The utilized database contains 643,552 protein sequences.

10768_C010.indd 21410768_C010.indd 214 6/17/2010 7:53:27 PM6/17/2010 7:53:27 PM

Database Searching with Profi le-Hidden Markov Models 215

for searching a profi le HMM database with a number of query sequences.
Measured timings include data transfer, initialization, and pre- and postpro-
cessing. An AMD Athlon 64 3500+ is used as a host machine. The speedups
of the FPGA are compared with the nonaccelerated sequential version of the
HMMER 2.3.2 package running on the same PC.

Examining the speedups we can see the effect of the number of states
within an HMM and number of protein sequences on the FPGA implemen-
tation as compared with the software-only implementation. The speedup
generally increases with a larger number of states and sequences. This is to
be expected as the software implementation of the Viterbi algorithm does
not improve effi ciency with a larger number of states or larger number of
sequences. However, in case of the FPGA, the greater number of states results
in more effective use of the resources, while the larger number of sequences
reduces the impact of data transfer overheads. Thus, the FPGA is able to
reach an effi ciency of up to 94% of the theoretical peak performance stated
earlier for large HMMs (Figure 10.8).

10.4 GPU Parallelization and Results

General-purpose programmable GPUs have recently become popular tar-
gets for highly parallel applications, including HMM database searching.

0

5

10

15

20

25

30

35

40

45

100 200 400 1000

Sp
ee

du
p

Number of portein sequences

FIGURE 10.8
Speedups for searching an HMM database with a varying number of query protein sequences
on a Spartan-3 XC3S1500 board compared to the sequential HMMER 2.3.2 software (hmmpfam).
A subset of the superfamily database consisting of 1,554 HMMs is used as HMM database.

10768_C010.indd 21510768_C010.indd 215 6/17/2010 7:53:29 PM6/17/2010 7:53:29 PM

216 Bioinformatics: High Performance Parallel Computer Architectures

In this section we describe our implementation and the performance of a
GPU-enabled Viterbi algorithm for HMM database searches. We begin with
a description of the GPU hardware that our solution is built on.

10.4.1 CUDA Hardware

Computing with GPUs presents unique challenges and limitations that must
be addressed to achieve high performance. Here we describe the NVIDIA
8,800-based GPU that is used in our tests and also explain the unique features
of the GPU that presents challenges to effi cient programming.

The graphics processors used in our tests are NVIDIA 8,800 GTX Ultra
GPUs with 768 MB RAM. The 8,800 GTX Ultra is composed of 16 stream
multiprocessors, each of which is itself composed of 8 stream processors
for a total of 128 stream processors. Each multiprocessor has 8,192 32-bit
registers, which in practice limits the number of threads (and therefore,
performance) of the GPU kernel. The GPU is programmed using NVIDIA’s
CUDA programming model [16]. Each multiprocessor can manage 768
active threads. Threads are partitioned into thread blocks of up to 512
threads each, and thread blocks are further partitioned into groups of 32
threads (called a warp). Each warp is executed by a single multiprocessor.
Warps are not user controlled or assignable, but rather are automatically
partitioned from user-defi ned blocks. At any given clock cycle, an individ-
ual multiprocessor (and its stream processors) executes the same instruc-
tion on all threads of a warp. Consequently, each multiprocessor should
most accurately be thought of as a single-instruction multiple-data (SIMD)
processor.

Programming the GPU is not a matter of simply mapping a single thread
to a single stream processor. Rather, with 8,192 registers per multiprocessor,
hundreds of threads per multiprocessor and thousands of threads per board
should be used to fully utilize the GPU. Memory access patterns, in partic-
ular, must be carefully studied to minimize the number of global memory
reads. Where possible, an application should make use of the 16 KB of shared
memory per multiprocessor, as well as the texture and 64-KB constant mem-
ory, to minimize GPU kernel access to global memory. When global memory
must be accessed, it is essential that memory be both properly aligned and
laid out such that each SIMD thread accesses consecutive array elements to
combine memory reads into larger 384-bit reads.

10.4.2 Results

The C code of HMMER’s Viterbi algorithm was ported to CUDA with a
variety of performance optimizations. The kernel operates on multiple
sequences simultaneously, with each thread operating on a unique sequence.
The number of threads that can be executed in parallel is limited by two fac-
tors: (1) GPU memory will limit the number of sequences that can be stored,

10768_C010.indd 21610768_C010.indd 216 6/17/2010 7:53:30 PM6/17/2010 7:53:30 PM

Database Searching with Profi le-Hidden Markov Models 217

and (2) the number of registers used by each thread will limit the number
of threads that can run in parallel. In our implementation, register use is the
most prohibitive resource.

In the remainder of this section we describe the optimizations made to
the GPU kernel. We consider a variety of optimizations in our implementa-
tion including database-level load balancing, memory layout and coalescing,
loop unrolling, and shared/constant memory use. Results are shown with a
variety of HMMs of increasing length.

We test HMMs of length 77, 209, 456, 789, and 1,431 states. All HMMs
except the 77-state HMM were taken directly from the Pfam database, while
the 77-state HMM is distributed with the HMMER source. We note that the
average length of an HMM within the Pfam database is 209 states. All tests
are taken against the publicly available NCBI nonredundant database NCBI
NR [17]. The 3-GByte NR database used in these tests consists of more than
5.5 million sequences with sequence lengths varying from 6 to 37,000 amino
acids.

10.4.2.1 Database Sorting

HMMER’s Viterbi function is sensitive to both the length of the query HMM
and the length of an individual sequence. CUDA provides limited support
for thread synchronization; a barrier synchronization function is provided
that returns only when all threads have fi nished executing cudaThread-
Synchronize(). In our implementation, 3,072 threads are run in parallel
on a single GPU, with each thread operating on its own sequence. A typi-
cal database is unordered, placing short sequences in close vicinity to long
sequences. On a CUDA-enabled GPU this results in threads operating on the
shorter sequences completing early and being forced to wait for the thread
computing the longest sequence in the current batch before the barrier syn-
chronization completes. The solution is to presort the sequence database by
length, thereby balancing a similar load over all 3,072 threads participating
in the computation. This has the advantage of being both effective and quite
straightforward as we are able to achieve a nearly 7× performance improve-
ment over the unsorted database without changing the GPU kernel in any
way. For the database used in these experiments, only 262.36 seconds were
required for sorting. Further, the sorted database can be reused for the entire
useful life of the database, making the one-time cost of sorting it negligible.

10.4.2.2 Memory Layout Optimizations

The most effective optimization to the Viterbi is from optimizing memory
layout and usage patterns within HMMER’s Viterbi algorithm. Because the
CUDA environment does not allow threads to dynamically allocate GPU
memory, all memory allocations (even those allocating the GPU’s on-board
memory) must be performed by the host system and copied to the GPU

10768_C010.indd 21710768_C010.indd 217 6/17/2010 7:53:30 PM6/17/2010 7:53:30 PM

218 Bioinformatics: High Performance Parallel Computer Architectures

before instantiating the kernel. By default, the Viterbi function requires inte-
ger arrays of size 3 ⋅ m ⋅ l + 5 ⋅ l, where m and l are the length of the HMM and
sequence, respectively. For large HMMs and large sequences, this can easily
result in several megabytes of data per thread. With only 768 MB memory for
4,096 threads, this can quickly exhaust the GPU’s memory.

Through careful optimization we are able to reduce the memory require-
ments of the Viterbi scoring computation to 6⋅m + 10 integer array elements.
This was accomplished by noting that the Viterbi algorithm described in
Section 10.2 largely requires only the current and previous rows of the DP
matrices M, I, and D over the length of the inner-most loop, m (the number of
HMM states). Thus, M, I, and D contribute 6 ⋅ m array elements.

Reducing the memory footprint means that we can no longer perform
the Viterbi trace-back procedure. Fortunately, the trace-back is only needed
when a database hit is made. In our tests less than 2% of the database entries
result in hits, so we simply perform a full software Viterbi, including trace-
back, on all database hits. We also exploit three opportunities within the
core Viterbi loop to reuse intermediate values within registers, rather than
repeatedly writing/reading from the GPU’s DRAM. Specifi cally, the current
and previous values of the M, I, and D matrices may be reused in subsequent
iterations through the Viterbi loop.

10.4.2.3 Memory Hierarchy Optimizations

Finally, we also include the use of the shared and constant memories. We
note that the HMM stays constant throughout the entire computation and is
used by each thread for each sequence. In most cases we can fi t the entirety
of the core transition matrices (denoted as tr(Mj−1, Mj), tr(Ij−1, Mj), tr(Dj−1, Mj),
and tr(B, Mj) in Section 10.2) into the 64-KB constant memory. In cases where
the size of the HMM exceeds the amount of constant memory, we utilize
the full constant memory before switching over to texture memory for the
remaining portions of the HMM.

Further, we use shared memory to temporarily store our index into each
thread’s digitized sequence that is referenced repeatedly throughout the core
Viterbi loop. As a consequence, we are able to reduce the number of texture
reads to two per iteration (four if the loop is unrolled).

In Figure 10.9 we present the results of our fi nal GPU kernel. As Figure 10.9
shows, we are able to achieve between 12× and 37× speedup, depending on
the size of the HMM. We note that the largest HMM (size 1,431) runs for more
than 1 day before completion (serial time). This results in a much higher
speedup as the vast majority of the CUDA runtime is spent on the GPU. For
the same reason, the 77-state HMM results in much lower speedup as more
of its time is spent reading from the sequence database and postprocessing.
In fact, between postprocessing, database reading, and DMA transfers to the
GPU, the 77-state HMM spends twice as much time outside of the GPU ker-
nel as within the GPU kernel.

10768_C010.indd 21810768_C010.indd 218 6/17/2010 7:53:30 PM6/17/2010 7:53:30 PM

Database Searching with Profi le-Hidden Markov Models 219

10.4.2.4 Host Optimizations

To compensate for such overhead, particularly for small or average-sized
HMMs, we performed several host-side optimizations. Specifi cally, the
serial overhead of reading the database and postprocessing the database
hits between GPU kernel invocations was addressed. To do so we created
two threads: the fi rst for database reading, and the second to postprocess
database hits. We noted that the 8,800 GTX GPU did not permit us to over-
lap DMA operations to the GPU during kernel executions. However, current
hardware is capable of such optimizations.

In Figure 10.10 we compare our fi nal implementation to the exist-
ing ClawHMMER GPU implementation by Horn et al. [18]. Because
ClawHMMER runs within Windows XP, we were forced to use a smaller
version of the NR database as well as smaller HMMs to stay within the
Windows XP 2GB memory limit. Nevertheless, as we show, our imple-
mentation substantially outperformed the ClawHMMER implementa-
tion for every tested HMM. Moreover, as the size of the HMM increased,
the performance of our CUDA implementation increased relative to the
ClawHMMER implementation.

In Figure 10.11 we present our fi nal performance results for the full NR
database and a variety of HMMs of increasing size. Here the benefi ts of the
host-side optimizations become clear—the 77-state HMM, for example, now
achieved a performance of 19×, compared to the 12× previously achieved.
Further, both the 209-state and 456-state HMMs also improved in perfor-
mance, from 22.5× and 24.6× to 28× and 27× for the 209- and 456-state HMMs,
respectively. The 789- and 1,431-state HMMs improved slightly, from 24× to
26×, and from 37× to 38.6×. Their improvement was less dramatic as their
runtimes dwarfed the serial portions of the computation.

1 10 100 1000 10000 100000 1000000

77

209

456

789

1,431

Time (s)

H
M

M
 S

ta
te

s (
m

)

CUDA

Serial

FIGURE 10.9
Runtime of fi nal Viterbi kernel without host optimizations.

10768_C010.indd 21910768_C010.indd 219 6/17/2010 7:53:30 PM6/17/2010 7:53:30 PM

220 Bioinformatics: High Performance Parallel Computer Architectures

10.5 Discussion

In this chapter we have shown how GPUs and FPGAs can be effi ciently used
to accelerate HMM-based database searching. Both architectures used the
same parallelization approach (i.e., running different HMM/sequence com-
parisons in parallel) and achieved similar speedups of around 30× on low-
end hardware platforms.

An advantage of the GPU-based solution is the more convenient program-
mability with CUDA as well as the likely portability to newer runtime

0 100 200 300 400 500 600 700

77

209

456

Time (s)

H
M

M
 S

ta
te

s (
m

)

CUDA

ClawHMMER

FIGURE 10.10
Comparison of our fi nal implementation to ClawHMMER.

1 10 100 1000 10000 100000 1000000

77

209

456

789

1431

Time (s)

H
M

M
 S

ta
te

s (
m

)

CUDA

Serial

FIGURE 10.11
Runtime and speedup of fi nal Viterbi kernel including host optimizations.

10768_C010.indd 22010768_C010.indd 220 6/17/2010 7:53:31 PM6/17/2010 7:53:31 PM

Database Searching with Profi le-Hidden Markov Models 221

environments such as OpenCL. Further, the widespread availability of
CUDA-enabled GPUs makes the adoption of GPU-based solutions easy and
exceptionally low cost.

On the downside, the utilized graphics card has signifi cantly higher power
consumption than the USB-based FPGA solution. Moreover, USB-based solu-
tions are easily scalable within a single machine. Indeed modern desktop PCs
are able to easily accommodate many such USB devices. GPUs, however, are
currently limited by the number of PCIEx16 slots that are available on the host
system’s motherboard. Finally, the GPU-HMMER solution does not currently
implement the Pfam search functionality included within the HMMER distri-
bution. The main obstacle to its implementation is that hmmpfam is known to
I/O-bound rather than compute-bound. This, along with the added memory
consumption of thousands of HMMs executing in parallel on the GPU, make
hmmfpam a challenge. We are currently investigating alternative strategies to
enable Pfam searches while keeping memory consumption low.

Therefore, it would be interesting to compare both approaches on higher-
end systems. Extending these single node solutions to multiple independently
executing nodes (via MPI, for example) would also prove instructive. Not
only would this expose issues such as host bandwidth, but it also would
likely expose load-balancing issues that may not otherwise be visible. Finally
we intend to examine how these parallel architectures may be used for accel-
erating other HMM-based search methods, such as the already announced
HMMER3 tool [19].

10.6 References

 1. Haussler, D., Krogh, A., Mian, I. S., Sjölander, K.: Protein modeling using hidden
Markov models: Analysis of globins. In: Proceedings of the Hawaii International
Conference on System Sciences, volume 1 pp. 792–802, Los Alamitos, CA: IEEE
Computer Society Press (1993).

 2. Krogh, A., Brown, M., Mian, S., Sjolander, K., Hausler, D.: Hidden Markov
Models in computational biology: Applications to protein modeling, Journal of
Molecular Biology 235, 1501–1531 (1994).

 3. Viterbi, A.J.: Error bounds for convolutional codes and an asymptotically opti-
mum decoding algorithm, IEEE Transactions on Information Theory 13, 2, 260–269
(1967).

 4. Yooseph, S., et al.: The Sorcerer II global ocean sampling expedition: Expanding
the universe of protein families, PLoS Biology 5(3), e16 March (2007).

 5. Finn, R.D., et al.: The PFAM protein families database, Nucleic Acid Research 36,
D281–D288 (2008).

 6. Haft, D.H., Selengut, J.D., White, O.: The TIGRFAMs database of protein
 families, Nucleic Acids Research 31, 371–373 (2003).

 7. Eddy, S.R.: HMMER: Profi le HMMs for protein sequence analysis. http://
hmmer.janelia.org, Accessed February 16, 2010 (2009).

10768_C010.indd 22110768_C010.indd 221 6/17/2010 7:53:34 PM6/17/2010 7:53:34 PM

222 Bioinformatics: High Performance Parallel Computer Architectures

 8. Eddy, S.R.: Profi le hidden Markov models, Bioinformatics 14, 755–763 (1998).
 9 Durbin, R., Eddy, S., Krogh, A., Mitchison, G.: Biological Sequence Analysis,

Probabilistic Models of Proteins and Nucleic Acids, Cambridge University Press,
(1998).

 10. Smith, T.F., Waterman, M.S.: Identifi cation of common molecular subsequences,
Journal of Molecular Biology 147, 195–197 (1981).

 11. Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J.: Basic local align-
ment search tool, Journal of Molecular Biology 215, 403–410 (1990).

 12. Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W.,
Lipman, D.J.: Gapped BLAST and PSI-BLAST: A new generation of protein
database search programs, Nucleic Acids Research 25, 17, 3389–3402 (1997).

 13. Needleman, S., Wunsch, C.: A general method applicable to the search for simi-
larities in the amino acid sequence of two sequences, Journal of Molecular Biology
48, 3, (1970).

 14. Maddimsetty, R.P., Buhler, J., Chamberlain, R., Franklin, M., Harris, B.: Accelerator
design for protein sequence HMM search, Proc. 20th ACM International Conference
on Supercomputing (ICS06), 288–296, (2006).

 15. Oliver, T.F., Schmidt, B., Yanto, J., Maskell, D.L.: Accelerating the Viterbi algo-
rithm for profi le hidden Markov models using reconfi gurable hardware, Lecture
Notes in Computer Science, Springer, Vol. 3991, 522–529 (2006).

 16. NVIDIA Corporation: Compute Unifi ed Device Architecture (CUDA)
Programming Guide. NVIDIA, 1.0 edition (2007).

 17. NCBI. The NR (non-redundant) database. ftp://ftp.ncbi.nih.gov/blast/db/
FASTA/nr.gz, Accessed February 16, 2010 (2009).

 18. Horn, D.R., Houston, M., Hanrahan, P.: ClawHMMER: A streaming HMMer-
Search implementation, ACM/IEEE Conference on Supercomputing (2005).

 19. Eddy, S.R.: A probabilistic model of local sequence alignment that simplifi es sta-
tistical signifi cance estimation, PLOS Computational Biology 4, e1000069 (2008).

10768_C010.indd 22210768_C010.indd 222 6/17/2010 7:53:34 PM6/17/2010 7:53:34 PM

223

11
COPACOBANA: A Massively Parallel
FPGA-Based Computer Architecture

Manfred Schimmler, Lars Wienbrandt, Tim Güneysu, and Jost Bissel

11.1 Introduction .. 224
11.1.1 History of Complexity ... 224
11.1.2 Basic Idea of the COPACOBANA Series225

11.2 COPACOBANA 1000 ... 226
11.2.1 FPGA Module ...227
11.2.2 Backplane ..228
11.2.3 Interface Controller ..229
11.2.4 Application Development ...230

11.3 Cryptanalysis with COPACOBANA 1000 .. 231
11.3.1 Previous Work on DES Breaking ... 232
11.3.2 Exhaustive Key Search on DES ..233
11.3.3 Breaking DES-Based Crypto Tokens ...235

11.3.3.1 Basics of Token-Based Data Authentication235
11.3.3.2 Cryptanalysis of the ANSI X9.9-Based Challenge–

Response Authentication ... 237
11.3.3.3 Possible Attack Scenarios on Banking Systems238
11.3.3.4 Implementing the Token Attack on

COPACOBANA ... 239
11.4 COPACOBANA 5000 ... 242

11.4.1 Direction toward New Applications ... 242
11.4.2 Requirements .. 242
11.4.3 Architecture of COPACOBANA 5000 ... 243

11.4.3.1 Bus Concept and Backplane .. 243
11.4.3.2 FPGA Module .. 244
11.4.3.3 Interface Controller ... 246
11.4.3.4 Power Supply and Cooling Mechanism 246
11.4.3.5 Application Development .. 247

11.5 Applications in Bioinformatics .. 248
11.5.1 Sequence Alignment ... 249

11.5.1.1 Smith–Waterman Alignment .. 249
11.5.1.2 Hardware Implementation ..250
11.5.1.3 Performance on COPACOBANA 5000 251

10768_C011.indd 22310768_C011.indd 223 6/17/2010 7:54:20 PM6/17/2010 7:54:20 PM

224 Bioinformatics: High Performance Parallel Computer Architectures

11.1 Introduction

11.1.1 History of Complexity

Several complexity measures have been used to evaluate the quality of
algorithms running of different computer architectures. The dominating
measures for sequential computers used to be the required computing time
T and memory space S [1]. With the idea of parallel computations the num-
ber N of processors became an additional important complexity measure.
Over the years, since about 1980, compute-intensive parallel algorithms
have been implemented as full-custom or semicustom very-large-scale
integration (VLSI) chips. Since then the chip area A became one of the
important measures for such implementations. Combinations like AT and
AT2 were widely used [2] to evaluate the quality of VLSI algorithms. Lower
bounds for the time complexity of parallel algorithms could be proven
by means of these combinations [3]. In the last 10 years another complex-
ity measure became dominant: power consumption P. As heat dissipation
is one of the major problems of modern high-performance computer sys-
tems, the power is often the limiting parameter for computational perfor-
mance [4].

One conclusion from this historical observation could be drawn. Any
time computations were evaluated by the computing time T and some sec-
ond measure that was equivalent to an amount of money: the memory space
could be increased by money, additional processors were a matter of invest-
ment, and the cost of chip area and power is also a question of how much
money one is willing to spend. Therefore, a useful complexity measure for
the performance of compute-intensive algorithms is the product of time T
and cost C [5]. It can be discussed whether T should be weighted more than
C or if the T2C measure should be taken straight [6]. Of course, a parallel sys-
tem reduces T. Thus, it would benefi t from such a modifi ed measure. For the
purpose of this chapter we keep in mind that we are heading for solutions
optimized with respect to the TC measure and among those we prefer the
faster ones.

11.5.2 Motif Finding ... 252
11.5.2.1 The BMA Algorithm ...253
11.5.2.2 Implementation of BMA...253
11.5.2.3 Parallelization of BMA in Hardware255
11.5.2.4 Performance Results of BMA .. 257

11.5.3 Future Work .. 259
11.6 References ... 259

10768_C011.indd 22410768_C011.indd 224 6/17/2010 7:54:21 PM6/17/2010 7:54:21 PM

COPACOBANA: A Massively Parallel FPGA-Based Computer Architecture 225

If we consider compute-intensive applications that can be partitioned into
a large number of parallel threads, it is obvious to think about a computer
architecture optimizing the TC product. This approach leads to a fi eld-
 programmable gate array (FPGA)-based parallel system. FPGAs are chips
that are confi gurable to meet the requirements for the desired application.
Here we are interested in reconfi gurable FPGAs; that is, chips whose confi g-
uration is performed by writing into static random access memory (SRAM)
components integrated on the chip. By rewriting the SRAM, the FPGA is
reconfi gured; that is, it gets a different functionality.

FPGAs are very well suitable for implementation of fi ne-grained paral-
lel algorithms because a large number of processing elements (PEs) that are
tailored toward the desired application can be fi tted onto one single FPGA
[7–10]. By using FPGAs the hardware costs can be optimized. In contrast to
standard processor-based systems there are no (costs for) components being
inactive during the whole computation. Furthermore, FPGAs are extremely
power effi cient. Current has to fl ow only when the computation requires
switching events.

11.1.2 Basic Idea of the COPACOBANA Series

The initial idea to develop cost optimal parallel code breaker (COPACOBANA)
goes back to 2004 with the intent to build some low-cost hardware (less
than US$ 10,000) that is able to break the 56-bit data encryption standard
(DES) within 30 days. The choice was an FPGA-based parallel architecture
optimized with respect to cost and time performance. It was to consist of a
large number of low-cost FPGAs with some interconnection network able to
deliver operand data and to transfer result data to the host system. The best
individual price-performance ratio in 2004 had been provided by the con-
temporary Spartan3-1000 of Xilinx. It is an integrated circuit with a number
of around one million system gates, 17,280 equivalent logic cells, and 1,920
confi gurable logic blocks (CLBs) equivalent to 7,680 slices with a total 15,360
4-input-lookup tables (LUTs) for the price of € 40.

For the interconnection and for data paths from and to the FPGAs the
dominating requirements were simplicity and low costs. The same held for
power supply and global signals for all FPGAs. Thus, as the desired applica-
tion did not need any interprocess communication, the choice was to design
a simple single-master multiple-slave backplane bus with a shared medium
and broadcast ability. Furthermore, the speed of the bus did not need to be
high due to the fact that computations heavily dominate communication
requirements. Hence, a single conventional host computer was suffi cient to
provide the required data packets and fetch the results.

The fi nal decision on the numbers of FPGAs to be taken was dependent
on the time boundary of 30 days for DES cracking. The solution was to
take about 120 FPGAs. For the purpose of maintenance and occupancy of
space, six FPGAs each were placed on an own small printed circuit board

10768_C011.indd 22510768_C011.indd 225 6/17/2010 7:54:21 PM6/17/2010 7:54:21 PM

226 Bioinformatics: High Performance Parallel Computer Architectures

(PCB), leading to 20 boards in total. All FPGAs were connected through
an 64-bit shared bus with additional 8 bits to address an FPGA, 2 bits to
signalize read-write operations or confi guration and 5 bits for optional
register addressing. One extra bit was needed for the bus clock and 8 bits
of the 64 data bits were double bound for the confi guration data. The bus
was clocked with 33 MHz leading to a theoretical bandwidth of 2 Gbit/s,
which in fact was never reached, but defi nitely more than enough. The
bottleneck was a simple USB1.0 controller module acting as bus master
and interface to the host computer. Later, the frequency was even set to 20
MHz and the controller replaced with a Transmission control protocol/
Internet protocol (TCP/IP) interface via Ethernet to gain more stability
and fl exibility.

For testing the FPGAs, the controller, and the bus a simple “MemoryTest”
application was developed. The confi guration code for the FPGAs contains
an implementation of only 32 registers, accessed by the fi ve register address-
ing bits. On a write operation the FPGA took the data from the bus and stored
it in the addressed register while it responded to a read operation with the
content of the addressed register. The host application now sent some data
to every register fi rst. Afterward it fetched the data and compared it to what
it sent before.

After many hardware patches and extensive testing fi nally the fi rst proto-
type of the COPACOBANA 1000 was running with the DES breaking appli-
cation in 2006.

11.2 COPACOBANA 1000

COPACOBANA 1000 is a massively parallel reconfi gurable architecture. As
cryptanalytical applications, which COPACOBANA was intentionally devel-
oped for, need plenty of computing power, a total of 120 low-cost FPGAs are
installed. COPACOBANA 1000 fi ts in standard 19 inches server racks using
only 2 height units (2HE). The measures are 13 × 45 × 84 cm, and it weighs
less than 18 kg. For rack enclosure COPACOBANA 1000 has front-to-back
cooling. Power consumption is only 600 W on full load. The main compo-
nents of COPACOBANA are the FPGA modules, the backplane providing the
interconnection of the modules with a shared bus medium, and the control-
ler card acting as interface to a host computer.

The fi rst prototype of COPACOBANA 1000 was taken into service in 2006.
Already in 2007, a small fi rst series of 15 pieces was fabricated and deliv-
ered to research institutions all over the world to fi nd out what kind of
applications could be implemented on such a machine. Furthermore, this
was to fi nd out if VLSI designers were able to easily run confi gurations on
COPACOBANA.

10768_C011.indd 22610768_C011.indd 226 6/17/2010 7:54:21 PM6/17/2010 7:54:21 PM

COPACOBANA: A Massively Parallel FPGA-Based Computer Architecture 227

Although the next version of the COPACOBANA series, the COPACOBANA
5000, is already available, COPACOBANA 1000 is still successfully sold by
SciEngines [11] because of its robustness, reliability, and easiness of use.
Figure 11.1 depicts a photo of the COPACOBANA 1000 machine.

11.2.1 FPGA Module

There is a tradeoff between performance and price in the design of these
PCBs: For higher performance, the number of FPGAs per PCB should be
maximized. But larger PCBs are more expensive:

The number of layers of conductors increases with the number of •
FPGAs.
The price for the PCB rises approximately quadratic with the size.•
More FPGAs per PCB require more expensive power modules per •
PCB.
It is cheaper to replace a small PCB in case of fabrication faults.•
The width of the PCB determines the size of the box of the whole •
machine.

FIGURE 11.1
COPACOBANA 1000.

10768_C011.indd 22710768_C011.indd 227 6/17/2010 7:54:21 PM6/17/2010 7:54:21 PM

228 Bioinformatics: High Performance Parallel Computer Architectures

As regards these assumptions, it turned out that a small PCB with six
FPGAs provided the best price-performance ratio.

For an easy and stable mounting having enough pins available, but occu-
pying as little space as possible, the dual in-line memory module (DIMM)
connection seems to be the most appropriate. This is also working very well
in standard PCs for mounting random access memory (RAM) modules on
the mainboard. The backplane has to provide the DIMM slots whereas no
additional connector is required on the FPGA modules. The PCB simply has
to fi t the form of the connector. With this type of connection it is easy to
remove or exchange FPGA modules from the backplane, for example, for
maintenance purposes.

In addition to the FPGAs the module needs bidirectional bus transceiv-
ers to forward data, address, and clock signals. The address decoding has
already been done on the backplane, so every FPGA now needs only a selec-
tion signal instead of slot and FPGA address. The register address still needs
to be completely available.

To get a system clock on the FPGA no oscillators are found on the FPGA
module. It is the bus clock that simply acts as input for the digital clock man-
ager (DCM). This has to be confi gured together with the FPGA to modify the
bus clock for appropriate system clocks.

The whole system is powered by 3.3 V. However, the FPGA core needs 1.2 V.
Hence, a power converter to supply the core voltage to all FPGAs on the PCB
is also mounted. Each FPGA-card has a maximal power dissipation of 20 W.
For cooling purposes the FPGA-cards are adjusted in a vertical way such
that the air can be transported through every two adjacent FPGA-cards.
Nine fans are responsible for this air movement. Five of them are located
in the front panel. They blow the air into the box. The remaining four are
in the back wall of the box. They suck the warm air out. The inside temper-
ature is thus kept below 68°C. A picture of the FPGA module is shown in
Figure 11.2.

11.2.2 Backplane

The functional behavior of the backplane is the interconnection between
the FPGA modules and the interface controller card. It provides the shared
medium of the bus as simple connections of the corresponding data pins.
One exception is made for the controller slot. The bidirectional bus transceiv-
ers are mounted on the backplane instead of the module to obtain fl exibility
in easier substitution of the controller card.

The backplane provides 20 DIMM slots for FPGA modules and one slot
for the controller card. For historical reasons, the slot for the controller card
is not a DIMM slot, like the one for the FPGA modules, but a simple 96-pin
DIN 41612 connector. This decision was made after choosing the CESYS
USB2FPGA development board for the fi rst version of the controller. It comes
with an easy-to-use universal serial bus (USB) interface, fi ts in size, and

10768_C011.indd 22810768_C011.indd 228 6/17/2010 7:54:36 PM6/17/2010 7:54:36 PM

COPACOBANA: A Massively Parallel FPGA-Based Computer Architecture 229

already has the DIN 41612 plug for general-purpose input/output (IO). The
backplane has no oscillators to provide the bus clock. This has to be done by
the bus master to assure a minimal clock skew. On the backplane, like on
the FPGA modules, the clock is handled like any other bus signal and also
simply forwarded by the bus transceivers.

One more important task of the backplane is the decoding of the slot and
the FPGA address. A decoder GAL is located next to every module slot. Each
decoder allocates six selection signals, one for each FPGA on the correspond-
ing module. A selection signal is set to high only if the appropriate address is
latched at the input of the decoder.

Power supply has been one of the major problems in the design of the back-
plane of COPACOBANA 1000. Because each of the 20 FPGA modules has a peak
requirement of 20 W there is an overall power consumption of 400 W. With a
voltage of 3.3 V it means the maximal current is 120 A. It is impossible to lead
currents of that magnitude through one layer of a PCB. Therefore, four extra
power rails have been installed for the supply voltage of the FPGA modules.

11.2.3 Interface Controller

The interconnection between the host system and the backplane is an inter-
face controller board. The fi rst version of the COPACOBANA 1000 used
the already mentioned CESYS USB2FPGA development board providing
an interface via USB. The programming interface on the host side was a
simple application programming interface (API) for using the USB driver
of the CESYS board written in the language C. Later, this was made more
comfortable. The USB board vanished for a TCP/IP interface via Ethernet.
COPACOBANA could now be located somewhere in the local network and

FIGURE 11.2
FPGA module of COPACOBANA 1000.

10768_C011.indd 22910768_C011.indd 229 6/17/2010 7:54:36 PM6/17/2010 7:54:36 PM

230 Bioinformatics: High Performance Parallel Computer Architectures

connected to/from every PC in this network. In addition, the new API is
written in Java, providing an easy-to-use and platform-independent inter-
face for communicating with COPACOBANA.

The interface module is a Memec Virtex-4 FX12 Mini Module by Avnet
[12] connected to an adapter card for the DIN 41612 connector. This way the
controller module can simply be replaced in every COPACOBANA with-
out changing other parts of the hardware. The Memec module contains a
Virtex-4 FPGA with an integrated PowerPC processor running a TCP/IP
server. Data packets from a TCP/IP connection are translated for an inbuilt
hardware entity representing the bus master that serves the COPACOBANA
bus. Even the bus clock is generated here.

Another benefi t from the new controller is the ability to store some data.
It provides a little memory of approximately 64 MB of which 32 MB could
be freely accessed. This can speedup applications where the same data is
needed very often by the FPGAs. It is accessible very fast by the bus master
and bypasses the bottleneck of the slower TCP/IP connection.

Although the connection can be made with 100 Mbit/s or even Gigabit
Ethernet the achieved bandwidth is far below these terms. This is due to
the slow inbuilt PowerPC processor, the little memory available and thus a
noneffi cient implementation of the TCP/IP stack. Hence, the next version of
a controller board is currently in the last phase of development. This time
a PicoITX PC board in combination with an FTDI USB2.0 controller card
will act as controller module. This design will reach a bandwidth suffi cient
for 100 Mbit/s Ethernet and will still keep the fl exibility for the location of
COPACOBANA.

11.2.4 Application Development

Because FPGAs are not ready-to-use processors like in conventional PCs but
have to be confi gured in its functionality, a developer needs extra skills in
hardware design using a hardware description language like VHDL. Thus,
the functionality of an FPGA has to be designed in creating several PEs and
control structure in hardware. Most FPGAs, as well as the Spartan3-1000,
have already built-in components like block RAM, multipliers, DSPs, or, in
some cases, even CPU cores. They could easily be integrated in an individ-
ual design to make it even more effi cient for special requirements and help
speed up the design process.

Thus, the fi rst and most important layer to develop an application for
COPACOBANA 1000 is to create a hardware design for the FPGAs with
a hardware description language like VHDL. So, the problem instance
should typically not be too complex for hardware implementation.
Furthermore, to achieve massive parallelism by using all FPGAs effi ciently
at the same time, and every FPGA even with several PEs, it is benefi cial to
have a problem that is easy to parallelize without much interprocess data
dependency.

10768_C011.indd 23010768_C011.indd 230 6/17/2010 7:54:43 PM6/17/2010 7:54:43 PM

COPACOBANA: A Massively Parallel FPGA-Based Computer Architecture 231

The benefi t of a real hardware design in comparison to a program run-
ning on a standard processor is the area and speed effi ciency of the problem
implementation. While a standard processor is developed to solve a large
variety of problem instances and therefore needs a whole lot of resources,
a problem-specifi c hardware design can exactly be equipped with only the
resources needed. For simple problem instances, a PE can be designed that
are small in terms of area usage such that several PEs fi t into a single FPGA
and thus working in real parallelism.

In addition, a standard processor runs with very high frequency to pro-
cess a lot of basic commands representing a problem instance. In hardware
such a problem instance could be a simple step in an automation depending
on a Boolean function that could be solved in one clock cycle. Thus, the fre-
quency in an FPGA design has limited signifi cance and so a high frequency
is not always necessary.

For a little help in VHDL FPGA design for COPACOBANA the little
“MemoryTest” application, which checks the functioning of each FPGA and
the internal bus, is provided. This gives the developer a clue as to how to use
the COPACOBANA bus system on the FPGA side.

The second layer of development is the creation of an application on
the host PC. This application generally does not have to run computation-
 intensive processes because these should be solved by the COPACOBANA
FPGAs. Its main purpose should be the data exchange between the host
PC and COPACOBANA. Thus, it simply has to fi t the communication inter-
face with the provided API. Other tasks should be data preparation and
postprocessing.

An optional third layer is the user interface. In most cases it is always
some user who simply wants to change some problem parameters and is
waiting for a result afterward. He/She does not want to learn complex com-
mand line usage reading tons of cryptic output data afterward. In most
cases this leads to a graphical user interface (GUI), but will leave us with
another topic here.

11.3 Cryptanalysis with COPACOBANA 1000

The security of symmetric and asymmetric ciphers is usually determined
by the size of their security parameters, in particular, the key length. Hence,
when designing a cryptosystem, these parameters need to be chosen accord-
ing to the assumed computational capabilities of an attacker. Depending on
the chosen security margin, many cryptosystems are potentially vulnerable
to attacks when the attacker’s computational power increases unexpectedly.
In real life, the limiting factor of an attacker is often fi nancial resources. Thus,
it is quite crucial from a cryptographic point of view to not only investigate

10768_C011.indd 23110768_C011.indd 231 6/17/2010 7:54:43 PM6/17/2010 7:54:43 PM

232 Bioinformatics: High Performance Parallel Computer Architectures

the complexity of an attack, but also to study possibilities to lower the cost-
performance ratio of attack hardware. For instance, a cost-performance
improvement of an attack machine by a factor of 1,000 effectively reduces the
key length of a symmetric cipher by roughly 10 bit (as 1,000 ~ 210).

Cryptanalysis of modern cryptographic algorithms involves massive
and parallel computations, usually requiring more than 240 operations.
Many cryptanalytical schemes perform their computations in indepen-
dent operations, which allows for a high degree of parallelism. Such par-
allel functionality can be realized by individual hardware blocks that can
be operated simultaneously, improving the time complexity of the overall
computation by a perfect linear factor. At this point, it should be remarked
that the high nonrecurring engineering costs for application-specifi c inte-
grated circuit (ASICs)—which can often consume more than US$ 100,000
for large projects—have put most projects for building special-purpose
hardware for cryptanalysis out of reach for commercial or research institu-
tions. However, with the recent advent of low-cost FPGAs, which host vast
amounts of logic resources, special-purpose cryptoanalytical machines
have now become a possibility outside government agencies.

In this chapter, we will show how COPACOBANA can be used to break
the DES block cipher [13] and a corresponding cryptosystems in real-world
products. Though DES was revoked as standard in 2004, it is still a popu-
lar choice for low-end security system as well as available in many legacy
systems. Still in 2008, we identifi ed a class of cryptotokens that generate one-
time-passwords (OTPs) according to the ANSI X9.9 standard in which the
DES encryption is still in use. Alarmingly, we are aware of online banking
systems in Europe, and North and Central America that still distribute such
tokens to users for authenticating their fi nancial transactions. (Because we
do not want to support hacking of bank accounts, we will not give further
details here.)

Besides DES breaking and other symmetric ciphers, cryptanalysis on asym-
metric cryptography can also be supported by COPACOBANA; for exam-
ple, for solving the Elliptic Curve Discrete Logarithm Problem [14], which
is known as the fundamental primitive for cryptosystems based on elliptic
curves. Further work employing COPACOBANA for cryptanalysis (which is
also not in the scope of this chapter) has been done on breaking the legacy
hard disk encryption (Norton Diskreet) [7], the GSM A5/1 stream cipher [15],
and recent Machine Readable Travel Documents (ePassport) [16].

11.3.1 Previous Work on DES Breaking

Since the invention of the computer, a continuous effort has been taken to
build clusters providing the recent maximum of computing power. For our
purpose, we focus on the cost-effi cient COPACOBANA system instead of
reviewing all recent variants of such high-performance clusters or super-
computers for investments of several millions of dollars. Thus, we now

10768_C011.indd 23210768_C011.indd 232 6/17/2010 7:54:43 PM6/17/2010 7:54:43 PM

COPACOBANA: A Massively Parallel FPGA-Based Computer Architecture 233

shortly survey the history of breaking the most popular block cipher of the
last decades—the DES. After that, we will come up with an evaluation of
the security margin provided by DES nowadays with respect to available
machines like COPACOBANA.

Although the DES was reaffi rmed for use in (U.S. government) security
systems several times until 1999, the worries about the inherent threat of
its short key space was already raised in 1977 when it was fi rst proposed.
The fi rst estimates were proposed by Diffi e and Hellman [17] for a brute
force machine that could fi nd the key within a day at a cost of US$ 20 mil-
lion. Some years after that, a fi rst detailed hardware design description for
a brute force attack was presented by Michael Wiener at the rump session
of CRYPTO’93; a printed version is available in [18]. It was estimated that
the machine could be built for less than a million U.S. dollars. The pro-
posed machine consists of 57,000 DES chips that could recover a key every
31/2 hours. In 1997, a detailed cost estimate for three different approaches
for DES key search, distributed computing, FPGAs, and custom ASIC
designs, was presented by Blaze et al. [19]. In 1998, the Electronic Frontier
Foundation (EFF) fi nally built a DES hardware cracker called Deep Crack,
which could perform an exhaustive key search within 56 hours [20]. Their
DES cracker consisted of 1,536 custom-designed ASIC chips at a cost of
material of around US$ 250,000 and could search 88 billion keys per second.
To our knowledge, the latest step in the history of DES brute force attacks
took place in 2006, when the COPACOBANA was built for less than US$
10,000 [8]. COPACOBANA is capable of breaking DES in less than 1 week on
average as shown in the next sections. We would like to note that software-
only attacks against DES still take more than 1,000 PC-years (based on Intel
Pentium-4@3GHz) in worst case.

11.3.2 Exhaustive Key Search on DES

The DES with a 56-bit key size was chosen as the fi rst commercial crypto-
graphic standard by NIST in 1977 [13]. A key size of 56-bits was considered
to be a good choice considering the huge development costs for computing
power in the late 1970s, which made a search over all the possible 256 keys
appear impractical. As DES was designed to be extremely effi cient in terms of
area and speed for hardware, an FPGA implementation of DES can be orders
of magnitude faster than an implementation on a conventional PC at much
lower costs [8]. This allows a hardware-based engine for a DES key search to
be much faster and effi cient compared to a software-based approach.

Our attack is based on simple known-plaintext scenario; that is, we assume
to have knowledge of a single pair of ciphertext and its corresponding plain-
text. Although it might seem to be a strong assumption in the fi rst place that
the attacker has access to a piece of unencrypted information, it is indeed valid
in many scenarios. Whenever data in protocols or fi les are encrypted, there
are requirements on the structure and formatting of data. The information

10768_C011.indd 23310768_C011.indd 233 6/17/2010 7:54:43 PM6/17/2010 7:54:43 PM

234 Bioinformatics: High Performance Parallel Computer Architectures

about formats and data structures is usually publicly known, also to a poten-
tial attacker. As an example, all pictures in the graphics interchange format
(GIF) start with the fi xed token GIF89a; many other formats include (redun-
dant) length information of the document. Whenever the type of encrypted
data is known, we can exploit these and similar bits of information to con-
struct a valid plaintext–ciphertext pair from the document.

Then, the approach to use such a plaintext–ciphertext (p,c) pair in an exhaus-
tive key search is simple: we sequentially encrypt the given plaintext p with
all possible key candidates of the cipher’s key space K (i.e., kc enc p()=� with
k K∈) and compare each returned ciphertext c� to the given ciphertext c. As
soon a match is found (i.e., c c=�), we can identify the correct key candidate.

Our core component to perform the key search is an improved version of
the effi cient DES engine developed by the Université Catholique de Louvain’s
Crypto Group [21] based on 21 pipeline steps. Our design can test one key
per clock cycle and engine. On the COPACOBANA, we can fi t four such DES
engines inside a single FPGA, which allows for sharing plaintext–ciphertext
input pairs and the key space as shown in Figure 11.3.

We can operate each of the machine’s FPGAs at a clock rate of 136 MHz,
which is an improvement in performance by 36% compared to our original
design in [8]. Consequently, a partial key space of 242 keys can completely
be checked in 240 × 7.35 ns by a single FPGA, which is approximately 135

KEY KEY

CMP CMP

Success

CMPCMP

56 56

rst din

5664 64 64

IN

64 OUT 64 OUT 64 OUT 64 OUT

IN

plaintext ciphertext

FPGA

CNT

DES1
21 pipeline stages

DES 2
21 pipeline stages

DES 3
21 pipeline stages

DES 4
21 pipeline stages

key

KEY IN

56 64 64

KEY IN

FIGURE 11.3
Architecture for exhaustive key search with four DES key search units.

10768_C011.indd 23410768_C011.indd 234 6/17/2010 7:54:43 PM6/17/2010 7:54:43 PM

COPACOBANA: A Massively Parallel FPGA-Based Computer Architecture 235

minutes. As COPACOBANA hosts 120 of these low-cost FPGAs, the key search
machine can check 4 × 120 = 480 keys every 7.35 ns; that is, 65.28 billion keys
per second. To fi nd the correct key, COPACOBANA has to search through
an average of 255 different keys. Thus, COPACOBANA can fi nd the right key
in approximately T = 6.4 days on average. As more than one COPACOBANA
can be attached to a single host and the key space can be shared among all
machines, the search time then reduces to T/l, where l denotes the number
of machines.

11.3.3 Breaking DES-Based Crypto Tokens

In this section, we employ COPACOBANA for an attack on a real-world
system. More precisely, we attack cryptographic tokens that are used for
user authentication and identifi cation according to FIPS 113 and ANSI X9.9,
respectively. Their authentication method is based on one-time passwords
(OTP) generated using the DES algorithm. Unfortunately, such devices are
still used in many security relevant applications. (We are aware of online
banking systems in some places of the world still relying on ANSI X9.9-based
tokens for authorization of fi nancial transactions. We prefer not to give any
details at this point.) Hence, the attack presented in the following still has an
impact on affected online banking systems used worldwide.

11.3.3.1 Basics of Token-Based Data Authentication

We will now describe an OTP token-based data protocol according to FIPS
113 or ANSI X9.9, which is used for authentication in some real-world online
banking systems. Please note that we assume that OTP tokens have a fi xed,
securely integrated static key inside and do not use additional entropy
sources like time or events for computing the passwords. Indeed, there are
tokens available that generate new passwords after a dedicated time inter-
val (e.g., products like the RSA SecurID solution [22]) but those will not be
the focus of this chapter. This type of tokens require additional assump-
tions concerning the unknown plaintext, and thus are harder to attack.
More precisely, our contribution assumes fi xed-key OTP tokens that can be
used in combination with a challenge–response protocol. In such protocols,
a decimal-digit challenge is manually entered into the token via an inte-
grated keypad. The token in turn computes the corresponding response
according to the ANSI X9.9 standard. Tokens implementing this standard-
ized authentication scheme (incorporating ANSI 3.92 DES encryption) often
have a fi xed-size liquid crystal display (LCD) allowing for displaying eight-
decimal digits for input and output.

After the user has typed in eight-decimal digits as input (challenge), the
value is converted to binary representation using standard ASCII code
notation according to the ANSI X9.9 standard. For instance, the typed num-
ber “12345678” is converted into the 64-bit challenge value in hexadecimal

10768_C011.indd 23510768_C011.indd 235 6/17/2010 7:54:45 PM6/17/2010 7:54:45 PM

236 Bioinformatics: High Performance Parallel Computer Architectures

representation c = (0 × 31, 0 × 32, 0 × 33, 0 × 34, 0 × 35, 0 × 36, 0 × 37, 0 × 38). After
recoding, c is used as plaintext to the DES encryption function r = ek(c) with the
static key k stored securely in the token. The output of the encryption function
is the 64-bit ciphertext r = (r1, r0) where each ri denotes a 32-bit word to be trans-
formed using a mapping μ to fi t the eight-digit display of the token. The map-
ping μ takes the eight hexadecimal digits of r1 (32 bits) of the DES encryption as
input and converts each digit individually from hexadecimal (binary) notation
to decimal representation. Let H = {0, . . . ,9,A, . . . ,F} and D = {0, . . . ,9} be the alpha-
bets of hexadecimal and decimal digits, respectively. Then μ is defi ned as

H D H D H D H DH D A F: : {0 0 ; ...; 9 9 ; 0 ; 5 }→m 6 6 6 6

Hence, the output after the mapping μ is an eight-decimal digit value that
is displayed on the LCD of the token. Figure 11.4 shows how the response is
generated on the token according to a given challenge. In several countries,
this authentication method is used in banking applications whenever a cus-
tomer needs to authenticate fi nancial transactions. For this, each user of such
an online banking system owns a personal token used to respond to chal-
lenges presented by the banking system to authorize every security-critical
operation. In this context, for example, a security-critical operation can be the
login to the banking system as well as the authorization of a money transfer.
Figure 11.5 depicts a token-based challenge–response protocol interaction

1

12345678 047313120x3132333435363738

Input
ASCII

Secret
key

Output

2 3 DES m

4 5 6

7 8 9

1 2 3

4 5 6

7 8 90xA143BD1CF974226A

FIGURE 11.4
Principle of response generation with ANSI X9.9-based crypto tokens.

Online Banking

Transfer 1000 EUR?

12345678

04731312

User enters
challenge c

Token
generates
response r

Online Banking

Transfer 1000 EUR?

Banking application Banking applicationANSI X9.9 token

OK

c =
r =

12345678

04731312

OK

c =
r =

FIGURE 11.5
Token-based challenge–response protocol for online banking.

10768_C011.indd 23610768_C011.indd 236 6/17/2010 7:54:45 PM6/17/2010 7:54:45 PM

COPACOBANA: A Massively Parallel FPGA-Based Computer Architecture 237

with an online banking system from a user’s perspective. The central role
in such a security-related application makes the secret token an interesting
target for an attack.

11.3.3.2 Cryptanalysis of the ANSI X9.9-Based
Challenge–Response Authentication

With the knowledge of how an authenticator is computed in the challenge–
response protocol, we will continue with identifying weaknesses to attack
this authentication scheme. Firstly, ANSI X9.9 relies on the DES algorithm
for which we built a low-cost special-purpose hardware machine and this
can perform an exhaustive key search in less than a week. Second, the out-
put r of the DES encryption is only slightly modifi ed. Note that a more com-
plex scrambling with additional dynamic input, like hash functions with
salt, would make the attack considerably more complex or even impossible.
The output r is only truncated to 32 bits and modifi ed using the mapping
μ to convert c1 from hexadecimal to decimal notation. Owing to the trun-
cation to 32 bits, we need to acquire knowledge of at least two plaintext–
ciphertext pairs when mounting an exhaustive key search to return a single
key candidate only. The digit conversion μ additionally reduces the infor-
mation leaked by a single pair of plaintext–ciphertext, which is addressed
by Observation 1.

Observation 1: Let D = {0, . . . ,9} be the alphabet of decimal digits. With a
single challenge–response pair (c,r) of an ANSI X9.9-based authentication
scheme with c r D8, ∈ , on average 26 bits of a DES key can be determined (24
bits in the worst case, 32 bits in the best case).

As only 32 bits of the output for a given challenge c are exposed, this is a
trivial upper bound for the information leakage for a single pair. Assuming
the DES encryption function to be a pseudorandom function with appro-
priate statistical properties, the 32 most-signifi cant bits of c form eight hexa-
decimal digits that are uniformly distributed over H8 = {0, . . . ,9, A, . . . , F}8. The
surjective mapping μ has the domain F = {0, . . . ,9} of which T = {0, . . . ,5} are
doubly assigned. Hence, we know that F\T {6, ..., 9}∆ = = are four fi xed points
that directly correspond to output digits of c yielding four bit of key infor-
mation (I). The six remaining decimal digits F TΩ = ∩ can have two poten-
tial origins allowing for a potential deviation of one bit (II). According to a
uniform distribution of the eight hexadecimal output digits, the probability
that (I) is given for an arbitrary digit i of c is iPr() 1/4∈ ∆ = . Thus, on average
we can expect two out of eight hexadecimal digits of c to be in ∆ revealing
four bits of the key, whereas the remaining six digits introduce a possible
variance of one unknown bit per digit. Averaged, this leads to knowledge of
R = 2 ⋅ 4 + 6 ⋅ 3 = 26 bits of DES key material. Obviously, the best case with all
eight digits in ∆ and worst case with no digits out of the set ∆ provide 32 and
24 key bits, respectively.

10768_C011.indd 23710768_C011.indd 237 6/17/2010 7:54:46 PM6/17/2010 7:54:46 PM

238 Bioinformatics: High Performance Parallel Computer Architectures

According to Observation 1, we can develop two distinguished attacks
based on the knowledge of two and three known challenge–response pairs:

Observation 2: Given two known challenge–response pairs (ci, ri) for i {0,1}∈
of the ANSI X9.9 authentication scheme, an exhaustive key search using both
pairs will reveal 24 = 16 potential key candidates on average (256 candidates
in the worst case, and in the best case the actual key is returned).

Assuming independence of two different encrypted blocks related to the
same key in block ciphers, we can use accumulated results from Observation
2 for key determination using multiple pairs (pi, ci). Hence, on average we
can expect to determine 52 bits of the key where each ci has two digits from
the set ∆. Given a full DES key of 56-bit size, the results are 24 possible varia-
tions for key candidates. Having at least four digits from ∆ for each ci, we can
determine the best case resulting in a single key candidate. In the worst case
and with no ∆ digits in any ci, we will end up with 48 bits of determined key
material and 28 = 256 possible remaining key candidates. As a consequence,
the number of potential key candidates is directly dependent on how many
digits of a ci are fi xed points from the set ∆.

Observation 3: Given three known challenge–response pairs of the ANSI
X9.9 authentication scheme, an exhaustive key search based on this informa-
tion will uniquely reveal the DES key.

This directly follows from Observation 2. For this attack, 3 24 72 56⋅ = >
bits of key material can directly determined (even in the worst case) resulting
in the correct key to be defi nitely identifi ed.

11.3.3.3 Possible Attack Scenarios on Banking Systems

With these fundamental observations at hand, we can begin to develop two
attack variants for two and three plaintext–ciphertext pairs. As we need
only few pairs of information, an attack is feasible in a real-world scenario.
For instance, if we consider a phishing attack on an online banking system,
we can easily imagine that two or three (faked) challenges are presented to
the user, who is likely to respond with the appropriate values generated by
his token. Alternatively, spying techniques, for example, based on malicious
software like key-loggers or hidden cameras, can be used to observe the user
while responding to a challenge. Note that the freshness of these values do
not play a role as we use the information only for computing the secret key
and not for an unauthorized login attempt. Figure 11.6 shows a possible
attack scenario on ANSI X9.9 tokens and associated banking applications
based on phishing of challenge–response pairs c, r. With at least two pairs of
challenge–response data, we can perform an exhaustive key search on the
DES key space implementing the specifi c features of ANSI X9.9 authentica-
tion. To cope with the DES key space of 256 potential key candidates we will
propose an implementation based on dedicated special-purpose hardware.

In case that three challenge–responses pairs are given, we are defi nitely able
to uniquely determine the key of the secret token using a single exhaustive

10768_C011.indd 23810768_C011.indd 238 6/17/2010 7:54:47 PM6/17/2010 7:54:47 PM

COPACOBANA: A Massively Parallel FPGA-Based Computer Architecture 239

key search. When only two pairs (ci, ri) are available to the attacker, then it is
likely that several potential key candidates are returned from the key search
(cf. Observation 2). With 16 potential solutions on average, the attacker can
attempt to guess the right solution by trial and error. As most banking sys-
tems allow the user to enter up to three erroneous responds to a challenge in
a row, two key candidates can be tried by the attacker at a time. Then, after a
period of inactivity, the authorized user has probably logged into the bank-
ing application that resets the error counter and allows the attacker to start
another trial session with further key candidates. On average, the attacker
can expect to be successful after about four trial-and-error sessions, testing 8
out of the 16 keys from the candidate list. Hence, an attack on an ANSI X9.9-
based token is very likely to be successful even with knowledge of only two
given challenge–response pairs.

11.3.3.4 Implementing the Token Attack on COPACOBANA

As before, the main goal of our hardware design is a key search of the token
to be done in a highly parallelized fashion by partitioning the key space
among the available FPGAs on the COPACOBANA. This requires hardly any
interprocess communication, as each of the DES engines can search for the
right key within its allocated key subspace.

Within the FPGAs, we use again a slightly modifi ed version of the highly
pipelined DES implementation of the Université Catholique de Louvain’s
Crypto Group [21], which computes one encryption per clock per engine. As
with the brute force attack, we can fi t four such DES engines inside a single
FPGA, and therefore allow for sharing of control circuitry and the key space
as shown in Figure 11.7. The FPGA architecture comprises two 64-bit plain-
text registers for the challenges and two 32-bit ciphertext registers for storing
the corresponding responses that can be acquired from the OTP token. The
key space to be searched is allocated to each chip as the most signifi cant 14
bits of the key that is stored in the key register. The counter (CNT 1) is used

Special-purpose
hardware

Attacker

Bank

User with ANSI
X9.9 token

(3) Attacker can generate new responses r
to challenges c from bank using key k

(2) Attacker computes
token key k using (c,r) pairs

(1) Attacker phishes
for pairs (c,r)

Online Banking

Phishing Webpage

1234c =
r =

FIGURE 11.6
Attack scenario for token-based banking applications using phishing techniques.

10768_C011.indd 23910768_C011.indd 239 6/17/2010 7:54:47 PM6/17/2010 7:54:47 PM

240 Bioinformatics: High Performance Parallel Computer Architectures

to run through the least signifi cant 40 bits of the key. The remaining two bits
of the 56-bit key for each of the DES engines are hardwired and dedicated
to each of them. Thus, for every such FPGA, a task is assigned to search
through all the keys with the 16 most-signifi cant bits fi xed, in total 240 differ-
ent keys. The key space is partitioned by a connected host PC so that each
chip takes around 150 minutes (at 120 MHz) to test all ANSI X9.9 authentica-
tors in its allocated key subspace. During a single check of an authenticator,
the DES engines use the fi rst challenge (plaintext 1) as a primary input to the
encryption function. Then, the upper 32-bits of the generated ciphertext are
mapped digit per digit by the function μ and compared with the value of the
response stored in the register ciphertext 1.

If any of the DES engines provides a positive match, the corresponding
engine switches its input to the second challenge encrypting it with the same
key. To match the pipelined design of the DES engine, we are using a shadow
counter (CNT 2) tracking the key position at the beginning of the pipeline.
In case that the derived authenticator from the second encryption compares
successfully to the second response, the controller CTL reports the counter
value to the host PC as a potential key candidate. The host PC keeps track of
the key range that is assigned to each of the FPGAs and, hence, can match the
right key from a given counter value. If no match is found until the counter
overfl ows, the FPGA reports completion of the task and remains idle until a
new key space is assigned.

key

FPGA

key

CNT 1
56

64

64

64

success

din

din

din

din

32

µ µ µ µ

64

64

6464

56
KEY IN

OUT 64 OUT 64 OUT 64

32

323232 32

OUT

CMPCMPCMPCMP

KEY IN KEY IN KEY IN

CNT 2

ciphertext 1

ciphertext 2

plaintext 1

plaintext 2

CTL

DES 1
21 pipeline stages

DES 2
21 pipeline stages

DES 3
21 pipeline stages

DES 4
21 pipeline stages

FIGURE 11.7
Four ANSI X9.9 key search units based on fully pipelined DES cores in a Xilinx Spartan-3
FPGA.

10768_C011.indd 24010768_C011.indd 240 6/17/2010 7:54:48 PM6/17/2010 7:54:48 PM

COPACOBANA: A Massively Parallel FPGA-Based Computer Architecture 241

In case that a third challenge–response pair is specifi ed, the host PC per-
forms a verifi cation operation of the reported key candidate in software. In
case the verifi cation is successful, the search is aborted and the key returned
as a result of the search.

We have implemented the FPGA architecture shown in Figure 11.7 using
the Xilinx ISE 9.1 development platform. After synthesis of the design incor-
porating four DES engines and the additional logic for the derivation of the
ANSI X9.9 authenticator, the usage of 8,729 fl ip-fl ops (FF) and 12,813 LUT was
reported by the tools (56% FF and 83% LUT utilization of the Spartan3-1000
device, respectively). As discussed in Section 1.3, we included specifi c opti-
mizations like pipelined comparators because n-bit comparators are likely
to introduce a long signal propagation path reducing the maximum clock
frequency signifi cantly. By removing these potential bottlenecks, the design
can be clocked at 120 MHz after place and route resulting in a through-
put of 480 million keys per FPGA and second. In total, a fully equipped
COPACOBANA with 120 FPGAs can compute 57.6 billion ANSI X9.9 authen-
ticators per second. On the basis of this, we can present time estimates for an
attack provided that two challenge–response pairs are given. Recall that in
this scenario we will be faced with several potential key candidates per run
so that we have to search the entire key space of 256 to build a list with all of
them. This ensures that we are able to identify the actual key in a separate
step.

Similarly, we can present fi gures for an attack scenario where three chal-
lenge–response pairs are available. In this attack, we must test 255 ANSI X9.9
authenticators on average to fi nd the corresponding key that is half the time
complexity of an attack having two known pairs of data. Note that all pre-
sented fi gures of Table 11.1 include material costs only (not taking energy
and development costs into account).

For comparison with our hardware-based cluster, we have included esti-
mations for an Intel Pentium 4 processor operating at 2.4 GHz. This micro-
processor allows for a throughput of about 2 million DES computations a
second, what we also assume as appropriate throughput estimate for gener-
ating ANSI X9.9 authenticators.

TABLE 11.1

Cost-Performance Figures for Attacking the ANSI X9.9 Scheme with Two and Three
Known Challenge–Response Pairs (ci, ri)

Hardware System Material Cost Two Pairs (ci, ri) Three Pairs (ci, ri)

1 Pentium 4 @ 2.4 GHz
1 FPGA XC3S1000

US$ 50
US$ 50

1,170 years
4.8 years

585 years
2.4 years

1 COPACOBANA
100 COPACOBANAs

US$ 10,000
US$ 1 million

14.5 days
3.5 hours

7.2 days
104 minutes

10768_C011.indd 24110768_C011.indd 241 6/17/2010 7:54:48 PM6/17/2010 7:54:48 PM

242 Bioinformatics: High Performance Parallel Computer Architectures

11.4 COPACOBANA 5000

11.4.1 Direction toward New Applications

When the architecture of COPACOBANA 1000 was published [7–8, 23–26] it
was mainly seen as a special-purpose device for cryptoanalysis. But the sci-
entifi c discussion [27, 28] brought up the idea to make some minor changes to
the architectural concept to be able to cover a much wider application spec-
trum. With the new upcoming questions in scientifi c computing [29] and
bioinformatics, like short-read genome assembly [30–32], it turned out that
these changes were feasible and it was obvious that such a machine would
have a signifi cant impact on research advancement in these areas.

11.4.2 Requirements

The bottleneck of COPACOBANA 1000 for I/O-dominated applications was
the small data rate of the global bus. This was the case due to two reasons:
fi rst, the bus speed is bounded to the bandwidth of TCP/IP over Ethernet (at
most 100 Mbit/s or 1 Gbit/s). Second, the capability of the internal control-
ler module (the older Memec controller module as well as the newer FTDI
USB bridge) decreases the bandwidth again. In addition, the fan out of one
to twenty from the controller to the FPGA modules limited the clock rate for
the global bus, and the physical distance between the controller board and
the last FPGA module gave a lower bound for the speed of the communica-
tion over the bus.

For applications like error correction in genome assembly, motif search,
or alignment a data rate of at least 2 Gbit/s between controller and FPGA
would be desirable. This created the need of some more sophisticated inter-
connection network. The LUTs and the block RAM of the Spartan FPGAs
allowed a fast access to a small amount of memory with some limited degree
of parallelism. This was not suffi cient if genome or amino acid sequences or
large parts of them had to be locally stored for access of the individual pro-
cessing units on the FPGAs. Therefore, a second level of memory hierarchy
had to be introduced into the COPACOBANA concept.

The problems in cryptoanalysis are typically of the form that identi-
cal, compute-intensive operations have to be applied to a large number
of distributed data. Therefore, the algorithms consist of a fi rst phase,
where these data are distributed (or generated in the FPGAs); a second
phase of computation; and a third phase of collecting the results. The
dominating part is the second. This means there was no need to cope
with complicated communication patterns between the active units of
COPACOBANA 1000. As the requirements for bioinformatics applications
were much more demanding in terms of communication it was neces-
sary to develop a communication network that allowed effi cient point-to-

10768_C011.indd 24210768_C011.indd 242 6/17/2010 7:54:48 PM6/17/2010 7:54:48 PM

COPACOBANA: A Massively Parallel FPGA-Based Computer Architecture 243

multipoint communication and parallel point-to-point communication as
well. A set of different communication patterns were developed to specify
the needs of the bus and communication system for the new version of
COPACOBANA.

One obvious weakness of COPACOBANA 1000 was the computing power
of the Spartan3-1000. One of the requirements for the new system was there-
fore to fi nd a more powerful FPGA with comparable values in power con-
sumption and price.

As COPACOBANA 1000 was designed as a monolithic system for
 cryptoanalysis, there had been no standardization of its modules. This fact
made it diffi cult to keep track with the performance development of newly
upcoming chips. As an example, it was impossible to adapt the FPGA-cards
to make use of the DSP-units of the Virtex-4 series of Xilinx. The new sys-
tem therefore has been designed in classes of modules where the modules in
each class could be exchanged among each other.

11.4.3 Architecture of COPACOBANA 5000

The new architecture COPACOBANA 5000 consists of an 18-slot backplane
equipped with 16 FPGA modules and two controller modules intercon-
nected with a high-performance bus system. This massively parallel FPGA-
computer is connected to an in-system off-the-shelf PC via the two controller
modules and the PCIe interface. The embedded PC is capable of running
computation-intensive applications and/or acting as storage database due to
at least a quad-core CPU, 8 GByte RAM, and 1 TByte SATA hard disk. To
preserve some backward compatibility and usability COPACOBANA 5000
provides nearly all interfaces a standard PC also does, for example, Gigabit
Ethernet.

Each of the replaceable FPGA modules carry eight high-performance
FPGAs (e.g., the Spartan3-5000, not fi xed in advance) interconnected in a
one-dimensional array. The 1.8 kW main power supply with 12 V and 125 A
on the output site provides enough energy to run all 128 FPGAs, the embed-
ded PC, controllers, and six high-performance fans for front-to-back cooling.
An optional standard power supply for the embedded PC can be mounted to
discharge the main supply on extreme power-consuming applications.

Like in COPACOBANA 1000 the COPACOBANA 5000 comes in a case
mountable in standard 19-inch racks, now still occupying only 3 height units
(3HE). A photo of the new machine is depicted in Figure 11.8.

11.4.3.1 Bus Concept and Backplane

The COPACOBANA 5000 backplane provides 18 slots for communication mod-
ules. In general, these are 16 FPGA modules and two controller modules. The
backplane does not contain any further important electronic components as
only the interconnection of the slots and the supplying of power is done here.

10768_C011.indd 24310768_C011.indd 243 6/17/2010 7:54:48 PM6/17/2010 7:54:48 PM

244 Bioinformatics: High Performance Parallel Computer Architectures

Owing to the requirements of communication speed, the interconnection
of all individual FPGAs and the two controller modules is organized as a
systolic chain: There are fast point-to-point connections between every two
neighbors instead of one physical global bus. The fi rst controller communi-
cates with the fi rst FPGA on the fi rst module and the last FPGA on the last
module communicates with the second controller. This implies a long queue
of all FPGAs putting the embedded PC at the beginning and at the end of this
queue. To speedup certain communication profi les, for example, global broad-
casts, there are shortcuts in this chain between adjacent FPGA modules.

The point-to-point interconnections consist of eight pairs of wires in each
direction. Each pair is driven by low-voltage differential signaling (LVDS)
with a speed of 250 MHz. All FPGAs are clocked globally and synchro-
nously. Each clock cycle data is transferred from one FPGA to the adjacent
one forming a huge communication pipeline. Thus, inside the system this
technique allows a systolic data fl ow of 2 Mbit/s in each direction. Between
the controller modules and the embedded PC the maximum data rate is also
limited to 250 MByte/s (2 Gbit/s) due to the PCIe connection.

As all communication is done serially, there are no extra pins for address-
ing. All relevant information is bound in a communication protocol requir-
ing an overhead of bandwidth of about 20%. Only the confi guration is done
over special data paths leading to each FPGA.

The interconnection network can be used fl exibly either for local exchange
of data between every two adjacent FPGA modules or as a systolic point-to-
multipoint bus. The idea of systolic communication is not new: it is simply a
pipelined bus, where in every clock cycle one data item is propagated form
one unit to the next. As all units operate in parallel, the throughput is max-
imized at the prize of a considerable latency of several clock cycles between
two distant communication points. Former architectures have exploited this
concept of systolic communication as well [33]. Figure 11.9 shows the overall
bus architecture of COPACOBANA 5000.

11.4.3.2 FPGA Module

To overcome the limits of the Spartan3-1000 different FPGA chips have been
taken into account. Virtex-4 and Virtex-5 turned out to be too expensive
with respect to their performance. The best price-performance results were

FIGURE 11.8
COPACOBANA 5000 front view.

10768_C011.indd 24410768_C011.indd 244 6/17/2010 7:54:48 PM6/17/2010 7:54:48 PM

COPACOBANA: A Massively Parallel FPGA-Based Computer Architecture 245

provided by the Xilinx Spartan3-5000. It comes with different packages,
whereas the chosen one is compatible with many other Xilinx FPGAs. Hence,
it is possible to easily build FPGA modules mounted with different FPGAs.

Thus, in the standard version of COPACOBANA 5000 each FPGA mod-
ule contains eight freely confi gurable Spartan3-5000 FPGAs. One additional
FPGA with a fi xed confi guration is mounted on each controller module to
do intelligent routing of the systolic data streams. The simple communica-
tion protocol provides address information in the header fi elds of the data
stream, so this FPGA can easily fi lter packets out.

As the new COPACOBANA architecture is intended to be used for applica-
tions with dependence on large amounts of data and FPGAs generally do not
provide the ability to store more than a few kilobytes in their block RAMs,
each FPGA can optionally be equipped with a 256-Mbit DRAM module. This
provides a lot more fl exibility to an application developer and can release the
bus traffi c signifi cantly. Figure 11.10 shows the components and the data path
of the FPGA module.

In comparison to the COPACOBANA 1000 the connection mechanism
for the FPGA modules to the backplane has changed. Now, because high-
 performance FPGAs have higher heat dissipation, some more space between
two adjacent FPGA modules is required for cooling mechanisms. This
implies the possibility of taking a connection mechanism which is not that
small and better to handle than the DIMM connectors in COPACOBANA
1000. Hence, the FPGA modules are connected to the backplane via PCI con-
nectors, providing good electrical characteristics, stability, enough pins, and
ease of use.

Hard drive

SATA

CPU

PCle controller

PCle controller

1000Base-T

Embedded PC Bus cable
2 Gbit/s

Bus cable
2 Gbit/s

COPACOBANA 5000
Backplane

Slot 1

Slot 2

Slot 3

Slot 17

Slot 18

PCle
bridge

PCle
bridge

FIGURE 11.9
Architecture of the COPACOBANA 5000.

10768_C011.indd 24510768_C011.indd 245 6/17/2010 7:54:54 PM6/17/2010 7:54:54 PM

246 Bioinformatics: High Performance Parallel Computer Architectures

11.4.3.3 Interface Controller

The root entity of control is normally located on some host PC outside the
COPACOBANA 5000 machine. However, COPACOBANA 5000 contains a
fully featured embedded PC as front end directly connected to the two con-
troller modules for the COPACOBANA bus. The connection to this PC can
be done in several ways. The easiest way is to integrate the COPACOBANA
machine into a local area network (LAN) and connect via TCP/IP. The usage
of this connection is then very fl exible.

Two scenarios are considered here: the fi rst scenario is to let the host com-
puter control the FPGAs and the internal bus directly via a special API. This
is the way it was already done on COPACOBANA 1000. For this purpose
COPACOBANA 5000 provides two Gigabit Ethernet interfaces to assure
enough bandwidth for communication.

The second scenario is the preferable one in most cases: A database of
input data is physically stored inside the COPACOBANA machine, for exam-
ple, on the 1TB SATA hard drive attached to the embedded PC. The hard
disk provides a last stage of memory hierarchy for the parallel system as
well as for the interchange of data between COPACOBANA and the out-
side world. The Gigabit Ethernet connection can then be used for preparative
data transfers. In this case, the controlling application is running remotely
on COPACOBANA and the host computer acts as user terminal only. As the
embedded PC is running a conventional operating system, the user can thus
access COPACOBANA in a familiar way.

11.4.3.4 Power Supply and Cooling Mechanism

COPACOBANA 5000 comes in a box fi tting in standard 19-inch racks using
3HE. As a lot of power-consuming components were to be placed in compar-
atively small space the designers were confronted with heat dissipation—one

DRAM

DRAM

FPGA

FPGA

DRAM

DRAM

FPGA

FPGA

DRAM DRAM
FPGA module

DRAM

FPGA

FPGA

256 Mbit 256 Mbit 256 Mbit 256 Mbit

256 Mbit 256 Mbit 256 Mbit
DRAM

FPGA

Controller

FPGA

Connector 4+4 Gbit/s

2 Gbit/s 2 Gbit/s

FPGA

256 Mbit

FIGURE 11.10
Design of the COPACOBANA 5000 FPGA module.

10768_C011.indd 24610768_C011.indd 246 6/17/2010 7:54:54 PM6/17/2010 7:54:54 PM

COPACOBANA: A Massively Parallel FPGA-Based Computer Architecture 247

of the major problems in the design of COPACOBANA 5000. As the FPGAs
tend to be confi gured such that they exploit the majority of their CLBs, each
FPGA will come to its limits with respect to power consumption. Eight com-
puting FPGAs plus one routing FPGA on each board reach a maximal power
of about 75 W. In addition, the ATX-board with its main processors and the
hard disks contribute to the heat that has to be dissipated. The cooling air
is blown through the box of COPACOBANA by six high-performance fans.
Three of them force the intake of cold air; three others transport the heated
air out. The FPGA modules are plugged in vertical direction to let the heated
air rise up and to maximize the air fl ow.

Closely related to the cooling system is the power supply. Under maximal
load, COPACOBANA takes 1.8 kW. The FPGAs are driven with a core voltage
of 1.2 V (2.5 V for signals). Therefore, the current to each FPGA can reach a
value up to 7 A, which makes a total of 63 A on each FPGA module. To dis-
charge the backplane from transporting current in this order of magnitude,
power converters are mounted on each FPGA module converting the supply
voltage of 12 V to the core voltage of 1.2 V. This decreases the amount of cur-
rent by a factor of 10, but still, the total current to all FPGA modules is greater
than 100 A. Specifi c power lines have been implemented into the backplane
to be able to cope with currents of this order of magnitude.

11.4.3.5 Application Development

As COPACOBANA 5000 also benefi ts from the massive parallelization of PEs
implemented on FPGAs, the way to develop applications is not much differ-
ent from the way for COPACOBANA 1000. The benefi t of the new machine
is the expansion of suitable application types. Now, applications can be
considered requiring more interprocess communication and/or high data
throughput.

The fi rst layer of programming is still the design of the FPGA confi gu-
ration. But now on the one hand, because the bus system is more compli-
cated, the developer has to involve a bus controller in his/her design and
use another API for accessing data of it. On the other hand, this controller
releases the developer from taking care of data packets that simply have to
run through the FPGA.

For developing the control software, the second layer of COPACOBANA
application development, the amount of required resources has to be consid-
ered. Does the application depend on fast access of huge amounts of data or
does data dependency have less priority? This is important for the decision
if this application should run either on the host computer or directly on the
embedded PC. An application running directly on the embedded PC has
easier and faster access to the onboard resources. The developer can ben-
efi t from anything the operating system provides like simple fi le I/O on the
hard disk. The communication with the FPGAs is done directly via an API
operating the COPACOBANA bus controllers via the PCIe interface. This

10768_C011.indd 24710768_C011.indd 247 6/17/2010 7:54:57 PM6/17/2010 7:54:57 PM

248 Bioinformatics: High Performance Parallel Computer Architectures

API provides functions to easily manage the whole systolic data fl ow on the
COPACOBANA bus. Hence, there is only a user interface to implement on
the host computer, communicating with the COPACOBANA application.
This usually does not require much bandwidth and can be done via Ethernet
for example. In addition the interface can be operating system independent.
Only the client for the host computer has to be implemented for the desired
operating system, which implies an easier portability.

The implementation of an application to run on the host computer depends
on a special server running on the embedded PC. This server provides
another API to control the COPACOBANA bus, which is similar to the one
operating directly on the PCIe interface. There are some drawbacks to con-
sider in this scenario. The fi rst to mention is the loss of fl exibility as the usage
of onboard resources is limited and depends on the API. Second, data has
to be streamed directly from the host, which can be a lot slower depending
on the network infrastructure and third-party traffi c. And last but not least,
portability is more diffi cult because the whole application including the user
interface is running on a specifi c operating system. But because there are
many applications already running for COPACOBANA 1000, porting them
to COPACOBANA 5000 for speedup is easy using this type of application
implementation.

As a helper tool again the little “MemoryTest” application is provided. It
checks the functioning of each FPGA, the applied memory, and the internal
bus. This tool acts as an example of how to use the different APIs for hard-
ware and software on both sides, the FPGA side and the host side.

11.5 Applications in Bioinformatics

The new hardware architecture COPACOBANA 5000 is designed especially
for streaming algorithms that need a high throughput and that profi t easily
by massive parallelization. It aims for many algorithms in bioinformatics as
they have to cope with large amounts of genome data. In most cases these
datasets could easily be analyzed in streams.

The greatest diffi culty software designers have to face when porting algo-
rithms to the COPACOBANA 5000 architecture is the hardware design of the
PEs for the COPACOBANA FPGAs. As FPGAs are no real processors like the
CPU in a standard PC running a simple program, the functional behavior
depends on a hardware description written in a hardware description lan-
guage like VHDL. Fundamentals of the design are its speed and area usage.
Therefore, it is often benefi cial not to implement existing algorithms directly
in hardware, but to alter these algorithms or even create new ones to fi t the
requirements of the new architecture and to gain better results in a more
effi cient way.

10768_C011.indd 24810768_C011.indd 248 6/17/2010 7:54:58 PM6/17/2010 7:54:58 PM

COPACOBANA: A Massively Parallel FPGA-Based Computer Architecture 249

Two of the most challenging problems in bioinformatics are motif fi nding
and alignment. As there is still no universal motif fi nding algorithm that
satisfi es the needs of every biologist, for optimal global and local alignments
the algorithms by Needleman and Wunsch [34] and Smith–Waterman [35]
are widely accepted. Though it is hard to implement them directly in hard-
ware for high effi ciency, the next section describes a very powerful solution.
Afterward the motif fi nding problem is addressed by an effi cient hardware
solution searching for unknown regulatory elements of fi xed size but allow-
ing variations in the instances of the located strings.

11.5.1 Sequence Alignment

The alignment of nucleotide sequences deals with the problem of fi nding
the best fi tting alignment of two nucleotide sequences against each other.
Algorithms used to handle this problem may be classifi ed to either heuristic
or nonheuristic ones. The heuristic alignment algorithms such as basic local
alignment search tool (BLAST) [36] have become the common tools to search
for alignments as they are much faster than nonheuristic ones. Although
they produce a large amount of false results and may not succeed in fi nd-
ing all the correct solutions, in terms of computing time they outperform
nonheuristic algorithms by far and have therefore gained broad acceptance
within the group of molecular biologists.

In recent years, the advancing hardware technology has allowed the revival
of nonheuristic alignment algorithms. In this section we want to demon-
strate how COPACOBANA 5000 can be used for this purpose.

11.5.1.1 Smith–Waterman Alignment

To demonstrate the applicability of nonheuristic alignment algorithms the
so-called Smith–Waterman algorithm [35] is introduced as an example. This
algorithm is capable of fi nding the best fi tting alignment of one sequence
inside of another, meaning it searches for occurrences of one sequence. For
convenience the sequence that is searched for is called “query sequence”
while the one that is searched in is called “database sequence” To fi nd the
best of every possible alignment a score is generated. These scores are calcu-
lated by the simple scoring function:

 
 − + =  − + 
 − − + 

H i j GapPenalty
H i j

H i j GapPenalty

H i j Match Mismatch

0
(1,)

(,) max
(, 1)

(1, 1) /

Here, H is a matrix and the values for GapPenalty, Match, and Mismatch can
be user defi ned. H is the so-called scoring matrix.

10768_C011.indd 24910768_C011.indd 249 6/17/2010 7:54:58 PM6/17/2010 7:54:58 PM

250 Bioinformatics: High Performance Parallel Computer Architectures

A software implementation of the Smith–Waterman algorithm usually cal-
culates the entries of the scoring matrix one after the other using one or more
processes. Typically, this is done line by line or column by column from left
to right as the scoring function only uses the values of the top, the left, and
the top-left neighbors. Once the matrix calculation has fi nished, the actual
alignment is found by starting a backtracking through the matrix at the cell
with the highest value. This technique is not practical to be implemented in
hardware because the matrix can easily get too large to store it in the RAM
of an FPGA. So a work around has to be found to solve this kind of problem
in hardware.

Example: The scoring matrix for a Smith–Waterman alignment of the
query “CGGA” on “ACGAT” can look like the matrix shown in Table 11.2.

This scoring matrix was generated with a score of 2 for Match and −1 for
Mismatch and GapPenalty. The backtracking results in the alignment shown
in Table 11.3.

11.5.1.2 Hardware Implementation

To cope with the memory limitations mentioned earlier it is essential to know
that in a biologist’s workfl ow it is very likely to align thousands of query
sequences at a time with only looking at the maximal scores of the align-
ments. These scores are analyzed and the actual alignment of a very little
selection of query sequences with the highest scores may easily be computed
on a standard PC. Hence, it is not important to store the whole matrix, but
only the maximum and the values needed for computation. Then, the output
is simply the maximum cell value.

Like in a software implementation, parallelization can be done line by line.
Thus, every PE calculates one line, meaning that it is responsible for exactly
one character of the query sequence. Therefore, referencing the value of the

TABLE 11.2

Scoring Matrix for Smith–
Waterman Alignment

A C G A T

C 0 2 1 0 0
G 0 1 4 3 2
G 0 0 3 3 2
A 2 1 2 5 4

TABLE 11.3

Alignment Example (“-“ Denotes a Gap)

Base: A C G - A T
Query: - C G G A -

10768_C011.indd 25010768_C011.indd 250 6/17/2010 7:54:59 PM6/17/2010 7:54:59 PM

COPACOBANA: A Massively Parallel FPGA-Based Computer Architecture 251

left neighbor is simply accessing its own value of the previous clock cycle.
Like this, referencing the value from the top or top-left neighbor means ref-
erencing the value of the preceding PE one or two clock cycles before, respec-
tively. In addition, the update of the maximum value that was seen so far has
to be done.

With a parallelization scheme like this, the algorithm processes the matrix
diagonally with the database sequence streaming through the chain of PEs.
The processing of a matrix is seen in the following example while the illus-
tration of an FPGA implementation is shown in Figure 11.11.

Example: The processing scheme of the scoring matrix from the previous
example is depicted in Table 11.4.

11.5.1.3 Performance on COPACOBANA 5000

Common FPGA implementations of the Smith–Waterman algorithm only
use one single FPGA. Hence, they either are limited in the length of the
query sequence or need to reinitialize their chain of PEs. Implementing the

PE

BlockRAM

PE PE PE

PE PE PE PE

PE PE PE PE

C

o

n

t

r

o

l

FIGURE 11.11
Implementation of the Smith–Waterman algorithm on an FPGA.

TABLE 11.4

Processing Scheme for Smith–Waterman Alignment

A C G A T

C 0 2 1

G 0 1
G 0
A

10768_C011.indd 25110768_C011.indd 251 6/17/2010 7:54:59 PM6/17/2010 7:54:59 PM

252 Bioinformatics: High Performance Parallel Computer Architectures

Smith–Waterman algorithm on COPACOBANA 5000 offers new ways to
think about scaling. Now, there are 128 instead of 1 FPGA available. In addi-
tion, in contrast to the interprocess communication ability of COPACOBANA
1000, all FPGAs can communicate in a systolic manner. Thus, it is possible
to simply align 128 small query sequences at once, or, even better, to align
a query sequence that is 128 times the size of what was possible before the
COPACOBANA 5000 was available. It is even able to mix different query
lengths and process them altogether in parallel.

Table 11.5 shows the performance results of the alignment of 3,685 20-mers
against the human genome, comparing a standard PC (AMD Opteron at 2.2
GHz), a Cray XD-1 using one FPGA [37], and the COPACOBANA 5000.

11.5.2 Motif Finding

The biological background for motif fi nding is the discovery of regulatory
sequences in DNA. It is often described as the “needle-in-the-haystack prob-
lem” [38]. Algorithms search for overrepresented occurrences of unknown
short sequences that in addition could have slight variations in their instances.
This makes it one of the most challenging problems in bioinformatics. In fact
there are problem instances of motif fi nding that are unsolvable by current
techniques. There are two reasons that make this problem so diffi cult. First,
the parameters of a given problem instance (like sequence and motif length,
grade of mutation) can make it impossible to identify motifs due to back-
ground noise. Second, it is computationally expensive as nearly nothing is
known on the instances intended to be found.

Decades have already been spent on this issue but no single algorithm
meets all the demands of the biologists. Every scientist has his/her own
special needs on special ways of the problem with modifi ed criteria for the
algorithms. Thus most algorithms developed as yet only perform well on
special problem instances, but deliver worse results on general problem
instances [39, 40]. Although the MEME algorithm [41, 42] reached a broad
acceptance in academic circles, like BLAST [36] for alignment problems, its
results often only give a clue about what was expected for real. Important
instances simply stay hidden although additional criteria could help to dis-
cover them.

TABLE 11.5

Performance Results on Smith–Waterman Alignment

COPACOBANA 5000 Cray XD-1 AMD Opteron (2.2 GHz)

Runtime 0.1 hours 7.39 hours 75 hours
Speedup (vs. PC) 750 10.15 1
Energy consumption 0.06 kWh 2.7 kWh 22.5 kWh
System cost 200,000 $ 100,000 $ 500 $

10768_C011.indd 25210768_C011.indd 252 6/17/2010 7:55:01 PM6/17/2010 7:55:01 PM

COPACOBANA: A Massively Parallel FPGA-Based Computer Architecture 253

The MEME approach and the similar Gibbs sampler [43, 44] develop matri-
ces as representation for motif candidates using an expectation maximiza-
tion method. Other algorithms like PROJECTION [45] only precompute start
values for the expectation maximization method to fi lter out false-positive
results. The greedy approaches like the original CONSENSUS [46] simply
fi nd the most likely instances by aligning only small parts of the genome at a
time, but have a high risk of missing other important instances.

The approach iterative generation of matrices (IGOM), later enhanced to
Boolean matrix algorithm (BMA) [47], uses position frequency matrices as
representation of motif instances. It iteratively generates these matrices by
measuring a value similar to signal-to-noise ratio. This is done in correla-
tion to signal theory where the signal strength opposing to the background
noise of the medium is maximized. The restrictions of the position frequency
matrices are weakened to gain the highest signal-to-noise ratio, thus gener-
ating a candidate for a motif. The step from IGOM to BMA is due to the
awareness that in general the exact distribution of the different bases on sev-
eral positions in the motif instances is not necessarily needed for further
analysis. It is only important to know which bases are permitted to exist on
a weakened position. So, a Boolean representation of the position frequency
matrices is suffi cient, leading to the algorithm BMA.

11.5.2.1 The BMA Algorithm

In the following section the simple algorithm BMA [47] is described. This
algorithm is highlighted by the success in discovering a new stress factor in
Bacillus subtilis (in cooperation with the Institute of Virology, Free University
of Berlin). Given clean input data, that is, for example a preanalyzed sequence
with repeat regions already cut out, not much effort has to be made for fi lter-
ing the result data again. The results already provide clean indications for
what is a real motif candidate and what is not.

In addition, BMA is highly customizable for special criteria; for example,
the searching for underrepresented sequences, or motifs where instances
with slight modifi cations do not occur, could easily be adapted.

11.5.2.2 Implementation of BMA

The basic implementation of BMA uses Boolean matrices as representation
for a motif. The Boolean matrices used here have similarities to commonly
used position frequency or position weight matrices. They consist of four
rows, each for one of the four possible bases A, C, G, and T. The number
of columns is equal to the size of the expected motif and represents a
position in the motif. Thus exactly one “true”-value in a column forces the
corresponding base to be present in every motif instance at the column’s
position. This is called a “preserved” position. More than one “true”-value
in a column imply a weakened preservation of bases in this position. BMA

10768_C011.indd 25310768_C011.indd 253 6/17/2010 7:55:01 PM6/17/2010 7:55:01 PM

254 Bioinformatics: High Performance Parallel Computer Architectures

only allows maximal two “true”-values in one column, which is called
a “semi-preserved” position. The example in Table 11.6 shows a Boolean
matrix with semipreserved positions at the second and third base, thus
representing the sequences “AAGTCA,” “AGATCA,” “AGGTCA,” and
“AAATCA.”

The first step in the BMA algorithm is the initialization of the Boolean
matrix representing a possible candidate for a motif. The initializa-
tion value could either be taken from a substring of the genome data to
 analyze or be taken out of all possible initialization values. The prefera-
ble way depends on the size of the genome data and the expected motif
size. As there are four different bases the number of possible initiali-
zation values is limited to 4(motif size). If this number exceeds the number
of subsequences of the same length in the genome data, the first way
should be preferred.

After initialization the number of occurrences of the actual motif candi-
date in the genome data is simply counted and interpreted as score. In the
same time variances of the actual candidate are registered by counting the
differences in each position in some scoring matrix. The registration is done
only in cases where exactly one base differs from the candidate. This way the
most popular variation of the actual motif instance is voted and the corre-
sponding position will be weakened to “semipreserved” after analyzing the
genome data once. In the following example an analyzing run is illustrated.
A Boolean matrix and a sequence mismatching the matrix in exactly one
position are shown. The corresponding counter to this mismatching position
in an example scoring matrix is emphasized, leading to the ensuing weak-
ened Boolean matrix.

Example 11.1: An Analysis Run with BMA

The Boolean matrix is taken from the example in Table 11.6. An example sequence
(“AGACCA”) with exactly one mismatch according to this matrix is stated in Table
11.7. The fi elds corresponding to the characters in the sequence are highlighted.

An example of a scoring matrix emphasizing the corresponding counter is stated
in Table 11.8.

The weakened Boolean matrix resulting from the scores of this scoring matrix
can be seen in Table 11.9.

TABLE 11.6

An Example of a Boolean Matrix

A 1 1 1 0 0 1
C 0 0 0 0 1 0
G 0 1 1 0 0 0
T 0 0 0 1 0 0

10768_C011.indd 25410768_C011.indd 254 6/17/2010 7:55:01 PM6/17/2010 7:55:01 PM

COPACOBANA: A Massively Parallel FPGA-Based Computer Architecture 255

This procedure is repeated until the desired degree of weakened positions is
reached. The score of each matrix then represents the degree of overrepresenta-
tion of the motif candidate in the genome.

11.5.2.3 Parallelization of BMA in Hardware

Because of their Boolean representation the matrices easily fi t in a hardware
design, occupying less space than matrices containing integer or fl oating
point numbers. The simplicity of the algorithm itself, the independence of
several PEs, and the accessing of the genome data as stream make it perfectly
well suited for massive parallelization on COPACOBANA [10].

The parallelization is straightforward. As every actual motif candidate has
to be analyzed with the genome data, the best way is to take as many PEs
as possible, each handling one motif candidate, and analyze the streamed
genome data in parallel. Each PE has to hold the Boolean matrix for the can-
didate, some counters for its score and several counters in a scoring matrix.
Thus, the most expensive component concerning area usage is the scoring

TABLE 11.7

Matching a Sequence with a Boolean
Matrix

A 1 1 1 0 0 1
C 0 0 0 0 1 0
G 0 1 1 0 0 0
T 0 0 0 1 0 0

A G A C C A
✓ ✓ ✓ ✗ ✓ ✓

TABLE 11.8

An Example of a Scoring Matrix,
Corresponding to the Previous Example

A – – – 6 0 –
C 0 5 0 12 – 0
G 7 – – 0 4 4
T 0 0 2 – 0 1

TABLE 11.9

The Resulting Weakened Boolean
Matrix from the Previous Example

A 1 1 1 0 0 1
C 0 0 0 1 1 0
G 0 1 1 0 0 0
T 0 0 0 1 0 0

10768_C011.indd 25510768_C011.indd 255 6/17/2010 7:55:02 PM6/17/2010 7:55:02 PM

256 Bioinformatics: High Performance Parallel Computer Architectures

matrix, but it is rarely accessed benefi cially throughout the analysis. So, the
scoring matrix could be placed in the block RAM structure abundant on
every COPACOBANA FPGA. This way the resources of logic cells are saved
and it is possible to place more PEs on each FPGA. To ensure the access to
the genome data at high clock rates, the PEs on the FPGA are arranged in
several queues along the location of the block RAM. Each element provides
the data to its neighbor after one clock cycle. The same happens for the
results whose data fl ow is just the other way round. In addition a prese-
lection is done by providing only the best results per chip. Figures 11.12
and 11.13 show an illustration for the arrangement of the components on a
COPACOBANA 1000 FPGA and the data fl ow for a single run.

There is not much difference in the implementations for the COPACOBANA
1000 and the COPACOBANA 5000 architectures. The basic PEs are the same,
but it is apparently the count that differs. While there are 32 elements fi tting
on a COPACOBANA 1000 FPGA, it is 128 elements on a COPACOBANA 5000
FPGA. In total 3,840 versus 16,384 PEs are working in parallel.

The second main difference between the architectures is the communica-
tion structure and thus the speed of a single analysis run. The COPACOBANA
1000 provides the genome data to the PEs by broadcasting on the internal
single-master multiple-slave bus. COPACOBANA 5000 communicates on a

BRA
M

BRA
M

Com
parators

Search entity Search entity

Search control entity

COPACOBANA bus

FIGURE 11.12
Hardware design overview of the parallelized BMA algorithm. The processing elements are
arranged in a queue on each FPGA.

10768_C011.indd 25610768_C011.indd 256 6/17/2010 7:55:02 PM6/17/2010 7:55:02 PM

COPACOBANA: A Massively Parallel FPGA-Based Computer Architecture 257

communication ring basis. Broadcasting is done by sending chunks of data
one by one to the fi rst client in the ring, which repeats it in sending it to the
next client, and so on. The benefi t of this behavior is that communication
is done over short distances. Hence, it could be very fast, but with the little
drawback of a relative high delay for the least clients. Actually communica-
tion between two clients reaches the data rate of 2 Gbit/s on COPACOBANA
5000. This is defi nitely enough to make the runtime of the whole algorithm
solely depend on the speed of the internal clock while the critical factor on
COPACOBANA 1000 is the speed of the bus.

To gain high clock frequency in a BMA PE for the COPACOBANA 5000
the design was being optimized by introducing pipeline stages while com-
paring the motif candidate with the actual subsequence of the input data.
This raised the clock speed from only 40 MHz in the COPACOBANA 1000
design to a possible frequency of about 100 MHz for the COPACOBANA 5000
design. For comparison with a standard PC the algorithm was accordingly
adapted, implemented in C++, and compiled with highest processor specifi c
optimization.

11.5.2.4 Performance Results of BMA

Table 11.10 shows the performance results of some motif-fi nding runs on
several genomes for the COPACOBANA 5000, COPACOBANA 1000, and
a standard PC architecture. The PC features the following properties: an
Intel Core2 Quad CPU at 2.4 GHz, 8 GB DDR-II RAM, and SATA hard disk

Counter

Final resultRaw data

Counter
D

N
A

 S
eq

ue
nc

e

D
N

A
 S

eq
ue

nc
e

Interm
ediate results

Interm
ediate results

FIGURE 11.13
The data fl ow of a parallelized BMA run on a single FPGA.

10768_C011.indd 25710768_C011.indd 257 6/17/2010 7:55:03 PM6/17/2010 7:55:03 PM

258 Bioinformatics: High Performance Parallel Computer Architectures

running a Linux operating system. The algorithmic parameters were a motif
size of 12, a number of six runs for each initialized candidate, and for every
genome their subsequences of the same length as the motif were used for
initialization instead of using all possible sequences. In the case of taking
all possible initialization sequences, the runtime would increase linearly for
all architectures. The measurement of the power consumption of the three
architectures resulted in about 1000 W for COPACOBANA 5000, 600 W for
COPACOBANA 1000, and 300 W for the standard PC.

The results show that the COPACOBANA architectures outperform a stan-
dard PC in an order of magnitude while taking the computation time back
to rational means. The effi ciency factor calculated by dividing the hardware
costs of one PC (€ 300) with the costs of one COPACOBANA 5000 machine
(€ 150,000) and multiplied with the speedup of about 25,000, reaches 50. This
means COPACOBANA is 50 times more effi cient than using a PC or PC clus-
ter for solving this kind of problems.

Further, according to the energy consumption, COPACOBANA even
provides energy savings in several orders of magnitude. Imagine, a PC
cluster working in parallel to decrease the runtime will not decrease the
amount of energy needed! Thus, given the costs for a COPACOBANA 5000
machine of about €150,000 and the energy costs for a PC cluster of about
€180 just for solving only one problem of size B. subtilis (s. table), it will take

TABLE 11.10

Performance Results on Motif Finding with BMA

COPACOBANA
5000 (1,000W)

COPACOBANA
1000 (600W)

Intel Core2 Quad 2.4
GHz (300W)

Cowpox virus (230 kbp):
Runtime ~2 seconds 3 minutes 3 hours
Speedup (vs. PC) 5,400 60 1
Energy consumption 0.0006 kWh 0.03 kWh 0.9 kWh
Energy costs
(0.20 €/kWh)

€ 0.0001 € 0.006 € 0.18

Rickettsia can. (1.2 Mbp):
Runtime 21 seconds 21 minutes 4 days 19 hours
Speedup (vs. PC) 19,714 329 1
Energy consumption 0.006 kWh 0.21 kWh 34.5 kWh
Energy costs
(0.20 €/kWh)

€ 0.0012 € 0.042 € 6.90

Bacillus subtilis (5.9 Mbp):
Runtime 7 minutes 6 hours 10 minutes 122 days
Speedup (vs. PC) 25,097 475 1
Energy consumption 0.117 kWh 3.7 kWh 878.4 kWh
Energy costs
(0.20 €/kWh)

€ 0.023 € 0.74 € 176

10768_C011.indd 25810768_C011.indd 258 6/17/2010 7:55:03 PM6/17/2010 7:55:03 PM

COPACOBANA: A Massively Parallel FPGA-Based Computer Architecture 259

only 830 runs to reach energy costs the size of the hardware costs for one
COPACOBANA 5000 machine. While scaling the size of the problem to
higher amounts, this factor gets even worse on side of the PC. That makes
the acquisition of COPACOBANA even cheaper than maintaining a cluster
of standard PCs.

11.5.3 Future Work

As COPACOBANA 5000 is suitable for all kinds of algorithms processing huge
amounts of data preferably in streams without diffi cult computations, the
research area of bioinformatics has a lot of topics adequate for this massively
parallel architecture. For instance, further research is done on genome assem-
bly with reassembly as well as de novo assembly on COPACOBANA. These
kinds of algorithms require the processing of several ten thousand mega-
bytes of data in rational means of time. The capability of the COPACOBANA
5000 to handle these requirements has already been shown in the examples
earlier. The machine outperforms a standard PC by an order of magnitude
while saving energy costs in several orders of magnitude. Hence, the com-
mercial availability makes it indeed an interesting opportunity for research-
ers in molecular biology to replace their existing PC clusters.

11.6 References

 1. Aho A.V., Ullman J.D., Hopcroft J.E.: The Design and Analysis of Computer
Algorithms, Addison Wesley, 1973.

 2. Chazelle B., Monier L.: Unbounded hardware is equivalent to deterministic
Turing machines, Theoretical Computer Science 24, 123–130, 1983.

 3. Hromkovic J.: Communication Complexity and Parallel Computing, Springer,
1997.

 4. Floyd T.L.: Digital Fundamentals, Pearson International Education, 2006.
 5. Robert Y., Quinton P., Tchuente M.: Parallel Algorithms and Architectures, North

Holland, Amsterdam, 1986.
 6. Schröder H.: VLSI-sorting evaluated under the linear model, Journal of Complexity

4, 330–355, 1988
 7. Kumar S., Paar C., Pelzl J., Pfeiffer G., Rupp A., Schimmler M.: How to break

DES for € 8,980. Presented at the Workshop on Special Purpose Hardware for
Attacking Cryptographic Systems (SHARCS’06), 2006.

 8. Kumar S., Paar C., Pelzl J., Pfeiffer G., Schimmler M.: Breaking Ciphers with
COPACOBANA—A cost-optimized parallel code breaker. In L. Goubin and M.
Matsui, editors, Proceedings of the Workshop on Cryptograpic Hardware and Embedded
Systems (CHES 2006), LNCS 4249, pp. 101–118. Springer-Verlag, 2006.

 9. Pfeiffer G., Baumgart S., Schröder J., Schimmler M.: A massively parallel archi-
tecture for bioinformatics, Computational Science—ICCS 2009 International
Conference on Computational Science, LNCS 5544, pp. 994–1003, 2009.

10768_C011.indd 25910768_C011.indd 259 6/17/2010 7:55:03 PM6/17/2010 7:55:03 PM

260 Bioinformatics: High Performance Parallel Computer Architectures

 10. Schröder J., Wienbrandt L., Pfeiffer G., Schimmler M.: Massively parallelized
DNA motif search on the reconfi gurable hardware platform COPACOBANA.
International Conference on Pattern Recognition in Bioinformatics,
Oct 2008.

 11. SciEngines GmbH. http://www.sciengines.com Accessed February 18, 2010.
 12. Avnet EMG GmbH: Memec Virtex-4 FX12 Mini Module User Guide, 2005.

http://www.avnet-memec.eu Accessed February 18, 2010.
 13. National Institute for Standards and Technology (NIST). Data Encryption

Standard, FIPS PUB 46–3, January 1977.
 14. Güneysu T., Paar C., Pelzl J.: Attacking elliptic curve cryptosystems with

special purpose hardware. In Proceedings of the International Symposium on
Field Programmable Gate Arrays (FPGA 2007), pp. 207–215. ACM Press, 2007.

 15. Gendrullis T., Novotný M., Rupp A.: A real-world attack breaking A5/1 within
hours. In E. Oswald and P. Rohatgi, editors, Proceedings of the Workshop on
Cryptographic Hardware and Embedded Systems (CHES 2008), LNCS 5154, pp.
266–282. Springer-Verlag, 2008.

 16. Liu Y., Kasper T., Lemke-Rust K., Paar C.: E-passport: Cracking basic access con-
trol keys. In R. Meersman and Z. Tari, editors, Proceedings of On the Move to
Meaningful Internet Systems Conferences (OTM 2007), LNCS 4804, pp. 1531–1547.
Springer-Verlag, 2007.

 17. Diffi e W., Hellman M.E.: Exhaustive cryptanalysis of the NBS data encryption
standard. Computer, 10, 6, 74–84, 1977.

 18. Wiener M.J.: Effi cient DES key search. In W.R. Stallings, editor, Practical
Cryptography for Data Internetworks, pp. 31–79. IEEE Computer Society Press,
1996.

 19. Blaze M., Diffi e W., Rivest R.L., Schneier B., Shimomura T., Thompson E., Wiener
M.: Minimal key lengths for symmetric ciphers to provide adequate commer-
cial security. Technical report, Security Protocols Workshop, Cambridge, UK,
January 1996. Available at http://www.counterpane.com/keylength.html
Accessed February 18, 2010.

 20. Electronic Frontier Foundation. Cracking DES: Secrets of Encryption Research,
Wiretap Politics & Chip Design. O’Reilly & Associates Inc., 1998.

 21. Rouvroy G., Standaert F.-X., Quisquater J.-J., Legat J.-D.: Design strategies
and modifi ed descriptions to optimize cipher FPGA implementations: Fast
and compact results for DES and triple-DES. In Field-Programmable Logic and
Applications—FPL, pp. 181–193, 2003.

 22. RSA. RSA SecurID, 2007. http://www.rsa.com/. Accessed February 18, 2010.
 23. Güneysu T., Kasper T., Novotny M., Paar C., Rupp A.: Cryptanalysis with

COPACOBANA, IEEE Transactions on Computers, 57, 11, 2008.
 24. Güneysu T., Paar C., Pelzl J., Pfeiffer G., Schimmler M., Schleiffer C.: Parallel

computing with low-cost FPGAs: A framework for COPACOBANA, ParaFPGA
Symposium LNI 2007, September 2007.

 25. Kumar S., Paar C., Pelzl J., Pfeiffer G., Schimmler M.: A confi guration concept for
a massively parallel FPGA architecture, International Conference on Computer
Design (CDES’06), June 2006.

 26. Kumar S., Paar C., Pelzl J., Pfeiffer G., Schimmler M.: COPACOBANA—A cost-
optimized special-purpose hardware for code-breaking, IEEE Symposium on
Field-Programmable Custom Computing Machines (FCCM’06), April 2006.

10768_C011.indd 26010768_C011.indd 260 6/17/2010 7:55:03 PM6/17/2010 7:55:03 PM

COPACOBANA: A Massively Parallel FPGA-Based Computer Architecture 261

 27. Oliver T., Schmidt B., Jacop Y., Maskell D.: High-speed biological sequence anal-
ysis with hidden Markov models on reconfi gurable platforms, IEEE Transactions
on Information Technology in Biomedicine, 13, 5, 740–746, 2007.

 28. Oliver T., Leow Y.Y., Schmidt B.: Integrating FPGA acceleration into HMMer,
Parallel Computing, 34, 11, 681–691, 2008.

 29. Börm S.: Construction of data-sparse H2-matrices by hierarchical compression,
SIAM Journal of Scientifi c Computing, 31, 1820–1839, 2009.

 30 Pevzner P.A., Tang H., Waterman M.S.: An Eulerian path approach to DNA
fragment assembly, Proceedings of the National Academy of Science, 98, 9748–9753,
2001.

 31. Simpson J.T., Wong K., Jackman S.D., Schein J.E., Jones S.J.M., Birol I.: ABySS:
A parallel assembler for short read sequence data, Genome Research, 19, 1117–
1123, 2009.

 32. Zerbino D.R., Birney E.: Velvet: Algorithms for de novo short read assembly
using De Bruin graphs, Genome Research, 18, 821–829, 2008.

 33. Lang, H.-W.: The instruction systolic array, a parallel architecture for VLSI,
Integration, the VLSI Journal, 4, 65–74, 1986.

 34. Needleman S.B., Wunsch C.D.: A general method applicable to the search for
similarities in the amino acid sequence of two proteins, Journal of Molecular
Biology, 48, 3, 443–453, 1970.

 35. Smith T.F., Waterman M.S.: Identifi cation of common molecular subsequences,
Journal of Molecular Biology, 147, 195–197, 1981.

 36. Altschul S.F., Gish W., Miller W., Myers E.W., Lipman D.J.: Basic local alignment
search tool, Journal of Molecular Biology, 215, 403–410, 1990.

 37. Storaasli O., Yu W., Strenski D., Maltby J.: Performance evaluation of FPGA-
based biological applications, Cray Users Group Proceedings 2007, Seattle,
Washington.

 38. Bailey T.L., Williams N., Misleh C., Li W.W.: MEME: Discovering and analyzing
DNA and protein sequence motifs, Nucleic Acids Research, 34 (WebServer Issue),
W369–W373, 2006.

 39. Das M.K., Dai H.-K.: A survey of DNA motif fi nding algorithms, BMC
Bioinformatics, 8, 7, S21, 2007.

 40. Tompa M., Li N., Bailey L. et al.: Assessing computational tools for the
discovery of transcription factor binding sites, Nature Biotechnology, 23, 1, 137–
145, 2005.

 41. Bailey T.L., Elkan C.: Fitting a mixture model by expectation maximization to
discover motifs in biopolymers, International Conference on Intelligent Systems for
Molecular Biology, 2, 28–36, 1994.

 42. Bailey T.L., Elkan C.: Unsupervised learning of multiple motifs in biopolymers
using expectation maximization, Machine Learning, 21, 51–80, 1995.

 43. Lawrence C.E., Altschul S.F., Boguski M.S., Liu J.S., Neuwald A.F., Wootton J.C.:
Detecting subtle sequence signals: A Gibbs sampling strategy for multiple align-
ment, Science, New Series, 262, 5131, 208–214, 1993.

 44. Lawrence C.E., Reilly A.A.: An expectation maximization (EM) algorithm for
the identifi cation and characterization of common sites in unaligned biopoly-
mer sequences, Proteins, 7, 1, 41–51, 1990.

 45. Buhler J., Tompa M.: Finding motifs using random projections, Journal of
Computational Biology, 9, 2, 225–242, 2002.

10768_C011.indd 26110768_C011.indd 261 6/17/2010 7:55:04 PM6/17/2010 7:55:04 PM

262 Bioinformatics: High Performance Parallel Computer Architectures

 46. Hertz G.Z., Hatzwell G.W., Stormo G.D.: Identifi cation of consensus patterns
in unaligned DNA sequences known to be functionally related, Computer
Applications in the Biosciences, 6, 2, 81–92, 1990.

 47. Schröder J., Schimmler M., Tischer K., Schröder H.: BMA—Boolean matrices as
model for motif kernels, International Conference on Bioinformatics, Computational
Biology, Genomics and Chemoinformatics, 36, 41, 2008.

10768_C011.indd 26210768_C011.indd 262 6/17/2010 7:55:04 PM6/17/2010 7:55:04 PM

263

12
Accelerating String Set Matching for
Bioinformatics Using FPGA Hardware

Yoginder S. Dandass

12.1 Introduction .. 263
12.1.1 String Matching Approaches ...264
12.1.2 Use of the ACA in Computational Biology264
12.1.3 Use of FPGAs in Computational Biology 265
12.1.4 Use of String Set Matching in FPGAs in Other Domains 265

12.2 Approach ... 266
12.2.1 The Aho–Corasick Preprocessing Phase 266

12.3 FPGA Implementation of the String Set Matching DFA 269
12.3.1 Bit-Split DFA Architecture .. 270
12.3.2 Implementing Bit-Split DFA Tables in FPGAs 273
12.3.3 Analysis of DFA Storage Utilization Effi ciency 276

12.4 Case Study ..277
12.4.1 Storage Utilization ...277
12.4.2 Implementation Performance ... 278

12.5 Conclusions ...280
12.6 References ... 281

12.1 Introduction

String set matching is an important operation in computational biology. For
example, when proteomics data is used for genome annotation in a process
called proteogenomic mapping [1–5], a set of peptide identifi cations obtained
using mass spectrometry is matched against a target genome translated in
all six reading frames. Given a large number of peptides and long translated
genome strings, the fundamental problem here is to effi ciently search a large
text corpus (i.e., the translated genome) to identify the locations of individual
strings that belong to a large set of patterns (i.e., the set of peptides).

10768_C012.indd 26310768_C012.indd 263 6/17/2010 7:55:51 PM6/17/2010 7:55:51 PM

264 Bioinformatics: High Performance Parallel Computer Architectures

12.1.1 String Matching Approaches

Effi cient substring search algorithms such as Boyer–Moore [6] and
 Knuth–Morris–Pratt [7] that locate single pattern strings within a larger text
string can be used in a multipass manner (i.e., one pass for each string in the
set of peptides). However, this approach does not scale well with an increas-
ing number of pattern strings. In particular, assuming p patterns with an
average length of n characters and a text corpus of length m characters, naïve,
multipass approaches have computational complexity of O(p × (m + n)).

The Aho–Corasick algorithm (ACA) [8] provides a scalable solution to the
string set matching problem because it incorporates the search mechanism
for the entire set of patterns into a single deterministic fi nite automaton
(DFA). The power of ACA stems from its ability to fi nd the location of the
strings belonging to the pattern set in the large text corpus in a single pass.
The computational complexity of Aho–Corasick search is O(m + k) where k is
the total number of occurrences of the pattern strings in the text. This linear
processing time complexity has resulted in the widespread use of ACA in
string matching applications.

The performance of the ACA can be further enhanced by implementing it
in hardware. Tan and Sherwood [9] were the fi rst to describe an area- effi cient
hardware approach for implementing the Aho–Corasick for network intru-
sion detection systems implemented in application-specifi c integrated circuits
(ASICs). However, the cost associated with ASIC development is a signifi cant
impediment to their adoption in computational biology. Field-programmable
gate array (FPGA) devices, conversely, can be repeatedly reconfi gured to cre-
ate a variety of application-specifi c processing elements, making FPGAs a
popular low-cost alternative for developing low-cost hardware-based pro-
cessing accelerators.

Although the fundamental ACA is identical for all string set matching
applications, optimization for specifi c applications and target hardware
results in signifi cant performance and storage effi ciencies. This chapter
expands on previous work by Dandass et al. [10], and demonstrates how an
Aho–Corasick architecture and DFA organization can be specifi cally opti-
mized for implementation in FPGA hardware. This chapter also shows how
the 18-kbit blocks of random access memory (BRAM) available on Xilinx’s
Virtex-4 FPGAs and 9-kbit RAM blocks available in Altera’s FPGAs can
be utilized to create resource-effi cient amino acid sequence set matching
engines.

12.1.2 Use of the ACA in Computational Biology

The ACA is widely used in computational biology for a variety of pattern
matching tasks. For example, Brudno and Morgenstern use a simplifi ed ver-
sion of ACA to identify anchor points in their CHAOS algorithm for fast
alignment of large genomic sequences [11, 12]. The TROLL algorithm of

10768_C012.indd 26410768_C012.indd 264 6/17/2010 7:55:52 PM6/17/2010 7:55:52 PM

Accelerating String Set Matching for Bioinformatics Using FPGA 265

Castelo, Martins, and Gao uses ACA to locate occurrences of tandem repeats
in genomic sequence [13]. Farre et al. use Aho–Corasick as the search algo-
rithm for predicting transcription binding sites in their tool PROMO v.3 [14].
Hyyro et al. demonstrate that Aho–Corasick outperforms other algorithms
for locating unique oligonucleotides in the yeast genome [15]. The SITEBLAST
algorithm [16] employs the ACA to retrieve all motif anchors for a local align-
ment procedure for genomic sequences that makes use of prior knowledge.
Buhler, Keich, and Sun use an Aho–Corasick DFA to design simultaneous
seeds for DNA similarity search [17]. The AhoPro software package adapts
the ACA to compute the probability of simultaneous motif occurrences [18].

12.1.3 Use of FPGAs in Computational Biology

There has been signifi cant interest in using FPGAs to address bottlenecks
in computational biology pipelines. Examples include the use of FPGAs to
improve the speed of homology search [19, 20] for computing phylogenetic
trees [21], for the pairwise alignment step in multiple sequence alignment
using ClustalW [22], and for acceleration of the Smith–Waterman sequence
alignment algorithm [19]. In computational proteomics, Alex et al. have dem-
onstrated the use of FPGAs to accelerate peptide mass fi ngerprinting [23].
Bogdan et al. have applied FPGAs to the problem of analyzing mass spectro-
metric data generated by MALDI-ToF instruments by developing hardware
implementations of algorithms for denoising, baseline correction, peak iden-
tifi cation, and deisotoping [24].

12.1.4 Use of String Set Matching in FPGAs in Other Domains

Hardware implementations of ACA have been developed for applications
other than bioinformatics. Snort is a popular computer security program
that looks for a set of “signature” patterns corresponding to known intru-
sion attacks in network packets. Tan and Sherwood split the Aho–Corasick
implementation for Snort into four separate FSMs such that each FSM is
responsible for two separate bit positions in the signature string set and net-
work packet [9]. This bit-split implementation is more effi cient in terms of
hardware area. However, their paper does not exploit the availability of spe-
cialized hardware resources in FPGAs.

Jung, Baker, and Prasanna describe an implementation of the bit-split ACA
for Snort using FPGA technology [25]. They optimize the bit-split implemen-
tation of Aho–Corasick for Snort by using RAM blocks available on Xilinx
FPGAs. However, in Snort, the input alphabet consists of all 256 distinct
symbols that can be represented using 8 bits in a byte. By contrast, in string
matching for proteogenomic mapping, the alphabet consists of 20 amino
acids and a small number of additional symbols that can be represented in
5 bits. Furthermore, in genomics only 3 bits are required to represent the four
nucleic acid bases and any other special symbols. Furthermore, Jung et al.

10768_C012.indd 26510768_C012.indd 265 6/17/2010 7:55:52 PM6/17/2010 7:55:52 PM

266 Bioinformatics: High Performance Parallel Computer Architectures

do not exploit the dual-ported nature of RAM blocks in modern FPGAs that
enables more effi cient utilization of storage resources. Therefore, the previ-
ously described bit-split implementations designed for Snort are not optimal
for proteomics processing in FPGAs.

Sidhu and Prasanna describe a technique for constructing nondeterminis-
tic fi nite automata (NFA) from regular expressions that can be used for string
matching [26]. Their solution requires O(n2) space where n is the number of
characters in the regular expressions to be searched. Because their NFA is
implemented entirely in FPGA logic, this technique requires large FPGAs
to implement searches for large-string sets. Lin et al. describe a technique
for improving the space effi ciency by up to 20% for NFA implementations in
FPGA logic fabric [27]. Their architecture optimizes space by sharing com-
mon prefi xes, infi xes, and suffi xes between multiple regular expressions.
Fide and Jenks provide an extensive survey of string matching techniques
and implementations in hardware [28]. The survey focuses on intrusion
detection and network router implementation.

12.2 Approach

Utilization of ACA for string set matching requires two phases (a) prepro-
cessing, and (b) searching. In the preprocessing phase, a DFA is constructed
from the set of strings to be matched. The DFA is used to perform that
matching in the subsequent search phase. The preprocessing phase has a
runtime complexity of O(pn) and the search phase has a runtime complexity
of O(m + k). Detailed description and analysis of ACA can be found in [8]. A
brief description follows below.

12.2.1 The Aho–Corasick Preprocessing Phase

In the preprocessing phase, the DFA is constructed using three steps. In the
fi rst step, the set of target strings, P, is organized into a keyword tree data
structure, Γ = {N, E} where N is the set of nodes and E is the set of directed
edges. A keyword tree is rooted at node r ∈ N, each node v ∈ N represents a
prefi x in the set of strings and each edge e ∈ E is labeled with a single char-
acter. In a keyword tree, all edges out of a node have unique labels and the
sequence of edges on the path from r to v specifi es a prefi x of a string in P.
Furthermore, all strings in P map to nodes in Γ. Figure 12.1 shows an exam-
ple keyword tree for the set of strings P = {“ACA,” “ACACD,” “ACE,” “CAC”}.
The paths from node 0 to nodes 3, 5, 6, and 9 correspond to strings “ACA,”
“ACACD,” “ACE,” and “CAC,” respectively.

The keyword tree can be used to search corpus T for strings in P by start-
ing at the root node 0 and following the path indicated by the prefi x of T

10768_C012.indd 26610768_C012.indd 266 6/17/2010 7:55:52 PM6/17/2010 7:55:52 PM

Accelerating String Set Matching for Bioinformatics Using FPGA 267

starting at position 1 until either a node that maps to a pattern in P is found
or no edge leading out of a node matching the corresponding character in
the prefi x exists. If a node v maps to a pattern, the match is reported and the
search can continue along the path to match longer strings if v is a nonleaf
node (e.g., node 3 in Figure 12.1). If v is a leaf node or no match is found, then
the search starts over again at the root of T with the prefi x of T starting at
position 2. This process continues until all of T has been searched. However,
this naïve search method has a runtime complexity of O(n × m).

In the second preprocessing step, “failure links” are added to the tree
to speedup the search. Failure links are nonlabeled edges that account for
overlapping patterns strings in the corpus and can be used to continue the
search, without starting at the root of the tree, when the current branch of the
tree fails to produce a match because of the current symbol in the text string
does not match an edge out of the current node. The algorithm for adding
failure links is given below (Algorithm 1):

Algorithm 1 Add failure links to keyword tree Γ
The failure link of the root node, r in Γ, leads to r;
 The failure links of all immediate child nodes of r also lead
to r;
 Repeat for every node v in Γ for which the failure link is not
yet known traversed in a breadth-first manner:
 v’:= parent of v;
 x := character that labels edge (v’, v);
 w := node that results from following the failure link

out of v’;
 While there is no edge out of w labeled x and w ≠ r:
 w := node that results from following the

failure link out of w;
 End while;

0

1

A

2

C

3

A

6

E

4

C

5

D

7

C

8

9

A

C

String: ACACD

String: ACA

String: ACE String: CAC

FIGURE 12.1
Keyword tree for P = {“ACA,” “ACACD,” “ACE,” “CAC”}.

10768_C012.indd 26710768_C012.indd 267 6/17/2010 7:55:52 PM6/17/2010 7:55:52 PM

268 Bioinformatics: High Performance Parallel Computer Architectures

 If there is an edge (w, w’) labeled x
 Add failure link from v to w’;
 Else
 Add failure link from v to r;
End repeat;

Note that the algorithm requires the failure links of all nodes with shorter
path lengths than v to be known before v can be processed. This is guar-
anteed by computing failure links for all nodes in a breadth-fi rst manner.
Figure 12.2 shows the result of adding failure links to the keyword tree con-
structed in Figure 12.1. In Figure 12.2, the failure links from nodes 0, 1, 5, 6,
which lead to node 0 and are not shown to preserve clarity.

In the third preprocessing step, a DFA is constructed from the keyword
tree by adding labeled edges corresponding to the information encoded
within the keyword tree using the following algorithm (Algorithm 2):

Algorithm 2 Add edges corresponding to failure links to
keyword tree Γ

Repeat for every nonroot node v in Γ traversed in a breadth-
first manner:
 w:= node that results from following the failure link

out of v;
 Add to v any pattern matches indicated by w;
 For every edge (w, w’) out of w labeled x:
 If there is not already an edge out of v labeled x
 Add edge (v, w’) out of v labeled x;
 End for;
End repeat;

Figure 12.3 illustrates the DFA resulting from applying the algorithm to
the example keyword tree. In the fi gure, state 0 is the start state and the
shaded states 3, 4, 5, 6, and 9 match peptides ACA, CAC, ACACD, ACE, and

0

1

A

2

C

3

A

6

E

4

C

5

D

7

C

8

9

A

C

String: ACACD

String: ACA

String: ACE String: CAC

: Failure link
Note: failure links leading to node 0
are omitted for clarity

FIGURE 12.2
Keyword tree with added failure links.

10768_C012.indd 26810768_C012.indd 268 6/17/2010 7:55:52 PM6/17/2010 7:55:52 PM

Accelerating String Set Matching for Bioinformatics Using FPGA 269

CAC, respectively. The DFA can be used to match sets of strings in an input
corpus as follows (Algorithm 3):

Algorithm 3 Search input corpus using a DFA
 State v:= 0;
 While there are characters in the input corpus:
 c:= character at the front of the corpus;
 Remove the character at the front of the corpus;
 If there exists an edge (v, v’) out of v labeled c:
 v:= v’;
 If v indicates a match then report that

match;
 Else
 v:= 0;
End while;

In a computer, the DFA state transitions can be represented in the form of a
table. Table 12.1 presents a table-oriented representation used for implemen-
tation of the DFA in Figure 12.3.

12.3 FPGA Implementation of the String Set Matching DFA

The DFA resulting from the ACA processing phase can be directly used for
implementing a string set matching solution in an FPGA. However, the large

0

1

A

2

C

3

A

6

E

4

C

5

D

7

C

8

9

A

C

Found: ACACD

Found: ACA

Found: ACE Found: CAC

Note: all states have outgoing edges on all
possible input characters.
However, edges leading to state 0
are not shown for clarity.

Start

Found: CAC

A C

C
A

A E
C

A
C

A

C
E

A

FIGURE 12.3
DFA for matching P = {“ACA,” “ACACD,” “ACE,” “CAC”}.

10768_C012.indd 26910768_C012.indd 269 6/17/2010 7:55:53 PM6/17/2010 7:55:53 PM

270 Bioinformatics: High Performance Parallel Computer Architectures

size of the resulting DFA for any realistic problem in computational biol-
ogy will require the DFA be stored in external memory (e.g., in the form
of external DDR or DDR2 modules). While off-FPGA memory is plentiful
and relatively inexpensive, it is also slow and requires several clock cycles
of latency for every memory access. Therefore, using external memory for
searches is not ideal. Splitting the set of strings to be matched into several
small subsets, each encoded into small DFAs that are executed separately, is a
straightforward approach to reducing storage requirements. However, using
this approach alone will likely require several passes over the input corpus,
thereby increasing the total processing time. Therefore, other approaches for
reducing storage requirements of string set matching DFAs are described
below.

12.3.1 Bit-Split DFA Architecture

For a given DFA, its branching factor and the number of states have a sig-
nifi cant impact on its storage requirements. Therefore, both these attributes
must be addressed in an FPGA implementation. As observed in [25], the
branching factor of the DFA can be reduced by splitting the original DFA,
A, into smaller DFAs A0, A1, . . . ,AB, where B is the number of bit positions
required to encode the characters in the input corpus and automata Ab pro-
cesses the bit position b in the input corpus. In proteomics, 5-bit positions are
suffi cient for encoding 32 characters representing all possible amino acids
and special characters. In genomics, two-bit positions can encode the four

TABLE 12.1

A Table-Oriented Representation of the DFA in
Figure 12.3

Input Character

Current State A C D E Match

0 1 7 0 0 Ø

1 1 2 0 0 Ø

2 3 7 0 6 Ø

3 1 4 0 0 ACA

4 3 7 5 6 CAC

5 1 7 0 0 ACACD

6 1 7 0 0 ACE

7 8 7 0 0 Ø

8 1 9 0 0 Ø

9 3 7 0 6 CAC

10768_C012.indd 27010768_C012.indd 270 6/17/2010 7:55:54 PM6/17/2010 7:55:54 PM

Accelerating String Set Matching for Bioinformatics Using FPGA 271

bases. However, three bits are required if additional special characters such
as “N” are required. A small translation module can convert ASCII-encoded
input characters into the binary equivalents, if required.

Table 12.2 shows the table-based structure of the 5-bit-split DFAs correspond-
ing to the DFA in Figure 12.3. The states in the bit-split DFAs are composed
from sets of states in the original DFA. Furthermore, each state in the bit-split
DFA has exactly two edges labeled 0 or 1. The central idea behind the bit-split
DFA construction algorithm shown below (Algorithm 4) is to aggregate states
in the original DFA into states in the bit-split DFA based on the identity of the
corresponding bit positions of the edge labels. In following discussion, A : p
refers to state p in the original DFA and Ab : q refers to state q in the bit-split DFA
for bit position b; bit positions are specifi ed in a right-to-left order starting at 0.

Algorithm 4 Construct DFA Ab for bit position b from DFA A.
V:= {v | v is state 0 in A};
Add state V to Ab;
Insert V into Q, a list of newly added states in Ab;
While Q is not empty:
 V:= the state in the front of Q;
 Remove the state in front of Q;
 E0:= {(v, v’) | (v, v’) ∈ A ∧ v ∈ V ∧ the label of (v,

v’) at bit position b is 0};
 V0’:= { v’ | (v, v’) ∈ E0};
 If V0’ does not already exist in Ab;
 Add V0’ to Ab;
 Insert V0’ to the back of Q;
 Add edge (V, V0’) with a label of 0 to Ab;
 E1:= {(v, v’) | (v, v’) ∈ A w v ∈ V ∧ the label of (v,

v’) at bit position b is 1};
 V1’:= { v’ | (v, v’) ∈ E1};
 If V1’ does not already exist in Ab;
 Add V1’ to Ab;
 Insert V1’ to the back of Q;
 Add edge (V, V1’) with a label of 1 to Ab;
End while;

Consider the construction of bit-split DFA A0 given the original DFA A in
Figure 12.3. Initially, the start state A0:0 = {A:0} is added to A0. Next, all states
in A that can be reached from the states that comprise A0:0 when the bit
position 0 in the edge label is 0 are determined and aggregated into a new
bit-split node A0:1. In the example, A:1 and A:7 are aggregated to form A0:1.
Because A0:1 does not already exist in A0 (i.e., there is no state in A0 that is
aggregated from exactly A:1 and A:7), it is added to A0. Furthermore, an edge
(A0:0, A0:1) with a label of 0 is also added to A0. Next, all states in A that can be
reached from the states that comprise A0:0 when the bit position 0 in the edge
label is 1 are determined and aggregated; in this example, the aggregation
results in state {A:0} that already exists in A0. Therefore, the edge (A0:0, A0:0)

10768_C012.indd 27110768_C012.indd 271 6/17/2010 7:55:55 PM6/17/2010 7:55:55 PM

2
7

2
Bioinform

atics: H
igh Perform

ance Parallel C
om

puter A
rchitectures

TABLE 12.2

Bit-Split DFAs Equivalent to the DFA in Figure 12.3

 (a) A0 (b) A1 (c) A2

State 0 1 Match State 0 1 Match State 0 1 Match

0 1 0 Ø:0000 0 1 2 Ø:0000 0 1 0 Ø:0000

1 2 0 Ø:0000 1 1 3 Ø:0000 1 2 0 Ø:0000

2 3 0 Ø:0000 2 4 2 Ø:0000 2 3 4 Ø:0000

3 4 0 4,3,1:1101 3 5 2 Ø:0000 3 5 4 4,1:1001

4 4 5 4,3,1:1101 4 1 6 Ø:0000 4 1 0 3:0100

5 1 0 2:0010 5 1 7 3,1:0101 5 6 4 4,1:1001

6 5 2 4:1000 6 6 4 4,2,1:1011

7 5 8 4:1000

8 4 2 2:0010

(d) A3
(e) A4

State 0 1 Match State 0 1 Match

0 1 0 Ø:0000 0 1 0 Ø:0000

1 2 0 Ø:0000 1 2 0 Ø:0000

2 3 0 Ø:0000 2 3 0 Ø:0000

3 4 0 4,3,1:1101 3 4 0 4,3,1:1101

4 5 0 4,3,1:1101 4 5 0 4,3,1:1101

5 5 0 4,3,2,1:1111 5 5 0 4,3,2,1:1111

10768_C
012.indd 272

10768_C
012.indd 272

6/17/2010 7:55:55 PM
6/17/2010 7:55:55 PM

Accelerating String Set Matching for Bioinformatics Using FPGA 273

with a label of 1 is added to A0. This process is repeated for all newly added
states in A0 until there are no new unprocessed states in A0.

A0:1 was added to A0 previously and is examined next. Recall that A0:1 is
an aggregate of A:1 and A:7. Therefore, all states in the original FSM that can
be reached from either A:1 or A:7 when the edge label at bit position 0 is 0 are
aggregated into A0:2. In this example, A0:2 is created from A:2 and A:8. Because
A0:2 does not already exist in A0, it is added to A0 and the edge (A0:1, A0:2) with
a label of 0 is also added to A0. Next, all states in the original DFA that can be
reached from either A:1 or A:7 when the edge label at bit position 0 is 1 are
aggregated; in this example, the aggregation results in state {A:0} that already
exist in A0. Therefore, the edge (A0:1, A0:0) with a label of 1 is added to A0. This
process is continued until there are no new states added to A0. Note that only
unique new nodes are added to Ab. When a new state Ab:n is created by aggre-
gation but another node, Ab:k, created by aggregating the same set of states in
A already exists in Ab, then instead of inserting the new node, Ab:n, an edge
leading to Ab:k from the state currently under examination is inserted into Ab.

Indicators for string matches are also handled by aggregation (i.e., state
Ab:k matches all the strings that are matched by the states in the original DFA
that were aggregated into Ab:k). Given a set of p strings, each state in Ab can
match up to p strings. Therefore, a sequence of bits is used for indicating the
matches represented by state Ab:k such that a value of 1 at bit position p indi-
cates a match with string p in the string set. For the example in Table 12.2(b),
a sequence of four bits is used to represent the matches in each state and
because state A1:5 is created by aggregating states A:3 and A:6, a matching bit
sequence of 0101 is used to indicate matches to strings 1 and 3 (note that the
right-most bit corresponds to bit position 1).

Table 12.2 illustrates the fi ve bit-split DFAs resulting from the original DFA
in Table 12.1 assuming proteomics processing. The characters A, C, D, and E
are encoded as 00000, 00010, 00011, and 00100, respectively. Essentially, there
is no need to create a more compact encoding that eliminates the codes for let-
ters not used to represent amino acids (e.g., B) because all fi ve bits are needed
to encode the 20 amino acids and any other special characters (e.g., Z).

12.3.2 Implementing Bit-Split DFA Tables in FPGAs

Implementing the bit-split DFAs using lookup tables is more resource effi -
cient as compared with encoding sequences of conditional state transitions
in the FPGA logic fabric. In modern FPGAs, the DFA tables can be stored
using either confi gurable logic block resources (i.e., distributed RAM) or
BRAM. However, BRAM is more effi cient when storing large tables because
it has higher storage density than distributed RAM [9].

Xilinx FPGAs provide a large number of 18-kbit BRAMs that can be orga-
nized into 512 rows of 36-bit wide words [29]. The Xilinx BRAMs are dual
ported; therefore, by tying the high-order bit of the 9-bit BRAM address
input to 0 on one port and to 1 on the other port, the BRAM can be divided

10768_C012.indd 27310768_C012.indd 273 6/17/2010 7:55:55 PM6/17/2010 7:55:55 PM

274 Bioinformatics: High Performance Parallel Computer Architectures

into two independent 9-kbit RAM blocks containing 256 rows of 36-bit words
each. Altera FPGAs also provide a large number of 9-kbit BRAMs that can be
organized into 256 rows of 36-bit wide words (other BRAM confi gurations
are also possible but are not used in this application) [30].

A 256×36-bit block of RAM can hold 256 rows of a bit-split Aho–Corasick
DFA. Essentially, the bit-split DFA reads the row corresponding to the cur-
rent state to output the string match bit vector and to determine the next
state. The DFA can transition into one of two states (note that the DFA can
transition back into the state it is currently in) depending on the input value
(i.e., 0 or 1). Because 8 bits are required to represent each of the 256 possible
next state values, 16 bits in each 36-bit wide row are used for storing the two
possible next state values. The remaining 20 bits in the row are used to store
the 20-position string match bit vector.

Figure 12.4 illustrates the architecture of a bit-split DFA. In addition to the
9-kbit RAM block, the implementation requires an 8-bit register to store the
current state and a multiplexer to select one of the two next state values based
on the value of the input bit. For proteomics applications, fi ve of these bit-split
DFA modules are combined to create a complete Aho–Corasick tile as depicted
in Figure 12.5. Inside a tile, the 5-bit input to the Aho–Corasick implementation
is distributed to the 5 bit-split DFAs. A bit-wise and operator combines the bit-
split string match vectors into the consensus 20-bit string match vector output.

To conserve signal routing resources, the consensus string match vector is
converted into a fi ve-bit numerical value using a 20-to-5 bit priority encoder
(the reason for using a priority encoder is explained toward the end of this
section). The encoder essentially scans the consensus string match vector in
increasing index order and returns the index of the fi rst bit that has a value of
1. Therefore, strings that appear near the beginning of the list of strings have
higher priority than those appearing later. If all consensus string match vec-
tor bits are clear (i.e., there is no match), the priority encoder returns an unde-
fi ned value. Therefore, to indicate that a string has been found, an output

Input
bit

State
(8-bit register)

256×36
RAM block

8

MUX

8

36 20

Clock

FIGURE 12.4
Architecture of the bit-split DFA implementation.

10768_C012.indd 27410768_C012.indd 274 6/17/2010 7:55:55 PM6/17/2010 7:55:55 PM

Accelerating String Set Matching for Bioinformatics Using FPGA 275

valid indicator signal is also generated when any of the consensus string
match vector bits are set.

Typically, proteomics pipelines require the detection of more than 20 pep-
tides. In this case, several Aho–Corasick tiles can be utilized in parallel as
shown in Figure 12.6. The input reading frame is simultaneously streamed
to all tiles. The output of the tiles is combined into a single output peptide
number using a priority encoder. Because the priority encoder produces an
undefi ned value when no peptide is matched, a match indicator signal is also
generated when any of the tiles indicate a valid match.

Using the architecture described earlier, each tile can detect up to 20 pep-
tides in an input stream of reading frame data. However, because the tile

Bit-split DFA1

20
Bit-split DFA0

20

Bit-split DFA2

20

Bit-split DFA3

20

Bit-split DFA4

20

20 Priority
encoder

…

5

Match

Valid
match

indicator

Input

Clock

5

FIGURE 12.5
Architecture of an Aho–Corasick tile.

Aho–Corasick
tile0

Aho–Corasick
tile1

Aho–Corasick
tilek-1

…

5

5

5

5
…

5

Priority
encoder…

log2k

Input

Matching
tile number

Matching pattern
number

M
U
X

FIGURE 12.6
Aho–Corasick implementation with k tiles.

10768_C012.indd 27510768_C012.indd 275 6/17/2010 7:55:56 PM6/17/2010 7:55:56 PM

276 Bioinformatics: High Performance Parallel Computer Architectures

has a capacity of only 256 states per bit-split DFA, in some cases, it may be
necessary to reduce the number of peptides that can be detected to create
a bit-split DFA with no more than 256 states (note that all fi ve peer bit-split
DFAs must represent the same reduced number of peptides). A simple iter-
ative greedy algorithm can be employed to allocate peptides to tiles using
a trial-and-error approach. Initially, the algorithm assigns a set of 20 pep-
tides to a tile. If the bit-split DFA for the given number of peptides has more
than 256 states, the algorithm reduces the number of peptides assigned to
the tile and tries again until the bit-split DFA is successfully created.

To minimize the number of states required in the Aho–Corasick imple-
mentation, strings beginning with the same sequence of characters should
be grouped together into the same tile. This is because the strings will share
the same initial states in the DFA. One way to achieve this is to sort the set of
peptide strings in ascending alphabetical order before assigning them to the
Aho–Corasick tiles. In addition, this bit-split Aho–Corasick implementation
architecture can only indicate a single string match at any given time. This
is typically not a problem unless one string is a suffi x of another peptide.
String p’ is a suffi x of string p if and only if the length of p is greater than
or equal to the length of p’ and p ends with a substring that is identical to
p’. In this case, if the string for p appears in the corpus text, it is suffi cient to
simply indicate that p has been found because this also implies that p’ has
been found. The priority encoding architecture ensures that the detection of
a match with p receives higher priority than p’ as long as p appears before
p’ in the sorted set of strings. Therefore, the sorting of the peptide string set
must account for both alphabetical and suffi x-based priority ordering.

12.3.3 Analysis of DFA Storage Utilization Efficiency

Assume that Pi, such that 1 ≤ Pi ≤ 20, is the number of strings that can be
detected by tile i. This means that in each bit-split DFA table row, 20 – Pi bits
are unused for indicating matches. Furthermore, in a majority of cases, a bit-
split DFA requires fewer than 256 states to detect Pi strings. This means that
when DFA Ai,b of tile i requires Si,b states, such that 1 < Si,b ≤ 256, then 256 – Si,b
rows of available storage in the 9-kbit RAM block are unused.

The storage utilization effi ciency of a single 256 by 36-bit block used by a
single bit-split DFA is computed as follows:

 i b i i b i i b
i b

S PS P S, , ,
,

16 (16)

256 36 9216

+ +
= =

×
h (12.1)

The overall storage utilization for an implementation requiring T tiles can
be computed using the following expression:

T T

i i b i i bi b i b
P S P S

T T

4 4

, ,1 0 1 0
(16) (16)

5 9216 46080
= = = =

+ +
= =

× ×
∑ ∑ ∑ ∑

h
 (12.2)

10768_C012.indd 27610768_C012.indd 276 6/17/2010 7:55:56 PM6/17/2010 7:55:56 PM

Accelerating String Set Matching for Bioinformatics Using FPGA 277

12.4 Case Study

The bit-split ACA was implemented for a hypothetical proteomics applica-
tion requiring the matching of peptides with the human genome using the
Virtex-4 family of FPGAs as reported in [10]. For example, the Virtex-4 FX-100
device has 376 18-kbit BRAM blocks, of which 350 were used for implement-
ing Aho–Corasick tiles and the remaining 26 were reserved for meeting the
storage requirements of other modules that support the implementation (e.g.,
input/output [I/O] functions and the memory for the embedded processor
core that controls the overall implementation). Recall that a Xilinx BRAM can
be confi gured as two 9-kbit RAM blocks. This means that there are effectively
700 RAM blocks available that can hold a total of 140 tiles. Because each tile
requires fi ve 9-kbit RAM blocks and can search for at most 20 peptides, the
maximum number of peptides that can be searched using this device is 700
× 20/5 = 2,800.

For the case study, reading frame data was derived using software on a
standard workstation by concatenating all the chromosomes in the human
genome (separated by sequences of 100 “N” characters). Next, the amino acid
sequences were derived from each of the six resulting reading frames and
were concatenated together. This resulted in 6,160,844,220 bytes of text to be
searched for a given set of peptides. In-silico trypsin digestion was used to
construct 400 different sets of peptides from chromosome 1 of the human
genome for this experiment. In particular, 100 sets, each containing 2,800
randomly selected peptides ranging in lengths from 5 to 30 amino acids
were constructed. Similarly, 100 sets of 2,800 peptides with lengths ranging
from 10 to 30, 15 to 30, and 20 to 30 amino acids were also created. Results of
the bit-split implementations for each of the 400 sets of peptides are summa-
rized below.

12.4.1 Storage Utilization

Table 12.3 summarizes the results from generating the Aho–Corasick imple-
mentation for the various peptide sets. Most of the peptide sets where the
minimum peptide size is 5 and having an average length of just more than
11 amino acids were accommodated using 140 tiles. Two of these peptide
sets require an additional tile because for each of these sets one of the tiles
can only accommodate 19 peptides within the 256 state limits. The average
storage utilization in the tiles is approximately 52.7% because many of the
bit-split FSMs require signifi cantly fewer than the available 256 states.

The number of tiles required for the peptide sets with the minimum pep-
tide length of 10 amino acids (average length of 15.40) varies between 141 and
142 with an average of 19.8 peptides detected per tile. The average storage
utilization is a much higher 81.12%. The average number of tiles required
for the peptide sets with the minimum peptide length of 15 amino acids

10768_C012.indd 27710768_C012.indd 277 6/17/2010 7:55:57 PM6/17/2010 7:55:57 PM

278 Bioinformatics: High Performance Parallel Computer Architectures

(average length of 19.79) is 178.40 with an average of 15.7 peptides detected
per tile. The average storage utilization is relatively high at 81.53%. This effi -
ciency is comparable to the effi ciency of the peptide sets with average size of
15.40. However, while in the case of the shorter peptides, underutilization of
row storage is the main cause of ineffi ciency, for longer peptides, underuti-
lization of the peptide match vector storage has a larger contribution to the
overall ineffi ciency.

The average number of tiles required for the peptide sets with the mini-
mum peptide length of 20 amino acids (average length of 23.70) is 277.23 with
an average of 12.32 peptides detected per tile. The number of tiles required
is signifi cantly larger than in the previous cases because the bit-split FSMs
have more states. The storage effi ciency is also reduced to 72.96% because of
signifi cant underutilization of match vector storage.

12.4.2 Implementation Performance

Maximizing the clock frequency is an important goal of many digital designs
because higher operating frequencies result in faster execution. In general,
the implementations of large designs in FPGAs typically have lower operat-
ing frequencies as compared with smaller designs because the signals must
traverse greater distances on the chip. Therefore, to study the practical limits
of implementations with large numbers of tiles, Xilinx’s FPGA application
development tool, XST 10.1.03, was used to implement a number of designs
with varying number of Aho–Corasick tiles on a Virtex-4 FX-140 speed
 grade-11 device. Table 12.4 lists the performance statistics of the designs
reported by XST. The smallest design composed of 40 tiles, requiring 100
BRAM blocks with a capacity of 800 peptides, operates at a frequency of
198.649 MHz. The design composed of 200 tiles, requiring 500 BRAM blocks
with a capacity of 4,000 peptides, operates at a frequency of 134.971 MHz.

The runtime performance of the FPGA-based bit-split Aho–Corasick imple-
mentation was also compared with the performance of the Aho–Corasick
implementation on a standard workstation. The bit-split Aho–Corasick
design with supporting elements such as an embedded PowerPC processor,

TABLE 12.3

Tile Packing Effi ciency

Peptide Length
Average Number of
Tiles Required

Average Peptides
Per Tile

Average
Storage
Effi ciency (%)Min Max Average

5 30 11.28 140.02 19.99 52.70
10 30 15.40 141.41 19.80 81.12
15 30 19.79 178.40 15.70 81.53
20 30 23.70 277.23 12.32 72.96

10768_C012.indd 27810768_C012.indd 278 6/17/2010 7:55:57 PM6/17/2010 7:55:57 PM

Accelerating String Set Matching for Bioinformatics Using FPGA 279

an ATA hard disk controller, an RS232 link, system busses, and memory
are synthesized to run at a clock frequency of 100 MHz on a board with a
Virtex-4 FX-100 device. In this design, an ATA disk controller module imple-
mented on the FPGA is used for reading data at a peak rate of 100 MB/s (i.e.,
one character from the reading frame is streamed to the Aho–Corasick tiles
every clock cycle). The PowerPC is responsible for initializing the disk drive
and initiating the read operations. The PowerPC also monitors the peptide
match indications from the tiles and reports match data (e.g., peptide and
location) to the host workstation over the RS232 link.

Previous results show that the Aho–Corasick tiles can operate at fre-
quencies more than 150 MHz, resulting in input rates exceeding 150 Mbps.
Although the Aho–Corasick tiles can operate at faster frequencies, in this
series of experiments the clock frequency was restricted to execute at 100
MHz system clock to eliminate the complexity that arises with designs con-
taining multiple clock domains. Essentially, the Aho–Corasick tiles operate
at 100 MHz to match the ATA controller’s peak data delivery rate of 100 MB/s
and the system bus that is restricted to run at 100 MHz. Note that the tiles
do not introduce any processing delays (i.e., the disk drive is the primary
performance bottleneck in this implementation and increasing the imple-
mentation’s clock frequency to 150 MHz produces no tangible improvements
in processing time). Furthermore, to minimize processing and concomitant
delays associated with a fi le system, the reading frame data is stored on con-
secutive sectors on a raw disk (i.e., the disk is not formatted using a well-
known, operating system-supplied fi le system). Essentially, the 6,160,844,220
bytes of text derived from the human genome is written to 12,032,899 con-
secutive sectors on an IDE disk drive at a known starting location. The disk
drive is connected to the FPGA board and a fl ash RAM module containing
the Aho–Corasick implementation FPGA confi guration fi le and RAM block
content implementing the DFA tables is also connected to the board. On
bootup, the FPGA board reads the confi guration information from the fl ash
RAM and begins executing the ACA.

TABLE 12.4

Operating Frequencies of Aho–Corasick Designs with a
Variety of Tiles

Frequency (MHz)

Peptides Tiles BRAMs Virtex-4 FX140-11

800 40 100 198.649

1,600 80 200 169.866

2,400 120 300 169.635

3,200 160 400 150.648

4,000 200 500 134.971

10768_C012.indd 27910768_C012.indd 279 6/17/2010 7:55:57 PM6/17/2010 7:55:57 PM

280 Bioinformatics: High Performance Parallel Computer Architectures

For these experiments, a set of 2,800 peptides that fi t in exactly 140 tiles
(i.e., a set with minimum and average peptide lengths of 5 and 11.5257 amino
acids, respectively) was selected. Note that storage effi ciency of the selected
peptide set has no bearing on the runtime performance of the bit-split Aho–
Corasick implementation. This is because the Aho–Corasick tiles can each
search for a subset of 20 peptides in parallel. The performance of the FPGA-
based implementation was compared with the performance of a software
implementation employing a traditional table-driven Aho–Corasick orga-
nization in which a single large table represents a single FSM with all the
states for all 2,800 peptides. The software implementation was executed on
a Windows XP workstation having a 2.67 GHz Intel Core2 Duo processor, 2
GB RAM, and a pair of Serial ATA disks confi gured as a RAID 0 disk drive
(i.e., striped data for fast disk I/O), formatted as a new technology fi le system
(NTFS) volume.

Five runs each of the FPGA and workstation implementations were per-
formed. The FPGA implementation takes, on average, 94.17 seconds to
process the entire 6 gigabytes of reading frame data. The workstation imple-
mentation takes an average of 1870.18 seconds to complete the search. This
means that the FPGA-based implementation is nearly 20 times faster than
the workstation implementation.

12.5 Conclusions

This chapter describes a technique for accelerating string set matching
implementation using FPGAs for use in computational biology applications.
FPGAs provide a large number of embedded memory blocks that enable more
effi cient implementation of DFAs than possible using the FPGA logic fabric.
Furthermore, the synthesized tile-based design can be reused for different
peptide sets by simply initializing the RAM block content with appropriate
bit-split DFA state data. This is much faster than having to rerun the signifi -
cantly time-consuming “placing and routing” synthesis stages required for
logic-based implementations in FPGA fabric for each new peptide set.

Empirical results presented here show that the FPGA-based implementa-
tion of Aho–Corasik outperforms the workstation implementation by a fac-
tor of 20. This demonstrates that using specialized hardware to solve the
string set matching problem can make a signifi cant impact on the runtime of
a number of computational biology processes where exact string matching
is commonly required. The throughput of FPGA implementation described
here is essentially limited by the data transfer speed of the ATA disk drives.
Higher frequency implementations utilizing Serial ATA (SATA) disk drives,
parallel disk arrays, and gigabit Ethernet interfaces are under investigation
as part of ongoing implementation efforts and future research.

10768_C012.indd 28010768_C012.indd 280 6/17/2010 7:55:57 PM6/17/2010 7:55:57 PM

Accelerating String Set Matching for Bioinformatics Using FPGA 281

This chapter also demonstrates that the signifi cantly smaller string alpha-
bets found in computational biology enable more space-effi cient designs
for string matching as compared to previously published implementations
focused on network intrusion detection. Although the case study focused
on exact string matching, the ACA can also accommodate regular expres-
sions. The implementation described can easily be adapted for other types of
search using, for example, spaced seeds.

A number of techniques can be used to increase the number of peptides
that can be searched. A simplest approach is to utilize several devices in
parallel (note that this also requires the input corpus to be replicated for
each FPGA). The cost of replicating the corpus for a large number of FPGAs
can be eliminated by implementing a data streaming interface between the
separate FPGA boards. Tools to facilitate building such interfaces are typi-
cally provided by the FPGA vendors [31, 32]. Using such an interface, only
one board needs to be connected to a single disk drive containing the corpus
while the other boards are connected to each other in a chain using multi-
gigabit-per-second serial links available on many modern FPGA devices.
This way, the reading frame data can be streamed from the disk drive to
each board (i.e., as soon as an FPGA board receives a byte of data, it for-
wards the data to the next board in the chain). The runtime complexity of
this latter implementation is essentially O(m + k + λ), where λ represents the
cumulative latency of transmitting a single character over the entire chain.

12.6 References

 1. Jaffe, J.D., H.C. Berg, and G.M. Church, Proteogenomic mapping as a comple-
mentary method to perform genome annotation. Proteomics, 2004. 4(1): p. 59–77.

 2. Jaffe, J.D., et al., The complete genome and proteome of Mycoplasma mobile.
Genome Research, 2004. 14(8): p. 1447–1461.

 3. Kalume, D.E., et al., Genome annotation of Anopheles gambiae using mass spec-
trometry-derived data. BMC Genomics, 2005. 6: p. 128.

 4. Kuster, B., et al., Mass spectrometry allows direct identifi cation of proteins in
large genomes. Proteomics, 2001. 1(5): p. 641–650.

 5. McCarthy, F.M., et al., Modeling a whole organ using proteomics: The avian
bursa of Fabricius. Proteomics, 2006. 6(9): p. 2759–2771.

 6. Boyer, R.S. and J.S. Moore, A fast string searching algorithm. Communications of
the ACM, 1977. 20: p. 762–772.

 7. Knuth, D.E., J.H. Morris, and V.B. Pratt, Fast pattern matching in strings. SIAM
Journal of Computing, 1977. 6: p. 323–350.

 8. Aho, A. and M. Corasick, Effi cient string matching: An aid to bibliographic
search. Communications of the ACM, 1975. 18: p. 333–340.

 9. Tan, L. and T. Sherwood, A high throughput string matching architecture for
intrusion detection and prevention, in 32nd Annual International Symposium on
Computer Architecture. 2005: Madison, Wisconsin US. p. 112–122.

10768_C012.indd 28110768_C012.indd 281 6/17/2010 7:55:57 PM6/17/2010 7:55:57 PM

282 Bioinformatics: High Performance Parallel Computer Architectures

 10. Dandass, Y.S., et al., Accelerating string set matching in FPGA hardware for bio-
informatics research. BMC Bioinformatics, 2008. 9(197).

 11. Brudno, M. and B. Morgenstern, Fast and sensitive alignment of large genomic
sequences. Proceedings/IEEE Computer Society Bioinformatics Conference. 2002. 1:
p. 138–147.

 12. Brudno, M., R. Steinkamp, and B. Morgenstern, The CHAOS/DIALIGN WWW
server for multiple alignment of genomic sequences. Nucleic Acids Research,
2004. 32(Web Server issue): p. W41–44.

 13. Castelo, A.T., W. Martins, and G.R. Gao, TROLL—Tandem repeat occurrence
locator. Bioinformatics, 2002. 18(4): p. 634–636.

 14. Farre, D., et al., Prediction of transcription factor binding sites with PROMO v.
3: Improving the specifi city of weight matrices and the searching process, in 5th
Annual Spanish Bioinformatics Conference. 2004: Barcelona, Spain.

 15. Hyyro, H., M. Juhola, and M. Vihinen, On exact string matching of unique oli-
gonucleotides. Computers in Biology and Medicine, 2005. 35(2): p. 173–181.

 16. Michael, M., C. Dieterich, and M. Vingron, SITEBLAST—Rapid and sensitive
local alignment of genomic sequences employing motif anchors. Bioinformatics,
2005. 21(9): p. 2093–2094.

 17. Buhler, J., U. Keich, and Y. Sun, Designing seeds for similarity search in genomic
DNA. Journal of Computer and System Sciences, 2005. 70(3): p. 342–363.

 18. Boeva, V., et al., Exact p-value calculation for heterotypic clusters of regulatory
motifs and its application in computational annotation of cis-regulatory mod-
ules. Algorithms Molecular Biology, 2007. 2(1): p. 13.

 19. Li, I.T., W. Shum, and K. Truong, 160-fold acceleration of the Smith–Waterman
algorithm using a fi eld programmable gate array (FPGA). BMC Bioinformatics,
2007. 8: p. 185.

 20. Mak, T.S.T. and K.P. Lam, Embedded computation of maximum-likelihood
phylogeny inference using platform FPGA, in 2004 IEEE Computational Systems
Bioinformatics Conference (CSB’04), K.P. Lam, Editor. 2004. p. 512–514.

 21. Lokhov, P.G., et al., Database search post-processing by neural network:
Advanced facilities for identifi cation of components in protein mixtures using
mass spectrometric peptide mapping. Proteomics, 2004. 4(3): p. 633–642.

 22. Oliver, T., et al., Using reconfi gurable hardware to accelerate multiple sequence
alignment with ClustalW. Bioinformatics, 2005. 21(16): p. 3431–3432.

 23. Alex, A.T., et al., Hardware-accelerated protein identifi cation for mass spec-
trometry. Rapid Commun Mass Spectrom, 2005. 19(6): p. 833–837.

 24. Bogdan, I., et al., Hardware acceleration of processing of mass spectrometric
data for proteomics. Bioinformatics, 2007. 23(6): p. 724–731.

 25. Jung, H.-J., Z.K. Baker, and V.K. Prasanna, Performance of FPGA implementa-
tion of bit-split architecture for intrusion detection systems, in Reconfi gurable
Architectures Workshop at IPDPS (RAW ‘06). 2006.

 26. Sidhu, R. and V.K. Prasanna, Fast regular expression matching using FPGAs,
in The 9th Annual IEEE Symposium on Field-Programmable Custom Computing
Machines, V.K. Prasanna, Editor. 2001. p. 227–238.

 27. Lin, C., et al. Optimization of regular expression pattern matching circuits on
FPGA, in Conference on Design, Automation and Test in Europe: Designers’ Forum,
2006. Munich, Germany.

10768_C012.indd 28210768_C012.indd 282 6/17/2010 7:55:57 PM6/17/2010 7:55:57 PM

Accelerating String Set Matching for Bioinformatics Using FPGA 283

 28. Fide, S. and S. Jenks, A survey of string matching approaches in hardware.
Technical Report SPDS 06-01, 2006, University of California, Irvine.

 29. Xilinx, I. Virtex-4 Family Overview, 2007.
 30. Altera Stratix III Device Handbook, Volume 1, 2007.
 31. Altera SerialLite II Protocol Reference Manual, 2005.
 32. Xilinx, DS128: Aurora v2.8. 2007.

10768_C012.indd 28310768_C012.indd 283 6/17/2010 7:55:58 PM6/17/2010 7:55:58 PM

285

13
Reconfi gurable Neural System and Its
Application to Dimeric Protein
Binding Site Identifi cation

Feng Lin and Maria Stepanova

13.1 Introduction ..285
13.2 Design of the Neural System .. 287

13.2.1 Numerical Representation of DNA Sequences 287
13.2.2 The FFNN ...288
13.2.3 The HNN... 289
13.2.4 Adaptation of the HNN .. 291

13.3 Reconfi gurable DP-HNN .. 297
13.3.1 Representation of Numerical Values and

Operations on FPGA ... 298
13.3.2 Control and Matching Units .. 298
13.3.3 Neuron and Memory Units ..300
13.3.4 Operation of DP-HNN .. 301

13.4 Application to Dimeric Protein Binding Site Identifi cation302
13.4.1 The Biological Problem ...302
13.4.2 Dimeric Structure of HREs ...303
13.4.3 Two-Phase Neural System for HRE Prediction305
13.4.4 Performance of the Hardware-Accelerated System306

13.5 Discussions ... 307
13.6 References ...309

13.1 Introduction

Computational approaches to the genome-wide identifi cation of transcrip-
tion factor binding sites (TFBSs) have attracted bioinformatics researchers
[1–3]. Since the UIPAC matching algorithm was fi rst reported in 1991 [4], the
computational methods have evolved to complex multiple-feature prediction
frameworks that include phylogenetic footprintings [5], gene expression data
analysis [6], Bayesian trees and graphs, and so on [7]. Nevertheless, although

10768_C013.indd 28510768_C013.indd 285 6/17/2010 7:56:50 PM6/17/2010 7:56:50 PM

286 Bioinformatics: High Performance Parallel Computer Architectures

the previous computational approaches to binding site identifi cation have
achieved high sensitivity, they have not demonstrated the desired high spec-
ifi city comparable to that of experimental methods [8].

Artifi cial neural networks (ANNs) have been used as an effective tool in
pattern recognition [9]. Different ANN architectures have been developed
to date, each with its own domain of applicability and requirements [10]. A
special ANN architecture, recurrent neural network, is an intelligent com-
putational method of classifi cation especially suitable in the case of partially
overlapping classes. The applicability of the recurrent neural networks for
biological sequence analysis has recently been reviewed by Hawkins and
Boden [11] with the examples of motif recognition and prediction of subcel-
lular localization of peptides. Empirical results obtained by the authors indi-
cate that though the network architecture refl ects the presence of a certain
bias because of recurrence, properly designed recurrent neural networks
indeed provide access to the patterns of biological signifi cance. Hopfi eld
neural network (HNN) is an excellent example of the recurrent neural net-
works. However, as the complexity of the network grows, computational
time for network training and operation becomes prohibitively long, which
is often the reason for inaccuracy of such systems. The bottleneck usually
lies in certain stages of the neural adaption. Reconfi gurable computing, with
this respect, allows a hybrid architecture with an application-specifi c hard-
ware unit, which outperforms general-purpose processors [12].

In a HNN, the states of the recurrent neural models depend on previ-
ously processed data; hence, massive data parallelism can hardly be imple-
mented. Some parallelism may be achieved when neurons, or groups of
them, are mapped to different processors for independent computation,
but such an implementation will incur extremely high communication
overheads because of frequent function calls for transmitting neuron out-
puts between the processors. The problem of overcommunication and bus
contentions can be avoided by using the fi eld-programmable gate array
technology (FPGA), which, in addition to the on-chip parallelism, pro-
vides application-specifi c logic interconnections for data fl ow [13]. In con-
trast to that of distributed computing technologies, the communication
cost within an FPGA chip is low. A recent review on the state-of-the-art
in development of on-chip neural networks using FPGA was done by Zhu
and Sutton [14].

In this chapter, we describe a two-phase neural system for recognition of
dimeric DNA motifs, and we demonstrate its power by applying the hybrid
system into genome-wide identifi cation of hormone response elements
(HREs) in DNA. The fi rst phase is used for sequence-based selection of puta-
tive motifs by the feed-forward neural network (FFNN), and the second
phase is for structure-based prediction of functional dimers by HNN. We
have also invented a dynamic adaptation procedure for HNN for robust pre-
diction of the dimeric structure, yielding highly sensitive and reliable motif
recognition.

10768_C013.indd 28610768_C013.indd 286 6/17/2010 7:56:50 PM6/17/2010 7:56:50 PM

Reconfi gurable Neural System and Its Application 287

13.2 Design of the Neural System

For design of multiple-feature frameworks and highly specifi c ensemble
models [15], two or more pattern recognition methods can be designed for
different properties of the underlying object, and one may outperform each
single method operating solely by aggregating their predictions. In the pro-
posed two-phase neural system for recognition of dimeric DNA motifs, a
trained FFNN recognizes putative binding sites that are similar to the pre-
selected set of experimentally confi rmed functional motifs. This fi rst phase
could be considered as a sequence-based selection. Second, a recurrent neu-
ral network assigns each putative binding site predicted at the fi rst step with
one of possible dimeric structures (either functional or not functional). The
rationale behind this structure-based phase is that a sequence is unlikely to
be involved in dimeric DNA-protein binding if it cannot be assigned with a
functional dimeric structure [16]. In the following section, the data fl ow for
modeling dimeric DNA motifs is described.

13.2.1 Numerical Representation of DNA Sequences

The set of putative binding sites to be processed by the two-phase neural
model consists of a number of DNA sequences in the four-letter alphabet,
Ω = A C G T{ , , , }. Let 1[,...,]=

G
Lx xu , ∈ Ωjx ∀ =j L1, ..., be a DNA sequence of length

L, and n1{ , ..., }Θ =
G G
u u be a set of such sequences.

Although we are dealing with the DNA alphabet, the neural models
require numerical representation of the input data. The space of real num-
bers is one dimensional, and four nucleotide bases cannot be equidistantly
mapped onto it without introducing artifacts to the model. Thus, for numeri-
cal representation of the DNA alphabet, we use the one-hot encoding scheme
that operates as follows. The encoding module Σ is a function on the space of
DNA sequences Θ – ΘΣ Θ → Ξ: , where ΘΞ is the space of vectors

G
j of length

4L. The elements of this vector are defi ned as follows:

i k
i k

if x

otherwise4(1)

1
1− +

=
= −

ω
ξ

(13.1)

where the DNA sequence under transformation is Lx x1[, ...,]=
G
u , ∈ Ωjx

∀ =j L1, ..., , and the DNA alphabet elements are A1 ' '=v , C2 ' '=v , G3 ' '=v ,
T4 ' '=v , 1 2 3 4{ , , , }Ω = v v v v . For example, if ux G 3= = v , then the uth element

of the sequence is transformed into a four-vector (-1,-1,1,-1)T. Thus, the entire

DNA sequence
G
u undergoes a transformation according to that rule: = Σ

G G
().uj

Thus, the two-phase neural system is forestalled by the encoding module
ΘΣ Θ → Ξ: . Reverse encoding procedure of the 4L-vectors ΘΣ Ξ → Θˆ : is per-

formed using Equation 13.1 as well.

10768_C013.indd 28710768_C013.indd 287 6/17/2010 7:56:50 PM6/17/2010 7:56:50 PM

288 Bioinformatics: High Performance Parallel Computer Architectures

A dimeric motif can be represented in the form of two half-sites with an
optional spacer in the middle. In the case of partially symmetric motif com-
position, the two half-sites are similar to each other and are usually believed
to have arisen due to DNA duplication [17]. Moreover, in addition to the
dimeric nature of the protein–DNA interaction, the dimerization may have a
different structure, namely, head-to-head, head-to-tail, or tail-to-tail compo-
sition [18], thus providing us a reason to consider different orientations of the
half-sites for modeling TFBS dimers.

Consider the consensus TFBS dimer with the half-site
G
y of b base pairs of

length =
G

by y y1[, ...,], ∈ Ωjy , =j b1, ..., , and the spacer cd of c nucleotides. The
possible dimeric structures can be represented as follows:

cDR

cIR

cPR

cER

s y y

s y y

s y y

s y y

= ∪ ∪
= ∪ ∪
= ∪ ∪
= ∪ ∪

G G
G H
H G
H H

d

d

d

d

(13.2)

where y
H
 = [yb, . . . ,y1] represents the reverse of

G
y. Also, sDR is called a direct

repeat, sIR is an inverted repeat, sPR is a palyndromic repeat, and sER is an
everted repeat. The subspace of dimeric structures is therefore defi ned as

DR IR PR ERs s s s{ , , , }Ψ = , and the HNN : that predicts TFBS dimeric structures
actually performs the transformation from the space of DNA sequences Θ
into the space of structures Ψ: : Θ → Ψ: .

The two-phase neural system works as follows:

DP HNN ˆ: Σ − Σ

Θ ΨΘ →Ξ →Ξ →Ψ:
(13.3)

where DP-HNN stands for dynamically programmed HNN, described later.

13.2.2 The FFNN

For prior sequence-based selection of DNA motifs, we do not consider their
dimeric structure. Instead, we train an FFNN in a supervised manner to dis-
tinguish putative binding sites from surely neural sequences. The output of
the FFNN phase is a binary signal that indicates whether the input sequence
is a motif similar to those from the training set or not, although the defi nition
of required similarity is subject to certain adjustment by a threshold.

For training the FFNN model, back-propagation learning algorithm is
used [10]. The learning procedure is stopped if either the 99.9% accuracy
level is exceeded or the maximum number of back-propagation cycles (which
is at most 5,000) or the error plateau is reached, meaning that no improve-
ment of the training error has been detected by more than 100 of consecutive
operations.

10768_C013.indd 28810768_C013.indd 288 6/17/2010 7:56:54 PM6/17/2010 7:56:54 PM

Reconfi gurable Neural System and Its Application 289

13.2.3 The HNN

Hopfi eld network is a neural network where the connections between units
form a directed cycle, and the output of the network becomes its input in
an iterative manner [10]. Hopfi eld networks were initially developed for
sequence recognition tasks in the domain of natural language processing
[19]. They were also shown to serve effectively as associative memories [20]
and pattern classifi ers [21–23].

HNNs, like other recurrent neural networks, must be treated differently
from FFNNs both when analyzing their behavior and when training them.
The goal of HNN training is to design a discrete system that possesses a spe-
cifi c set of equilibrium points such that when an initial condition is provided
the network eventually converges at one of its equilibrium points. The net-
work is recursive in that the output is fed back as the input once the network
is in operation. Hopefully, the network output eventually settles in one of the
original design points. Usually, the theory of dynamical systems is used to
model and analyze HNNs [20].

Let the space of functional dimeric TFBSs be a subspace of all DNA
sequences. This subspace should be distinguishable from other sequences, at
least because the respective transcription factors are capable of distinguish-
ing their binding sites from neutral DNA. Thus, we fi nd a set of basis vec-
tors (which should serve as major indicators of a functional dimeric TFBS)
in this subspace, and then use a HNN with the same basis vectors as stable
states, for dimeric structure prediction. Convergence of the network from
its initial condition to a stable state corresponding to a functional dimeric
structure serves as an indicator whether the input vector belongs to the sub-
space of functional dimers or not. A functional dimeric TFBS that is different
from the consensus dimer can be considered as a disturbance in the space of
TFBSs (whose diversity is usually explained by evolution and neutral muta-
tions), and thus should be smoothly converted into one of the basis vectors
by the trained HNN. Neutral DNA sequences are considered as the elements
of the complimentary subspace.

The behavior of recurrent neural networks is more like that of an iterative
process or a dynamical system rather than a neural network in its conven-
tional feed-forward form. The equations that describe the HNN operations
are defi ned as follows:

 a(0) =
GG
j (13.4)

 a t F W a t b(1) (())+ = ⋅ +
GG G

 (13.5)

where
G
j is the input vector to the HNN, F is the activation function, a t()

G
 is

the output vector of the network after tth cycle, W is the matrix of neuron

10768_C013.indd 28910768_C013.indd 289 6/17/2010 7:56:56 PM6/17/2010 7:56:56 PM

290 Bioinformatics: High Performance Parallel Computer Architectures

weights for the recurrent layer, and b
K
 is the vector of biases of the network.

Additional requirement that weights are symmetric is set to guarantee that
the error function decreases monotonically while following the activation
rules, and the whole system reaches a stable state after a fi nite number of
learning cycles [24]:

da t
dt
()

0=
G

(13.6)

For the problem of dimeric TFBS recognition, the equilibrium points for the
HNN design are the dimeric structures represented by the Equation 13.2 and
nonfunctional structures taken from literature, and the HNN is expected to
reach a stable state, which corresponds to one of those structures with any
input DNA sequence used as an initial condition. If the network reaches a stable
state other than that from the set of equilibrium points, or causes infi nite oscil-
lations, then the input DNA sequence is marked as misclassifi ed. Otherwise, a
certain dimeric structure is attributed to the input DNA sequence.

When the equilibrium points are orthogonal, the problem of describing
the corresponding HNN can be easily solved by Hebb rule [10]. Otherwise, a
more complex procedure of HNN synthesis must be used. Accurate numeri-
cal approximation of an iterative discrete machine by a dynamic system was
proposed by Li et al. [25]. We adapt the proposed approach to learning of the
HNN that is designed for recognition of dimeric DNA motifs.

Suppose we are given m vectors that represent the asymptotically stable
equilibrium points for an N-dimensional dynamic system: N

m1 , ..., ∈ℜ
G G
j j . We

proceed to the HNN learning as follows:

 1. Compute N × (m − 1) matrix Z.

m m mZ 1 1, ..., − = − − 

G G G G
j j j j

(13.7)

 2. Perform a singular value decomposition of Z and obtain the matrices
U, V, and S such that Z = USVT, where U and V are unitary matrices,
and S is a diagonal matrix.

=
G G

LU u u1[, ...,] (13.8)

Let k be the rank of Z (and U correspondingly).
 3. Compute the auxiliary matrices.

+

=

= ∑
k

T
i i

i

T u u
1

(13.9)

10768_C013.indd 29010768_C013.indd 290 6/17/2010 7:56:56 PM6/17/2010 7:56:56 PM

Reconfi gurable Neural System and Its Application 291

−

= +

= ∑
L

T
i i

i k

T u u
1

(13.10)

T T T+ −= − ⋅τ t (13.11)

τ = − ⋅
G G

m mE Tj jt (13.12)

where t is a learning parameter. According to the proposed approximation
theory, the larger the value of t, the less spurious stable states the recon-
structed HNN has. For synthesis of HNNs with more than three stable states,
a value t ≥ 10 is usually used.
 4. Compute parameters of the approximating dynamic system

a t h F W a t h b((1)) (())+ = ⋅ ⋅ +
GG G

, namely, W and b
K
, as follows:

−
−

 
=  

 

h
k T

h
L k

e I
W U U

e I

0
0 t

(13.13)

−
−

 −
 =  −  

G
h

k
T

h
N k

e I
b U U E

e I

(1) 0
1

0 (1) tt

t

(13.14)

where Ik is the k × k identity matrix. The parameter 0 < h < 1 refl ects the
asymptotic nature of the procedure, as discrete states of the neural network
are replaced by continuous values of the dynamic system.

13.2.4 Adaptation of the HNN

In a series of preliminary tests performed using dimeric HREs, we found
that the HNN model allows eliminating signifi cant amount of false-positive
predictions [26]. However, the need for exact match in this approach implies
a rigid correspondence between the input and output vector elements, which
adds serious artifacts into the modeling process. That is, in the exact-match
HNN (EM-HNN) we look for the recurrent convergence between the puta-
tive motif and its dimeric structure considering the input and the output
vectors explicitly matched against each other, similarly to the exact-match
sequence comparison. However, real biological sequences are exposed to
short mutations including frame-shifting insertions and deletions (indels)
that are not always critical for further interaction with proteins [27]. For

10768_C013.indd 29110768_C013.indd 291 6/17/2010 7:56:57 PM6/17/2010 7:56:57 PM

292 Bioinformatics: High Performance Parallel Computer Architectures

higher fl exibility of modeling, we incorporate short indels into the dimeric
structure prediction.

The incitement for the model enhancement comes from the following
observation: while single nucleotide mismatches are carefully handled
by the HNN recurrence process, short indels can bring signifi cant distor-
tion into the model. In particular, as a result of an insertion of a random
nucleotide into the HRE spacer (with no other changes in the rest of the
HRE sequence), the predicted dimeric structure varies for 14% of functional
response elements. In addition, when a single nucleotide is deleted from the
spacer (also with no other changes), the predicted dimeric structure var-
ies for 9% of the training data. Finally, the dimeric structure predicted by
the trained HNN is affected by a single nucleotide indel within the HRE
spacer for 18% of functional HREs (119 out of 661 response elements used
for tests).

These observations motivate us to consider the reliability of the recurrent
system for sequence analysis more carefully, because from a biological point
of view such oscillating predictions are meaningless. In particular, the lat-
tice of dimeric protein–DNA interaction is expected not to be infl uenced by
1-bp difference in the spacer length, even though the binding affi nity may
indeed change [28]. Thus, the necessity of developing a more fl exible model
for dimeric structure prediction is confi rmed by the observed lack of robust-
ness when modeling the complex pattern of dimeric motifs. On the other
hand, single nucleotide substitutions within the half-sites or spacers (1,500
random nucleotide substitutions in 661 HRE sequences) do not cause pre-
dicted dimeric structures to vary for 99% of functional HREs.

For sequence comparison that has a similar limitation, numerous sequence
alignment methods are proposed. Dynamic programming provides a global
optimum for the sequence alignment problem. Although this technique is
computationally expensive, it guarantees fi nding an optimal solution for any
given scoring scheme. For the case of long sequences, certain heuristic opti-
mizations are used to decrease space and time complexity. However, when
dealing with relatively short sequences like protein-binding motifs in DNA,
we usually can afford exponential space and computational time. That is,
this approach is particularly useful when a few short sequences need to be
aligned accurately.

During the HNN operation, single nucleotide substitutions within motif
sequences are successfully absorbed by the convergence process. Per contra,
every insertion or deletion inside the sequence causes a frame shift of a half
of the sequence on average; thus, convergence for the rest of the sequence
becomes misleading. We overcome this exact-match limitation by inventing the
method of recurrent dynamic programming similar to that used for sequence
alignment.

For the problem of dimeric structure prediction by the HNN, the exact
matching between input and output is per se implied by the weight matrix
by the input vector multiplication procedure (refer to the Equation 13.5).

10768_C013.indd 29210768_C013.indd 292 6/17/2010 7:56:59 PM6/17/2010 7:56:59 PM

Reconfi gurable Neural System and Its Application 293

Extending this multiplication, we have the following identity:

=

=

⋅ = ∑G L

i j j
j

i N

W a t w a t
4

,
1

1...

...

() ()

...

(13.15)

where the assumption of jth element of the input vector a t()
G

 being converted
into jth element of either SDR or SIR, or SPR or SER dimeric structure is implied
by the multiplication i j jw a t, () of the jth weight by exactly the jth element of the
input vector for each ith neuron of the HNN. Thus, every nucleotide inser-
tion or deletion can be treated as a submission of the jth element of the input
vector to the j shift th()± neuron and, therefore, can be represented in the
form of index shifts for weight vectors for the procedure of multiplication.
The entire procedure of establishing the best matching between the cur-
rent input sequence and its dimeric prototype is referred to as the recurrent
alignment.

For the problem of recurrent alignment, the input vector a a a1 2=
G H G∪ ∪v

is composed of the two half-sites a1

H
 and a2

G
 of length 4(b + 1), and a single

nucleotide v located in the center. The elements of the half-site vectors are
numbered starting from the internal nucleotides and, unlike the previously
described representation of dimeric motifs, we merge two nucleotides of the
spacer each to the nearest half-site.

The alignments with the two possible orientations of the consensus half-
site

G
y and y

H
 are performed using predefi ned gap penalties, and the best

alignment is then selected as a prototype for the input half-site convergence.
For accomplishing the alignment procedure, for each a2

G
 and a1

H
, two scoring

matrices are generated

y k k

y y a

y h

M k k s a y

M k k M k k g

M k k g

1 21 2

1 2 1 2

1 2

(1, 1) (,)
(,) (1,)

(, 1)

 − − +
= − +
 − +

G

G G

G

(13.16)

(and similar yMH for the reverse consensus half-site y
L
), where

ya
k i k ii i

k k

s
s a y

otherwise
1 2

1 2

4(1) 4(1)1..4 1..4
0, arg max arg max

(,)
0,

− + − += =
 > == 


GG
j j

(13.17)

and ag 0< , hg 0< are the gap penalties for deletion and insertion in the input
vector, respectively.

10768_C013.indd 29310768_C013.indd 293 6/17/2010 7:56:59 PM6/17/2010 7:56:59 PM

294 Bioinformatics: High Performance Parallel Computer Architectures

Vector y
GG

j is calculated as follows:

y

y()= Σj
GG G

 (13.18)

where Σ is the DNA encoding module (refer to Section 13.2.1). In Equation
13.17, equivalence of

i
arg max functions denotes that the two 4-vectors for

the considered nucleotide positions have maximums at the same internal
positions. If the two

i
arg max functions are equal, the nucleotide element

of the input sequence is considered as a match with the considered nucle-
otide of the dimeric structure.

In the case study of steroid HREs, the initial conditions are selected so
that the spacer length of three base pairs is preferred to any other length, as
it has been shown in numerous experiments for steroid hormone receptors
[29]. Thus,

y

y s

y s

M
M k sp g k
M k g k

(0, 0) 0
(, 0) (1)
(0,)

=
= + ⋅ −
= ⋅

G

G

G

(13.19)

(and the same for the matrix yMH) where sp 0> represents a positive score
for one nucleotide insertion at the beginning of the alignment for each
half-site. This insertion, when joined with the central nucleotide v and
a similar insertion from the other half-site alignment, results in an
exactly 3-bp long spacer. In addition, sg 0< is the gap penalty for a longer
spacer.

The resulting alignments for the input half-sites are obtained by tracking
back the scoring matrices (one of two calculated for each half-site) that have
the largest values of their last columns and last rows. The resulting align-
ment of the input vector constructed from the alignments of its half-sites is
then denoted as al t()

→
. Its length Nal holds the inequality Lal ≤ 2L where L is the

length of the dimeric motif.
That is, instead of the exact correspondence “jth element of the input ↔ jth

element of the output,” we obtain a dynamically adaptable correspondence
between input sequence and its target output structure. The current output
of the HNN is thus calculated as follows:

b

i j deletion j j insertion j
j

i N

W a t w a t
2 1

, 4 () 4 ()
1

1 ...

...

() ()

...

+

+ +
=

=

⊗ = ∑G

(13.20)

10768_C013.indd 29410768_C013.indd 294 6/17/2010 7:57:01 PM6/17/2010 7:57:01 PM

Reconfi gurable Neural System and Its Application 295

where, the operation ⊗ denotes the “aligned” multiplication; that is, multipli-
cation involving corresponding weight shifts.

Shift indices deletion(j) and insertion(j) for the neuron weights are calculated
from the alignment al t()

→
 of the input vector a t()

G
 using the following procedure:

deletion(0) = 0;
insertion(0) = 0;
for (i = 1, i < = L, i++) {

deletion(i) = deletion(i-1);
insertion(i) = insertion(i-1);
if al(i + deletion(i-1)) == ‘deletion’

deletion(i)++;
else if al(i + deletion(i-1)) == ‘insertion’

insertion(i)++;}

In Equation 13.20, we multiply each index shift by 4, as in the one-hot nota-
tion, each nucleotide corresponds to exactly four elements of the network
input vector.

Figure 13.1 illustrates the procedure of recurrent alignment by the exam-
ple of the right half-site of the input sequence “AAAAAAAAGTAGTTT”
being aligned with the consensus HRE half-site “TGTTCT.” In this example,
the insertion and deletion penalties are ga = gh = −2, the long spacer penalty
is gs = −1, and the consensus spacer and the matching score are s = sp = 2. The
alignment with one deletion and one insertion, in addition to one insertion

Example of
the best
matching of
the right
half-site
against
any possible
prototype:

Potential left half-site

A A A A A A A A AG GT TTT

G
G

A
T

T

T

T

G

G

T

T
T

T
–

A

–

G

T

T
T

T
C

–

Potential right half-site

1-4

9-12

n1-4

n5-8

n9-12

n13-16

n17-20

n21-24

13-16

17-20

21-24

25-28

Central
base

FIGURE 13.1
Recurrent alignment for HRE input sequence.

10768_C013.indd 29510768_C013.indd 295 6/17/2010 7:57:03 PM6/17/2010 7:57:03 PM

296 Bioinformatics: High Performance Parallel Computer Architectures

in the expected spacer, is shown. For clarity, the nucleotide bases instead of
the four vectors are shown. With weight shifts, after the fi rst insertion, the
second element of the aligned right half-site, namely, T (the fi fth to eighth
elements of the transformed vector), is an input to the fi rst quartet of neu-
rons for the given half-site (neurons 1–4). After the second insertion, the
fourth element of the aligned right half-site, namely, T (13th–16th elements), is
an input to the second quartet of neurons, and so on.

Thus, each HNN operation cycle is accompanied with the recurrent
alignment procedure of the current input sequence and its targeted
structure. This architecture provides us with a fl exible dimeric structure
modeling scheme and is expected to result in robust and hence reliable
predictions.

Overall, the procedure of recognizing dimeric motifs in DNA is defi ned
as follows:

 1. Design of the two-phase neural system
 (a) The FFNN with one hidden layer of 40 neurons and the two-

neuron output layer is trained using the set of experimentally
validated dimeric motifs and the ten-fold set of neutral DNA
sequences. The output of this network is a two-vector with prob-
abilities of being a functional and a nonfunctional dimer for each
input. The balance of these two probabilities for the following
decision-making system is subject to a threshold.

 (b) Given the set of dimeric structures DR IR PR ERs s s s{ , , , }Ψ = trans-
formed by the encoding module ()ΨΞ = Σ Ψ , we construct the
DP-HNN system for dimeric structure prediction. Only positive
outputs of the previous sequence-based motif selection scheme
returned by the FFNN are processed by the HNN (unless stated
otherwise, for example, for speed testing purposes). The output
of the DP-HNN system for each putative TFBS input is either one
of four possible dimeric structures, or the “non-dimer” output.

 2. Recognition of motifs

To recognize dimeric motifs in the DNA sequence, we use a sliding
window of a fi xed length to obtain the stream of DNA subsequences
that are then processed by the two-phase system.

The recognition process operates as shown in Figure 13.2. First, a
transformed DNA subsequence ()= Σ

G G
uj is submitted to the FFNN

module, which returns the probability of this subsequence to be a motif
of interest to the decision-making module. Second, the list of putative
motifs returned as a result of operation of the FFNN is processed by
the HNN, and for each sequence, its dimeric or nondimeric structure is
predicted. The output of the system is either a binary answer for each
input sequence or a list of predicted dimeric motifs with their annota-
tions if the screening of a long DNA region is performed.

10768_C013.indd 29610768_C013.indd 296 6/17/2010 7:57:03 PM6/17/2010 7:57:03 PM

Reconfi gurable Neural System and Its Application 297

13.3 Reconfigurable DP-HNN

The bottleneck of our two-phase neural system is identifi ed in the opera-
tion of the DP-HNN. Although the FFNN is trained once and forever, and
then its operation is a straightforward pass through the sequence of its lay-
ers, the recurrent model requires hundreds of iterations for each input vec-
tor. Software for both EM-HNN and DP-HNN was developed for the second
phase and run on a multicore IBM server (4 × 3.16 GHz CPUs, 3.25 GB RAM,
667 MHz system bus). It took approximately 40 minutes to screen only 1 Mb
of DNA with four parallel threads by the HNN that consisted of 60 neurons
without involvement of the recurrent alignment, and nearly 50 minutes when
recurrent alignment procedure was involved. It becomes evident that the soft-
ware implementation of HNNs for genome-wide motif recognition will need
prohibitive long running time. The dynamic adaptation in the neural opera-
tions further suggests hardware acceleration for the applicable solutions.

We mapped the DP-HNN for HRE structure prediction on an FPGA chip,
and then used that chip as a coprocessing unit for the two-phase neural
system. In our implementation, the FPGA coprocessor communicates with
the host PC via the local bus. The Alpha Data Virtex-4LX160 PCI chip with
135 168 logic elements (8 M gates) and 288 × 18 kbit RAM blocks was used.
Alpha Data SDK 4.6.0 API was used for programming the communication
layer between the front-end application and the on-chip HNN unit. DNA
sequences that contains either putative motifs predicted by the FFNN mod-
ule or functional motifs from the training set were fed into the DP-HNN,

Encoding
scheme

Feed-forward
neural network

recognition

Input
vector Input

vector
Output
vector

Decision
making
machine

Y/N

Input
layer

Hidden
layer

Output
layer

Y

N

Output
2-vector

Recurrent
neural network

classification
HRE

N
o

H
RE

No HRESequence

Detected
HRE

sequence

Predicted
dimeric

structure
Structure

FIGURE 13.2
Two-phase neural model for recognition of dimeric motifs.

10768_C013.indd 29710768_C013.indd 297 6/17/2010 7:57:05 PM6/17/2010 7:57:05 PM

298 Bioinformatics: High Performance Parallel Computer Architectures

through the DNA encoding module Σ; the resulting vector of bit values, rep-
resenting the one-hot encoded DNA sequence, were sent to the confi gured
FPGA board. It also obtained the output from the board, and passed these
data to the decision-making module.

In the following subsections, we describe the technical aspects of our
HNN circuit design addressing the methods used for effi cient data transfer
and computations.

13.3.1 Representation of Numerical Values and Operations on FPGA

For implementation of numerical values on FPGA we adapt a fi xed-point
representation in two’s complement notation. The values of neuron weights
and outputs are the 32-bit numbers with one sign bit, two integer bits, and 29
fractional bits. This representation is suffi cient to describe operation of the
HNN with acceptable precision.

To not exhaust the limited number of logic gates, we use the 32 bit × 32 bit
multiplications for generation of the synaptic inputs to the neurons, which
operate in the form of fi nite state machines. Each of these machines regu-
lates the operation of two dedicated hardware 18 bit × 18 bit multiplier units.
Henceforth, the 32-bit arithmetic operations will be referred to as an adder
and multiplier, respectively.

13.3.2 Control and Matching Units

The control unit is used for serial processing of the input vector by the HNN
unit. For this purpose, the control unit dispatches control signals to all other
units. In particular, the control unit is responsible for sequential process-
ing of data fl ow. At its initial state, the network input is set up. Then, the
recurrent alignment procedure is performed as described in Section 13.2.4.
Resulting alignments of the two half-sites are then processed in parallel by
the two groups of the neuron units. Each group contains four physical neu-
ron units (a neuron quartet) and performs computations for four neurons at a
time. Each neuron quartet corresponds to a single nucleotide encoded using
one-hot notation for the DNA alphabet, so the depth of the cycle is equal to
the length of the half-site of interest.

The verifi cation unit contains an array of 20 × 60 32-bit registers, an oscilla-
tion detection module, and a counter of iterations. Current DP-HNN output,
which is an array of sixty 32-bit fi xed-point numbers, is placed into one column
of 20 registers in a cyclic order, so that the set of registers always stores the
network outputs from the 20 most recent iterations. The oscillation calculation
module thus computes the relative oscillation of the HNN output during the
20 consecutive iterations. The HNN iterations are directed to stop by that mod-
ule when the total absolute deviation is less than 1/210 = 1/1,024 ~ 0.1% of the
output value for all neurons, so we conclude that a stable state is reached. The
counter of iterations signals a stop when the maximum number of iterations is

10768_C013.indd 29810768_C013.indd 298 6/17/2010 7:57:07 PM6/17/2010 7:57:07 PM

Reconfi gurable Neural System and Its Application 299

exceeded. After testing the network operation, we set the maximum number
of iterations to 10,000, which is a very conservative estimation. Even without
dynamic programming, which provides a better match and therefore faster
convergence, we found it to be enough for the HNN to converge with majority
of the inputs unless a specifi c pattern caused substantial oscillations in the net-
work. The stop signal produced by the verifi cation module causes the whole
DP-HNN unit to fi nish the processing of the current input. Current output is
then sent to the PCI bus to the awaiting front-end application, which conveys
to it the user interface or to the decision-making scheme.

The recurrent alignment procedure is performed by the matching unit
shown in Figure 13.3. It obtains the input vector, performs the procedure of
alignment for its half-sites, and returns an array of weight index shifts that
are used for further processing of the vector by proper HNN neurons. An
input vector is preprocessed by the preprocessing unit (PPU on the fi gure),
which defi nes the indices of maximum elements for each consecutive four
elements (thus defi ning a particular nucleotide base encoded by them), and
only then these indices are used.

Inside the matching unit, the two identical half-site processing modules
perform the recurrent alignment procedure for the two consensus HRE half-
sites, each for one of its orientation, namely, the direct (left part of the fi gure)
or the inverted (right part of the fi gure). To decrease the number of registers
for sequence representation, consensus vectors are stored in the chip mem-
ory and never changed during the network operation. Each half-site process-
ing module uses two 6-bit addressed RAM sections. One RAM section stores

D0,0
D1,0

D6,0
2bit

D6,1 D6,6

FSM RAM
PPU

Current inputMatching unit

RAM RAM

Registers
6bit
addr,

addr,
6bit

addr,

addr,
6bit

D0,1 D0,6
D1,1 D1,6

D0,0
D1,0

Comparison
unit

Adder

RegRegReg

Adder

Reg
Comparison

unit

Registers

MUX
Selector

Processing module

Array of index shifts

Registers

Reg Reg

D6,0 D6,1 D6,6
2bit

D0,1 D0,6
D1,1 D1,6

M0,0
M1,0

M6,0 M6,1 M6,6
32bit 32bit

M6,0

M1,0 M1,1
M0,0 M0,1 M0,6
RAM FSM

M0,1 M0,6
M1,1 M1,6 M1,6

M6,6

6bit

M6,1

FIGURE 13.3
Matching unit for the recurrent alignment procedure.

10768_C013.indd 29910768_C013.indd 299 6/17/2010 7:57:07 PM6/17/2010 7:57:07 PM

300 Bioinformatics: High Performance Parallel Computer Architectures

the alignment scoring matrix M and the other one stores the trace-back array
D for reconstructing the resulting optimal alignment.

A fi nite state machine regulates the succession of scoring matrix calcula-
tions. Although it is possible to implement alignment score matrix in linear
space [32], we are dealing with the iterative process so it is more important
to minimize the time latency. That is, our implementation of the recurrent
alignment procedure consumes space quadratic to the length of the half-site,
as it is affordable for the case of relatively short HRE motifs. However, such
an implementation permits simultaneous calculation of two matrix elements
at a time: the cell (i,j) and its symmetric cell (j,i), which are contoured with
bold in Figure 13.3. In addition, the initial matrix values, which are stored in
its fi rst row and fi rst column, can be fi lled simultaneously if we use the gap
penalties of degrees of two, thus avoiding costly multiplications.

The total latency of the half-site alignment procedure for an input of length

n is therefore
n n

n
(1)

2 2 1
2
++ + − . Specifi cally, two sequential operations are

required for the input preprocessing, and they are parallelized with one
operation of initialization of the scoring matrices; n n(1)/2+ operations are
required to compute both alignment scoring matrices of size n × n, and 2n – 2
operations are needed to select the maximum values from their last columns
and rows. Finally, at most 2n operations are required to reconstruct the result-
ing alignment using the trace-back matrix D. For the HRE half-site of length
6, the latency of the alignment module is at most 52 calculation cycles.

Outputs of each half-site processing module are the best alignments of the
half-sites and their scores. Then, a multiplexer controlled by a selector picks out
the alignment with the highest score, and the downstream processing module
returns the best alignment in the form of index shifts for neuron weights.

13.3.3 Neuron and Memory Units

The main part of the on-chip HNN consists of the neuron units that are con-
nected to the memory unit. The memory unit stores the neuron weights, as
well as current and initial input and output vectors.

The neuron unit is implemented using several types of calculations,
namely, the adder, the multiplier, and the register. Inside the neuron unit,
two consecutive elements of the input vector and the appropriate weight val-
ues are multiplied at a time using two 32 bit × 32-bit multiplier modules oper-
ating in parallel. Thus, the latency of the neuron unit operation is half of the
input vector length. The unit’s addressing scheme required for communica-
tion with the memory unit uses the index shifts for neuron weights returned
by the matching unit. The computed weighted inputs for the neurons are
stored in the memory registers, and then summed up into the synaptic input
of the neuron. The output of the neuron is computed from its synaptic input
using its activation function. In our implementation, we use a linear approxi-

mation of the sigmoid function
x

x

e
F x

e0

1
()

1

−

−

−=
+

. The approximation is used to

10768_C013.indd 30010768_C013.indd 300 6/17/2010 7:57:09 PM6/17/2010 7:57:09 PM

Reconfi gurable Neural System and Its Application 301

avoid calculations of actual sigmoid, which requires series of multiplications
and at least one division. Instead, we use a combination of linear curves with
slopes of 1/2, 1/4, and 1/8. Thus, the resource-consuming multiplication and
division operations are replaced by “cheap” register shift operations.

Four instances of the neuron unit are used in parallel in each of the two
parts of the on-chip HNN, so the total amount of neuron units involved is
eight. Each part of HNN processes the input half-site. Inside each part, after
a neuron quartet is calculated (the end of calculation is reported to the con-
trol unit by a handshake signal), it is replaced by the next four of a total 24
for each of the HRE half-sites.

The memory unit stores the weight values for the neurons and the outputs
of the neurons. It is also used for storing the 20 recent HNN outputs used for
oscillation measurements, the initial input, weight index shifts, and the iter-
ation counts. These data are read or written according to the commands of
the control unit. As we have 48 neurons in the HNN, there are 48 × 48 32-bit
weight values. Therefore, we need the 12-bit addressing scheme. Verifi cation
unit stores 20 × 60 32-bit values and requires 11-bit addressing scheme.

13.3.4 Operation of DP-HNN

The operation of the on-chip DP-HNN system is mainly divided into three
functional units: the matching unit, the actual HNN unit, and the verifi ca-
tion unit. Figure 13.4 shows the confi guration of the DP-HNN from the point
of view of digital data processing.

The top-level control is performed by the counter of iterations. The top-
level control is performed by the counter of iterations, which determines the
following:

When the counter of neurons should be reset to zero,•
Whether a vector has to be put into the system as its initial input,•
Which register of the verifi cation unit contains the oldest output, •
and
Whether the maximum number of iterations is exceeded and the •
iteration is terminated.

The counter of neurons is reset before the HNN iteration starts, and then
it regulates the succession of neuron quartets processing, as well as decides
which values of weights must be selected from memory using the corre-
sponding weight index shifts.

The operation of the HNN is implemented by eight identical physical neu-
ron units grouped into two sections, and the memory. The neuron unit per-
forms sum-of-products operations for calculation of neuron synaptic inputs
at its run mode. Two groups of four input elements are processed in series.
That is, eight physical neuron units emulate 48 neurons as required by our

10768_C013.indd 30110768_C013.indd 301 6/17/2010 7:57:09 PM6/17/2010 7:57:09 PM

302 Bioinformatics: High Performance Parallel Computer Architectures

HNN-based HRE recognition model. The weight values, inputs, and outputs
are read from or written to the distributed memory.

Summary of the ensued implementation for the ADM Virtex-4 chip is as
follows:

 Logic elements: 101,696 of 135,168 (75%)
 RAM: 960 Kbit of 5,184 Kbit (19%)
 I/O pins: 101 of 960 (11%)
 DSP slices: 48 of 96 (50%)

13.4 Application to Dimeric Protein Binding Site Identification

13.4.1 The Biological Problem

Steroid hormone receptors are transcription factors that exist in the cyto-
plasm or nucleus [33]. Connection of a hormone molecule results in an
allosteric change of conformation of the receptor (the process known as “an

Counter of
iterations

Counter of
neurons

Reg
Weights

RAM

RAM RAM RAM RAM

FSM FSM

Reg

Reg

Finite
State
MachineReg

Neuron
unit

Matching
unit

ALU Synaptic
input

Activation
function

Output RAM

Initial input RAM

Verification

Register“20 previous”
RAM

Local bus

Neuron input (32 bit) Neuron weight (32 bit)

Arithmetic Logic Unit:

Verification
unit

Activation of Input in a neuron

FIGURE 13.4
Confi guration and control of the DP-HNN on FPGA.

10768_C013.indd 30210768_C013.indd 302 6/17/2010 7:57:10 PM6/17/2010 7:57:10 PM

Reconfi gurable Neural System and Its Application 303

activation of a receptor”) that raises affi nity of the receptor’s DNA-binding
domain to DNA, thus allowing the receptor to bind to specifi c parts of DNA
molecule inside a nucleus and to adjust transcription of cis-linked genes.
Cellular mechanisms are described in detail for only a modest number of
known target genes of steroid hormone receptors [34,35]. However, steroid
hormones are clearly involved in the expression regulation of a considerable
number of genes about which not enough is known [36].

With a few exceptions [33], DNA-binding domain of a steroid hormone
receptor molecule interacts with an HRE that is composed of two half-sites
separated by a short spacer. Response element’s half-sites can occur in differ-
ent orientations while interacting with zinc-fi ngers of a hormone receptor’s
DNA-binding domain [37–39]. Consensus DNA sequence of the half-site is
known to be HREh =

G
 TGTTCT. With reference to notation from Section 13.2,

the four possible structures of HRE are

HRE HREDR sp sp sp

HRE HREIR sp sp sp

HRE HREPR sp sp sp

HRE HREER sp sp sp

HRE h h

HRE h h

HRE h h

HRE h h

1 2 3

1 2 3

1 2 3

1 2 3

[

[]

[

[

= ∪ ∪
= ∪ ∪
= ∪ ∪
= ∪ ∪

G G
G H
H G
H H

v v v

v v v

v v v

v v v

(13.21)

where sp sp sp1 2 3[]v v v stands for the 3-bp-long spacer (sp i, ∈ Ωv , ∀i = 1,2,3).
These consensus HRE structures and six non-HRE sequences (taken from
the experimental papers by Thackray et al. [40] and by Lieberman et al. [27])
were used as ten equilibrium points for the HNN design.

We use the on-chip implementation of DP-HNN for two different pur-
poses. First, it is used to classify functional HREs from the collected dataset
to fi nd any interesting trends and to test the applicability of the approach
for the general problem of modeling symmetrically structured weak TFBS
signal. Second, the on-chip DP-HNN is used as a part of a two-phase neural
system for TFBS recognition with the aim to estimate its ability to eliminate
false-positive predictions.

The collection of progesterone, glucocorticoid, and androgen response ele-
ments used for the current project has been described earlier [29]. In short, it
contains seven hundred experimentally verifi ed binding sites for androgen,
glucocorticoid, and progesterone nuclear receptors collected from biomedi-
cal literature. For an HRE to be accepted into the collection, a convincing
experimental evidence was required, namely, validated binding in vitro or
confi rmed mediation of gene expression by transfection assay.

13.4.2 Dimeric Structure of HREs

When estimating predictive capabilities of the developed neural system, we
tested both the dynamically adaptable and the exact-match versions of the

10768_C013.indd 30310768_C013.indd 303 6/17/2010 7:57:10 PM6/17/2010 7:57:10 PM

304 Bioinformatics: High Performance Parallel Computer Architectures

HNN. In addition, as the set of possible dimeric and nondimeric structures is
predefi ned, the HNN model can be considered as a sequence classifi er; thus,
we performed k-means classifi cation of the same set of HREs for comparison.
Unlike the HNN classifi er with fi xed stable states, the k-means procedure
iteratively adjusts the set of its centroids, so that the cumulative variance for
these centroids and the points in the dataset is eventually minimized. That
is, for the procedure of k-means classifi cation, instead of fi xing the class cen-
troids we set the possible dimeric structures as starting points for centroid
adjustment.

The results of the three classifi cation procedures for the set of functional
HRE sequences are shown in Table 13.1. In this table, the fi rst column is the
total number of HREs for a given steroid hormone receptor (namely, proges-
terone, glucocorticoid, or androgen receptor). In the second column, we list
the possible HRE dimeric structures for each of the groups. The next col-
umns show the results of dimeric structure prediction by a given classifi er
for the HRE group.

As shown in Table 13.1, the three hormone receptors demonstrate differ-
ent preferences toward the dimeric structure of their response elements on
DNA. The difference between the distributions of predicted HRE structures
for ARE, PRE, and GRE is statistically signifi cant (p value < 10–4) for k-means
clustering, and for Hopfi eld-based classifi cation as well (p value = .007).
However, this fi nding is not unexpected, as a similar observation that AREs
have stronger preferences toward the IR structure has already been reported
by Reid et al. [41] and Claessens et al. [42].

To estimate the robustness of the dynamically adaptable neural model, we
performed a series of tests where single nucleotides were inserted to or deleted
from the spacers and half-sites of the HRE sequences. We observed that one
indel within the HRE spacer caused variation of structure prediction returned
by the EM-HNN for 18% of HREs, while for the DP-HNN this variation was
3%. In addition, one indel within half-sites was critical for 7% of predictions
made by the EM-HNN, and for 1% of predictions made by the DP-HNN.

However, in spite of these fi ndings, there still exists a small group of HREs
that are highly different from other known HREs and cannot be robustly
assigned with the conserved confi guration, that is, the six nucleotide repeats
with a three nucleotides spacer, although all of them have been convincingly
proved to be functional (reviewed in [43]). If those outlying HREs are not
false positives, then the nature of their interaction with the hormone recep-
tor’s DNA-binding domains should be considered more carefully.

In addition, for both EM-HNN and DP-HNN, we have estimated the
median numbers of iterations required for reaching a stable state (medi-
ans were used instead of means because absence of oscillations during the
convergence process could not be guaranteed while the mean value would
be heavily affected by a single instability). For the EM-HNN, the average
median number of iterations is 480, and for the DP-HNN it is 400 for all
experimentally validated HREs.

10768_C013.indd 30410768_C013.indd 304 6/17/2010 7:57:11 PM6/17/2010 7:57:11 PM

Reconfi gurable Neural System and Its Application 305

13.4.3 Two-Phase Neural System for HRE Prediction

The receiver operating characteristic (ROC) curves were tracked on each step
of HRE prediction; ten-fold cross-validation was used for estimating the pre-
diction accuracies and their variances. For the two-phase prediction and for
the FFNN itself, the point of the ROC curve with the smallest Euclidean dis-
tance from the 100% accuracy point was selected as a cutoff where the sen-
sitivity and the specifi city values were collected. However, when the FFNN
was used as a fi rst phase of prediction followed by the HNN, lower threshold
values were used to enlarge the set of putative HREs for further validation.
The results of HRE prediction tests are summarized in Table 13.2.

For HRE prediction, the fi rst phase of machine learning is awakening the
trained FFNN that selects HRE-like sequence patterns. For the FFNN step,
the prediction sensitivity value was found to be as high as 98% (i.e., 15 among

TABLE 13.1

Predicted Structures for Androgen (ARE), Glucocorticoid (GRE), and Progesterone
(PRE) Response Elements with Exact-Match Hopfi eld Neural Network (EM-HNN),
Dynamically Adaptable Hopfi eld Network (DP-HNN), and k-Means Classifi er

EM-HNN DP-HNN k-Means

HRE Structure N % N % N %

DR 35 53.0 32 48.5 26 39.4
PRE IR 1 1.5 2 3.0 5 7.6
total: PR 24 36.4 27 40.9 20 30.3
66 ER 3 4.5 4 6.1 12 18.2

non-HRE 3 4.5 1 1.5 3 4.5

DR 225 59.7 210 55.7 134 35.5
GRE IR 3 0.8 7 1.9 26 6.9
total: PR 90 23.9 124 32.9 127 33.7
377 ER 28 7.4 22 5.8 62 16.4

non-HRE 31 8.2 14 3.7 28 7.4

DR 94 43.1 93 42.7 33 15.1
ARE IR 1 0.5 5 2.3 55 25.2
total: PR 65 29.8 67 30.7 69 31.7
218 ER 52 23.9 51 23.4 40 18.3

non-HRE 6 2.8 2 0.9 21 9.6

DR 354 53.6 335 50.7 193 29.2

∩ IR 5 0.8 14 2.1 86 13.0

total: PR 179 27.1 218 33.0 216 32.7
661 ER 83 12.6 77 11.6 114 17.2

non-HRE 40 6.1 17 2.6 52 7.9

Note: N denotes number, and % is percentage of total.

10768_C013.indd 30510768_C013.indd 305 6/17/2010 7:57:11 PM6/17/2010 7:57:11 PM

306 Bioinformatics: High Performance Parallel Computer Architectures

661 HREs were always misclassifi ed), combined with the specifi city of 1:6 Kb.
The DP-HNN allowed increasing the specifi city level to 1:7.1 Kb, while the
sensitivity was kept at the reliably high level of 96% (6% or 9% of PREs, 37%
or 10% of GREs, and 9% or 4% AREs, or total 52 HREs, were misclassifi ed).

Note the two interesting observations in Table 13.2. First, the area under
curve (AUC) for HRE prediction by solely FFNN is better than that for the
two two-phase systems. Although the AUC metric treats type-I and type-II
errors equally, if this is the case for a particular task, the user certainly would
prefer the approach with better AUC. However, for the TFBS prediction
problem, a high false-positive rate is always a big challenge, so we prefer to
consider the approach with possibly lower AUC, as it provides lower false-
positive rate, rather than a generally superior one.

Second, for HRE prediction by the neural networks, we have the AUC val-
ues that are nearly equal to the products of corresponding sensitivity and
specifi city. That is, the ROC curves have rectangular shapes, and therefore,
there is no actual trade-off between the type-II and type-I errors. Indeed,
neural networks usually converge to particular answers within machine pre-
cision for most inputs, so there is little chance for any threshold-mediated
balance. If the selection of one particular error type is of greater importance,
then it may be reasonable to use another pattern recognition method that
allows for more user-defi ned accuracy trade-off, such as those exploiting the
statistic models [29].

13.4.4 Performance of the Hardware-Accelerated System

To evaluate the speedup gained because of using the FPGA-based hardware
acceleration, we developed a software version of the same HNNs (for both its
exact-match and dynamically adaptable versions). C applications were tested
using a four-core IBM server. We also implemented the software versions of
the HNNs with both one thread and four threads being processed in parallel
by four central processing units (CPUs). The FPGA on-chip clock frequency
was set to 100 MHz.

TABLE 13.2

Accuracy of Two-Phase Hormone Response Element Prediction Tool

Neural
Network

Misclassifi ed
HREs

Sensitivity,
%

Specifi city,
kbp–1

Prediction Rate
on Human

Genome (NCBI
Genbank

#36.2), kbps–1 AUC

FFNN 15 98 ± 4.4 5.84 ± 0.78 7.28 0.98 ± 0.04
FFNN™EM-
HNN

52 92 ± 2.3 7.29 ± 1.13 8.15 0.92 ± 0.03

FFNN™DP-
HNN

25 96 ± 2.6 7.08 ± 1.21 8.14 0.96 ± 0.03

10768_C013.indd 30610768_C013.indd 306 6/17/2010 7:57:11 PM6/17/2010 7:57:11 PM

Reconfi gurable Neural System and Its Application 307

Table 13.3 confi rms a nearly 50× speedup of the hardware-accelerated ver-
sion versus the single-threaded software implementation, and a 10× speedup
versus the high-performance software implementation. It is interesting to
note that software implementation of an HNN may require less operation
cycles to converge even though the models implemented in hardware and
software are essentially the same. An explanation is that software imple-
mentations written in high-level programming languages exploit the 64-bit
fl oating point numbers, although the FPGA solutions use fi xed-point number
representation with 32 bits and thus introduce additional imprecision into the
calculations.

13.5 Discussions

Transcription factor binding site recognition, although is conceptually a
well-understood task, has some very challenging constraints. The typically
short length of TFBSs poses a big problem as it signifi cantly increases their
chances to occur randomly. Hence, high false-positive rate has always been
a limiting factor for precise TFBS recognition. The possible solution for elim-
inating the excessive false-positive predictions is to design multiple-feature
recognition schemes refl ecting the specifi c characteristics of a particular
binding site or a family of those.

Special cases of structured motifs, the inverted and direct repeats, could be
recognized by both prokaryotic [44] and eukaryotic [16] transcription factors.
We designed and evaluated a novel computational method for prediction of
dimeric DNA motifs and developed original hardware-accelerated imple-
mentation of the proposed two-phase neural system. Using the case study of
steroid HREs, it has been found that random expectation of motif prediction
by our two-phase system is at least 7.1 kbp–1 combined with 96% sensitivity.

TABLE 13.3

Performance of HNNs Implemented with Use of Virtex-4 FPGA and 4-Way IBM PC

 Processing Time (sec) of

Hopfi eld Neural
network Implementation

Training Set of
661 HREs 1Mb of DNA

V-4 FPGA 0.46 485
EM-HNN C++ 4 threads 2.47 3,000

application 1 thread 10.15 10,500
V-4 FPGA 0.49 540

DP-HNN C++ 4 threads 2.81 3,400
 application 1 thread 11.36 12,500

10768_C013.indd 30710768_C013.indd 307 6/17/2010 7:57:12 PM6/17/2010 7:57:12 PM

308 Bioinformatics: High Performance Parallel Computer Architectures

For real genomic sequences the prediction rate is even better, such as 8.1
kbp–1 for the human genome [43].

Considering the extensive dataset of HRE sequences that currently has no
analogs, our fi ndings are indeed promising. For comparison, the results of
the TRANSFAC-based TFBS prediction experiments provided by Rahmann
et al. [45] can be used. In that paper, the authors show that specifi city level
higher than 99% can be achieved for only 43 TFBS profi les (i.e., 7%) among
623 used for testing. Some profi les of high interest in practice like nuclear-
receptor binding sites are not included into the high-quality group. All other
profi les reside below the specifi city level of 0.99, which is fairly trivial because
the corresponding prediction rate is as low as 1 hit per 0.1 kb.

The most reliable algorithm for prediction of dimeric binding sites
reported to date for the superfamily of vertebrate nuclear receptors is the
nuclear hormone receptor binding site prediction (NHR)-scan. The algo-
rithm exploits hidden-Markov model specifi cally adapted for recognizing
the dimeric structure of its input motifs [46]. The authors report a specifi city
of one match per 5 kb versus a sensitivity of approximately 50%, and one
match per 1 kb accompanied with a sensitivity of 85%; the former values are
more indicative because for the problem of prediction lower false-positive
output is usually of higher priority.

For the structure prediction by the recurrent neural network enhanced with
dynamic adaptation, we found that it works well for most of the functional
HREs, and provides robust results in case of short frame-shifting mutations.
However, there exists an unsolved issue that the system may fall into oscil-
lations if a chimerical motif is encountered. For such a motif, one-half of the
sequence half-site comes from one orientation of the consensus half-site, and
the other half from its reverse form. We met at least two experimentally vali-
dated examples of such chimerical HREs identifi ed in the promoter regions
of vertebrate genes: a progesterone response element with the right half-site
AGTACT (compare with the HRE consensus TGTTCT and its reverse form
AGAACA) is known to be involved in the regulation of rabbit uteroferrin gene
[47], and the same androgen receptor–responsive DNA sequence acts in the
promoter area of rat probasin gene [48]. Such cases are marked by our two-
phase system as false negatives and will require more careful investigation
in future.

Software implementation of the HNN enhanced with dynamic program-
ming, when applied for genome-wide analysis, could cause prohibitively
long execution time as can be seen from the performance results summa-
rized in Section 13.4. In particular, processing of 1 Mb of DNA takes hours
with one computational thread, and nearly 1 hour with four parallel threads
when tested on a very powerful PC. Nowadays, having gigabytes of anno-
tated DNA, running HNNs in software becomes impossible. Hardware-
accelerated implementation of the most computationally expensive phases
of motif prediction process should help to benefi t by the trade-off between
speed and accuracy. In particular, a well-designed parallel FPGA architecture

10768_C013.indd 30810768_C013.indd 308 6/17/2010 7:57:12 PM6/17/2010 7:57:12 PM

Reconfi gurable Neural System and Its Application 309

provides access to the best possible precision and reveals the potential of the
recurrent neural solutions in full.

The main challenge of our FPGA design is fi nding the balance between
bit and node parallelism to reach the best overall performance and keep the
applicability to the chosen domain given the implementation constrains.
In the current implementation, we process the input vector using eight
physical neuron units, and each unit involves four embedded multipliers.
However, we may trade the time effi ciency for more complex activation rules
to improve the numerical precision. In particular, we use 29 fractional bits
for number representation and thus obtain the imprecision of up to –10–8 per
HNN iteration. For the case of steroid HREs, that error is not critical because
the number of iterations does not exceed the level of 500 for most inputs.
However, if we now consider more complex motif patterns, it may result in
signifi cantly worse HNN convergence. In turn, longer convergence leads to
resulting error that cannot be negligible any more.

Involving dynamic adaptation of the HNN recurrence we resolve a very
challenging issue of motif prediction, namely, incorporation of short indels
within the half-sites and especially within the spacer of dimeric motifs.
Properly designed DP-HNN carefully carries short mutations including both
indels and substitutions, thus making structure prediction more sensible.

In conclusion, we have developed a novel dynamically adaptable neural
architecture for recognition of dimeric DNA motifs, and demonstrated its
performance using the case study of steroid HREs. Our two-phase predic-
tion framework provides access to robust and biologically meaningful pre-
dictions, while the invented FPGA architecture guarantees the applicability
of the proposed approach to genomic scale.

13.6 References

 1. Tompa M, Li N, Tompa M, Li N, Bailey TL, Church GM, De Moor B, Eskin E et
al. (2005) Assessing computational tools for the discovery of transcription factor
binding sites. Nat Biotechnol, 23(1): 137–144.

 2. Wasserman WW and Sandelin A (2004) Applied bioinformatics for the identifi -
cation of regulatory elements. Nat Rev Genet, 5(4): 276–287.

 3. Vavouri T and Elgar G (2005) Prediction of cis-regulatory elements using bind-
ing site matrices—The successes, the failures and the reasons for both. Curr Opin
Genet Dev, 15(4): 395–402.

 4. Prestridge DS (1991) SIGNAL SCAN: A computer program that scans DNA
sequences for eukaryotic transcriptional elements. Comput Appl Biosci, 7(2):
203–206.

 5. Li X, Zhong S, and Wong WH (2005) Reliable prediction of transcription fac-
tor binding sites by phylogenetic verifi cation. Proc Natl Acad Sci USA, 102(47):
16945–16950.

10768_C013.indd 30910768_C013.indd 309 6/17/2010 7:57:12 PM6/17/2010 7:57:12 PM

310 Bioinformatics: High Performance Parallel Computer Architectures

 6. Kim SY and Kim Y (2006) Genome-wide prediction of transcriptional regula-
tory elements of human promoters using gene expression and promoter analy-
sis data. BMC Bioinformatics, 7: 330.

 7. Grau J, Ben-Gal I, Posch S, and Grosse I (2006) VOMBAT: Prediction of tran-
scription factor binding sites using variable order Bayesian trees. Nucleic Acids
Res, 34(W): 529–533.

 8. Hu J, Li B, and Kihara D (2005) Limitations and potentials of current motif dis-
covery algorithms. Nucleic Acids Res, 33(15): 4899–4913.

 9. Jain LC (2000) Recent advances in artifi cial neural networks: Design and appli-
cations. CRC Press, Boca Raton.

 10. Hagan M, Demuth H, and Beale M (1996) Neural Network Design. PWS Pub,
Boston.

 11. Hawkins J and Boden M (2005) The applicability of recurrent neural networks
for biological sequence analysis. IEEE/ACM Trans Comput Biol Bioinform, 2(3):
243–253.

 12. Ormondi A and Rajapakse J (2006) FPGA Implementations of Neural Networks.
Springer, Netherlands.

 13. Deschamps JP, Bioul G, and Sutter GD (2006) Synthesis of Arithmetic Circuits:
FPGA, ASIC, and Embedded Systems, Wiley-Interscience.

 14. Zhu J and Sutton P (2003) FPGA implementation of neural networks: A survey
of a decade of progress. 13th International Conference on Field-Programmable Logic
and Applications (FPL 2003), 1062–1066.

 15. Kuncheva LI and Whitaker CJ (2003) Measures of diversity in classifi er ensem-
bles and their relationship with the ensemble accuracy. Machine Learning, 51(2):
181–207.

 16. Khorasanizadeh S and Rastinejad F (2001) Nuclear-receptor interactions on
DNA-response elements. Trends Biochem Sci, 26(6): 384–390.

 17. Freedman LP and Luisi BF (1993) On the mechanism of DNA binding by nuclear
hormone receptors: A structural and functional perspective. J Cell Biochem, 51(2):
140–150.

 18. Aranda A and Pascual A (2001) Nuclear hormone receptors and gene expres-
sion. Physiol Rev, 81(3): 1269–1304.

 19. Pollack JB (1991) The introduction of dynamical recognizers. Machine Learning,
7: 227–252.

 20. Haykin S (1999) Neural Networks: a Comprehensive Foundation. Prentice Hall, New
Jersey.

 21. Simpson JJ and McIntire TJ (2001) A recurrent neural network classifi er for
improved retrievals of areal extent of snow cover. IEEE Trans Geosci Remote Sens,
39(10): 2135–2147.

 22. Guler I and Ibeyli ED (2006) A recurrent neural network classifi er for Doppler
ultrasound blood fl ow signals. Pattern Recognition Letters, 27(13): 1560–1571.

 23. Hammer B (2000) Learning with Recurrent Neural Networks. Springer Lecture
Notes in Control and Information Sciences 254, Springer-Verlag, London.

 24. Hagan M, Demuth H, and Beale M (1996) Neural Network Design. PSW Publishing
Company, Boston, MA.

 25. Li JH, Michel A, and Porod W (1989) Analysis and synthesis of a class of neural
networks: linear systems operating on a closed hypercube. IEEE Trans Circuits
Syst, 36(11): 1405–1422.

10768_C013.indd 31010768_C013.indd 310 6/17/2010 7:57:12 PM6/17/2010 7:57:12 PM

Reconfi gurable Neural System and Its Application 311

 26. Stepanova M, Lin F, and Lin V (2007) A Hopfi eld neural classifi er and its FPGA
implementation for identifi cation of symmetrically structured DNA motifs. J
VLSI Sig Process S, 48(3): 239–254.

 27. Lieberman BA, Bona BJ, Edwards DP, and Nordeen SK (1993) The constitution
of a progesterone response element. Mol Endocrinol, 7(4): 515–527.

 28. Dahlman-Wright K, Siltala-Roos H, Carlstedt-Duke J, and Gustafsson JA (1990)
Protein-protein interactions facilitate DNA binding by the glucocorticoid
 receptor DNA-binding domain. J Biol Chem, 265(23): 14030–14035.

 29. Stepanova M, Lin F, and Lin V (2006) Establishing a statistic model for recogni-
tion of steroid hormone response elements. Comput Biol Chem, 30(5): 339–347.

 30. International Human Genome Sequencing Consortium (2001) Initial sequenc-
ing and analysis of the human genome. Nature, 409(860): 921.

 31. Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG, et al. (2001) The
sequence of the human genome. Science, 291(5507): 1304–1351.

 32. Gusfi eld D (1997) Algorithms on strings, trees, and sequences. Cambridge
University Press.

 33. Alberts B, Bray D, Lewis J, Raff M, Roberts K, and Watson J (1994) Intercellular
signalling. In Molecular Biology of the Cell. Garland Publishing, New York.

 34. Richer JK, Jacobsen BM, Manning NG, Abel MG, Wolf DM, and Horwitz KB
(2002) Differential gene regulation by the two progesterone receptor isoforms in
human breast cancer cells. J Biol Chem, 277(7): 5209–5218.

 35. Leo JC, Wang SM, Guo CH, Aw SE, Zhao Y, Li JM, Hui KM, and Lin VC (2005)
Gene regulation profi le reveals consistent anticancer properties of progester-
one in hormone-independent breast cancer cells transfected with progesterone
receptor. Int J Cancer, 117(4): 561–568.

 36. Xu W (2005) Nuclear receptor coactivators: The key to unlock chromatin. Biochem
Cell Biol, 83(4): 418–428.

 37. Evans RM (1988) The steroid and thyroid hormone receptor superfamily. Science,
240(4854): 889–895.

 38. Nelson CC, Hendy SC, Shukin RJ, Cheng H, Bruchovsky N, Koop BF, and
Rennie PS (1999) Determinants of DNA sequence specifi city of the androgen,
progesterone, and glucocorticoid receptors: Evidence for differential steroid
receptor response elements. Mol Endocrinol, 13(12): 2090–2107.

 39. Gronemeyer H (1992) Control of transcription activation by steroid hormone
receptors. FASEB J, 6(8): 2524–2529.

 40. Thackray VG, Lieberman BA, and Nordeen SK (1998) Differential gene induc-
tion by glucocorticoid and progesterone receptors. J Steroid Biochem Mol Biol,
66(4): 171–178.

 41. Reid KJ, Hendy SC, Saito J, Sorensen P, and Nelson CC (2001) Two classes of
androgen receptor elements mediate cooperativity through allosteric interac-
tions. J Biol Chem, 276(4): 2943–2952.

 42. Claessens F, Verrijdt G, Schoenmakers E, Haelens A, Peeters B, Verhoeven G,
and Rombauts W (2001) Selective DNA binding by the androgen receptor as
a mechanism for hormone-specifi c gene regulation. J Steroid Biochem Mol Biol,
76(1–5): 23–30.

 43. Stepanova M, Lin F, and Lin V (2007) A two-phase ANN method for genome-
wide detection of hormone response elements. Lecture Notes in Bioinformatics,
4774: 19–29.

10768_C013.indd 31110768_C013.indd 311 6/17/2010 7:57:12 PM6/17/2010 7:57:12 PM

312 Bioinformatics: High Performance Parallel Computer Architectures

 44. Favorov AV, Gelfand MS, Gerasimova AV, Ravcheev DA, Mironov AA, and
Makeev VJ (2005) A Gibbs sampler for identifi cation of symmetrically struc-
tured, spaced DNA motifs with improved estimation of the signal length.
Bioinformatics, 21(10): 2240–2245.

 45. Rahmann S, Muller T, and Vingron M (2003) On the power of profi les for tran-
scription factor binding site detection. Stat Appl Genet Mol Biol, 2(1): Article 7.

 46. Sandelin A and Wasserman WW (2005) Prediction of nuclear hormone receptor
response elements. Mol Endocrinol, 19(3): 595–606.

 47. Jantzen K, Fritton HP, Igo-Kemenes T, Espel E, Janich S, Cato AC, Mugele K, and
Beato M (1987) Partial overlapping of binding sequences for steroid hormone
receptors and DNaseI hypersensitive sites in the rabbit uteroglobin gene region.
Nucleic Acids Res, 15(11): 4535–4552.

 48. Claessens F, Alen P, Devos A, Peeters B, Verhoeven G, and Rombauts W (1996)
The androgen-specifi c probasin response element 2 interacts differentially with
androgen and glucocorticoid receptors. J Biol Chem, 271(32): 19013–19016.

10768_C013.indd 31210768_C013.indd 312 6/17/2010 7:57:12 PM6/17/2010 7:57:12 PM

313

14
Parallel FPGA Search Engine
for Protein Identifi cation

Daniel Coca, Istvan Bogdan, and Robert J. Beynon

14.1 Introduction

In the aftermath of the successful completion of the sequencing of the
human genome, which highlighted the surprising fact that humans have
only approximately 20,000–25,000 protein-coding genes [1], hardly enough
to explain the complexity gap between humans and the lowly round worm

14.1 Introduction .. 313
14.2 The Reconfi gurable Computing Paradigm .. 315
14.3 Protein Identifi cation by Sequence Database Searching Using

Mass Spectral Fingerprints ... 317
14.3.1 Overview of the Approach ... 317
14.3.2 Abstract Computational Model ... 318
14.3.3 Cleavage Rules ... 318
14.3.4 Protein Identifi cation by Spectral Matching 321

14.4 Reconfi gurable Computing Platform .. 322
14.5 Protein Sequence Database FPGA Search Engine 325

14.5.1 Database Encoding .. 325
14.5.2 Database Search Processor ... 326

14.5.2.1 Digestion Unit .. 326
14.5.2.2 Variable Modifi cations ... 327
14.5.2.3 Scoring Unit ... 328

14.6 Performance Evaluation .. 331
14.7 References ...333

10768_C014.indd 31310768_C014.indd 313 6/17/2010 7:57:41 PM6/17/2010 7:57:41 PM

314 Bioinformatics: High Performance Parallel Computer Architectures

whose genome boasts approximately 19,000 protein-coding genes, the focus
of biological research has rapidly shifted to the study of the encoded proteins.
Proteins, which are the main workhorses in our cells, acting as molecular
motors, catalysts, structural elements, signaling messengers, and defensive
agents, are the key to understanding fundamental biological mechanisms
in cells and tissues, from development to aging and disease. In the postge-
nomic phase of molecular biology, novel high-throughput proteomic tools
and technologies have been developed to study proteins expressed in tis-
sues, cells, and organelles, leading to an explosive growth in the volume of
proteomics data.

The vast diversity of proteins, dynamic range of expression, and inter-
action make the identifi cation of the entire proteome a computational
challenge that is more complex by several orders of magnitude than the
sequencing of the genome [2]. The advances in mass spectrometry (MS)
technology have played a key role in the extraordinary growth of the pro-
teomics research fi eld and have revolutionized protein analysis [3]. MS,
which started being used for biological applications in 1950s [4], is today
a fundamental tool for protein identifi cation [3]. The state-of-the-art MS
instruments available today, which have acquisition rates of up to 200
spectra per second, enable scientists to carry out large-scale proteomic
studies that routinely generate tens or even hundreds of gigabytes of com-
plex, multidimensional datasets, and allow the simultaneous identifi ca-
tion of hundreds or even thousands of proteins present in complex protein
mixtures.

Postinstrument data processing is already a major bottleneck in proteom-
ics workfl ow and is expected to get worse given the importance of MS-based
proteomics in modern biology. An unprecedented growth of proteomics
data over the next decade is forecasted to escalate further the demand for
computing power, outstripping the expansion in supply predicted by the
celebrated Moore’s law. Conventional workstations based on low number of
multicore processors are unlikely to deliver the speed that will be required
to analyze such large volume of data, so high-performance computing (HPC)
resources are essential to address the analysis bottlenecks. Grid computing
technology could in principle help meet this challenge [5]. However, for the
grid implementation of a proteome sequence similarity search algorithm
using the Ensembl database of protein sequences, the performance gains
reported—60 fold speed increase using 600 CPUs [6]—are far from spec-
tacular relative to the signifi cant power consumption, maintenance costs,
and fl oor space used. For comparison, the implementation of Allegro, a
computer program for multipoint linkage analysis based on hidden Markov
models on the same grid achieved a signifi cantly better speedup: 455-fold
for 600 grid nodes [7]. This algorithm, however, does not involve any data-
base searching. A preliminary grid-based implementation of protein iden-
tifi cation algorithms based on tandem MS data is presented in [8] but the
study provides no information on the performance gains achieved. It is

10768_C014.indd 31410768_C014.indd 314 6/17/2010 7:57:41 PM6/17/2010 7:57:41 PM

Parallel FPGA Search Engine for Protein Identifi cation 315

worth highlighting the generic limitations of computational grids that may
have prevented, so far, the large-scale adoption of grid solutions for protein
identifi cation involving database searching: (1) the job submission process
on the platform is usually complex and diffi cult to automate; (2) high paral-
lelization is hampered by resource brokering and job-scheduling time; (3) to
maximize performance, the database has to be split and distributed across
the nodes of the cluster, which introduces a signifi cant computational over-
head; (4) there are large variations in processing times caused by variations
in load and network latency. In addition, processing of MS data is best per-
formed “near-instrument,” where the end user has the option of adjusting
the search strategy according to results obtained in real time. In this context,
relying on grid computing or dedicated computer clusters may not be the
best solution for protein identifi cation. Equally dedicated high-performance
computer clusters require a signifi cant amount of infrastructure to deal
with interconnectivity and power dissipation. It has been argued [9] that
more effi cient HPC solutions are necessary to mitigate the costs of housing
and powering the next-generation petascale and larger high-performance
computer systems, which are expected to be prohibitive for many institu-
tions and programs.

This work advocates the use of reconfi gurable computing, as an alterna-
tive approach to conventional HPC, for a specifi c bioinformatics problem
in proteomics, namely, protein identifi cation based on MS, using database
searching.

14.2 The Reconfigurable Computing Paradigm

Reconfi gurable computers consist of a standard microprocessor system
coupled with hardware processors whose circuitry can be programmed
(and reprogrammed) according to the algorithm that is being run. The
idea of reconfi gurable computing originated in the 1960s [10]. In a seminal
paper [11] Estrin proposed the concept of a computer made of a standard
processor and an array of “reconfi gurable” hardware. The introduction of
high-density fi eld-programmable gate arrays (FPGAs) in the 1990s made
reconfi gurable computing possible. FPGAs are de facto the reconfi gurable
processors in almost all current reconfi gurable computing platforms.
Modern FPGAs can be programmed to run a custom digital hardware
design providing the fl exibility afforded by a conventional computer pro-
gram. To fully understand the signifi cant advances made in this area the
reader is referred to the excellent books [12, 13] that are amongst the fi rst
comprehensive surveys and tutorials in the fi eld of FPGA-based recon-
fi gurable computing.

10768_C014.indd 31510768_C014.indd 315 6/17/2010 7:57:41 PM6/17/2010 7:57:41 PM

316 Bioinformatics: High Performance Parallel Computer Architectures

Since their introduction in 1985, FPGAs have continuously expanded their
use from being the ultimate prototyping platform and providing basic “glue
logic” functionality to being at the heart of complex digital systems in a wide
range of application areas ranging from telecommunication, automotive,
aerospace, and defense to biomedical and HPC. The remarkable success of
these devices is attributed to the inherent advantages offered by the paral-
lel programmable architecture, which allows designers to exploit algorithm
and instruction-level parallelism to accelerate computations and to add or
modify features and functionality provided by an existing FPGA-based sys-
tem by reconfi guring the device. The tremendous increase in gate densities
and lowering of unit costs and the development of more sophisticated and
user-friendly design tools have also been determining factors to skyrocket-
ing demand for FPGAs in recent years.

Because of the widening spectrum of applications for FPGA devices, mod-
ern FPGAs have evolved to include specialized programmable blocks such
as embedded RAM, dedicated DSP structures, embedded microprocessors,
system monitoring functions, digital clock managers, and fast serial trans-
ceivers. Moreover, to satisfy diverging user demands device manufactur-
ers such as Xilinx have followed a new strategic route of creating a family
of FPGA platforms [14] that have been optimized for particular application
domains.

As the static random access memory (SRAM)-based FPGA manufacturers
are amongst the earlier adopters of new digital-CMOS manufacturing pro-
cesses, in recent years FPGAs have advanced at a faster pace than micropro-
cessors, the latest devices offering unprecedented performance and density
gains with speeds on average 30% faster and a logic capacity 65% greater
than previous generations. The latest devices have as many as 1.2 billion
transistors and allow the implementation of a few thousand conventional
microcontrollers on a single FPGA chip.

Despite the availability of high-level design software, the diffi culties of
mapping an algorithm in hardware are still considerable, as FPGA develop-
ment tools were designed for electronics hardware engineers and require
in-depth knowledge of hardware design languages (VHDL, Verilog) and
digital electronics. The emerging high-level design tools, whilst offering a
great level of abstraction, still require a fair amount of manual optimization;
hence low-level design knowledge is still essential. Moreover, because there
is no standard RC architecture, most common design tools do not target spe-
cifi c FPGA boards and as a result designs have to be mapped manually on
the chosen RC platform. This cannot be achieved without a detailed under-
standing of the architecture of the hardware system.

In biocomputation, early applications of FPGA devices addressed the gene
sequence analysis problem [15] and have been successfully employed to
speedup DNA sequencing algorithms [16–21]. FPGAs were also used in the
attempt to accelerate search of substrings similar to a template in a proteome

10768_C014.indd 31610768_C014.indd 316 6/17/2010 7:57:41 PM6/17/2010 7:57:41 PM

Parallel FPGA Search Engine for Protein Identifi cation 317

[22]. A multiple sequence alignment solution has been implemented in FPGA
hardware by [23] and FPGAs have been used to accelerate sequence database
searches with MS/MS-derived query peptides [24]. FPGA-accelerated basic
local alignment search tool (BLAST) search algorithms have been developed
and used, for example, to perform expressed sequence tag (EST) sequencing
[25]. More recently, the Aho-Chorasick string set matching algorithm was
implemented in FPGA hardware and used for matching peptide sequences
against a genome translated in six reading frames [26].

14.3 Protein Identification by Sequence Database
Searching Using Mass Spectral Fingerprints

14.3.1 Overview of the Approach

MS is a powerful technique for chemical characterization, which has become
the central tool of proteomics [3]. In protein identifi cation, mass spectrom-
eters do not deal with intact proteins but with their constituent peptides gen-
erated by proteolytic digestion. The mass spectrometer ionizes the peptides
in the experimental sample producing charged ions that are directed to the
mass analyzer where they are separated according to their mass-to-charge
ratio (m/z) and ultimately detected.

Proteolytic enzymes with site-specifi c cleavage properties are used to pro-
duce a subset of predictable peptide fragments. The resulting peptide mix-
ture is typically analyzed by matrix-assisted laser desorption/ionization
time-of-fl ight (MALDI-TOF) mass spectrometer. The resulting spectral map
is used to perform protein identifi cation.

Peptide mass fi ngerprinting (PMF) is an established protein identifi cation
technique that is predicated on the assumption that the detected pattern of
proteolytic peptide masses provides a quasi-unique signature for every pro-
tein in the database. The computations associated with the PMF approach
can be divided into two distinct stages:
 (a) Process the raw MALDI-TOF MS data to extract a spectral peptide

fi ngerprint, which is a subset of the experimentally generated “peak
list.”

 (b) Find the best matching protein by correlating the experimental
mass fi ngerprint with theoretical peptide maps generated by in silico
digestion of protein sequences from a database of known proteins.

Both stages of computation have been implemented as dedicated hardware
processors [27–30].

10768_C014.indd 31710768_C014.indd 317 6/17/2010 7:57:41 PM6/17/2010 7:57:41 PM

318 Bioinformatics: High Performance Parallel Computer Architectures

14.3.2 Abstract Computational Model

Proteins can be modeled mathematically using the concept of weighted
strings [31–33].

Let Σ = {A,C,D,E,F,G,H,I,K,L,M,N,P,Q,R,S,T,V,W,Y} be the 20-letter alphabet
corresponding to the naturally occurring amino acids. Let μ:Σ→IR be a func-
tion assigning to each character s∈Σ its mass or weight μ(s). The pair (Σ,μ)
is called a weighted alphabet with character mass function μ. The letters of
the alphabet Σ “spell out” peptide or protein “words.” A peptide or protein
can be represented as length-n weighted strings sS s(,)=m m over (Σ,μ) where

()is s= s is()=m m , i = 1, . . . ,n. Polypeptides of specifi c sequence for which n >
50 amino acid residues are usually known as proteins.

The mass of a peptide or protein of length n is given by

 i
i

m S s
1

() ()
=

= ∑m m (14.1)

After a protein has been synthesized by the cell, it often suffers further “nat-
ural” chemical (so-called posttranslational) modifi cations, such as phosphor-
ylation and glycosylation, that often have functional roles. There are also
“accidental” modifi cations, such as oxidation or modifi cations carried out
deliberately during experiment phase. These modifi cations typically result
in changes of the amino acid masses.

A modifi cation that is applied universally, to every instance of the speci-
fi ed amino acid for example, is known as a fi xed modifi cation. Fixed modifi ca-
tion can be described in terms of modifi ed weighted alphabets (Σ, mK), where
mK is the modifi ed mass function corresponding to the K-type modifi cation.

In reality, however, it is possible that not every instance of an amino acid
has suffered a modifi cation. This can be described by considering a modi-
fi ed weighted alphabet (Σ, mK) where mK:Σ × Γ→ IR is a probabilistic function
that assigns to every character s in Σ a random variable mK(s,γ), where γ∈Γ is
a possible outcome and P(γ) denotes the probability associated with the ele-
mentary events. For example, if we consider a single modifi cation, γ = 1 if the
amino acid residue is “modifi ed” or γ = 0 if “unmodifi ed.”

14.3.3 Cleavage Rules

Proteolytic enzymes or proteases will break down a protein by cleaving
the peptide at specifi c points, for example, after the occurrence of a spe-
cifi c amino acid residue. Each proteolytic enzyme can be associated with
a set of cleavage rules. Table 14.1 shows examples of cleavage site rules for
some of the most commonly used proteases. In this table, the amino acid
residues of the N-terminal side of the scissile bond are noted as P1, P2 and
the residues of the C-terminal side are noted as P P' '

1 2, (Figure 14.1) in line
with the Schechter and Berger nomenclature for the description of the pro-
tease subsites [34].

10768_C014.indd 31810768_C014.indd 318 6/17/2010 7:57:41 PM6/17/2010 7:57:41 PM

Parallel FPGA Search Engine for Protein Identifi cation 319

Trypsin is by far the most commonly used enzyme in MS studies because
each proteolytic fragment contains a basic arginine (R) or lysine (K) amino
acid residue that is abundant and well distributed, yielding peptides of
molecular weights that can be analyzed by MS. A model for the cleavage
behavior of a proteolytic enzyme E has been proposed in [33]. As an alter-
native model, more suitable in the present context, we introduce a cleavage
function defi ned on the space of three-letter substrings i i i i is s s s, 2 1 2+ + += of s ,
over the alphabet Σ, such that

 i i E
E i i

i i E

 s J R
c s

i s R

3
, 2

, 2
, 2

0 if \
()

if
+

+
+

 ∈=  ∈
 (14.2)

where zero means that no cleavage occurs, i indicates that the cleavage
occurs after character si, J3 is the set of all possible three-character strings
over the alphabet Σ, and RE⊂J3 is the subset of cleavage patterns associated
with enzyme E.

The application of the cleavage function (2) to a string S = s1 . . . sn of length n,
produces an ordered set of all possible cleavage points

n n

E E i i E i i
i i

C S l k l k c s l k l k l k k c s
2 2

, 2 , 2
1 1

() () () { ()}, () (1), () 0, 1, ..., { ()} 1
− −

+ +
= =

 = ∈ < + ≠ = − 
 

∪ ∪m

 (14.3)

Scissile bond

C-Terminal
P2 P1 P1’ P2’

N-Terminal

FIGURE 14.1
Illustration of the notation used to for cleavage sites.

TABLE 14.1

Examples of Cleavage Site Rules

Enzyme P1 P1’ P2’

Arg-C R X X
Asp-N X D X
Chymotrypsin 1 F,Y,W X X
Chymotrypsin 2 A,L,M,F,Y,W X X
Glu-C 1
Glu-C 2
Lys-C
Trypsin
Thermolysin
CNBr
Formic acid

E
D,E
K
R, K
X
M
D

X
X
X
not P
A,I,L,M,F,V
X
P

X
X
X
X
not P
X
X

10768_C014.indd 31910768_C014.indd 319 6/17/2010 7:57:42 PM6/17/2010 7:57:42 PM

320 Bioinformatics: High Performance Parallel Computer Architectures

The “digestion” of the string S generates the following fragmentation set
(peptide map):

{ } { }k l k l k
l k l kE l k l k E ES F S s l(k), l(k) C S k C S (), (1)
() 1, (1)() 1, (1)() (,) 1 (), 1,..., () 1+

+ ++ += = = + ∈ = −m m mF
 (14.4)

where l k l ks s ...s() (1)+= denotes the k-th fragment of s (i.e., a substring s of
between two successive cleavage points).

In practice, if enzymatic cleavage is not complete, not all adjacent peptides
may separate. Assuming that one missed cleavage site has occurred, the cor-
responding fragmentation set is given by,

{ }l k l k

E E ES S l(k), l(k) C S k C S -1 (), (1)
,1() 1 (), 1, ..., ()+= + ∈ = ∪m m mF

 { }l k l k
E ES l(k), l(k) C S k C S -2(), (2) 2 (), 1, ..., ()+ + ∈ =m m m (14.5)

Typically, when searching the database, up to two missed cleavage sites
are allowed but, for best results, one missed cleavage site seems to be the
optimal choice. Each additional missed cleavage in the search increases
the search space and reduces the signifi cance level of the matches found as
the probability of getting random matches increases. Using more than the
two cleavage sites implies that the quality of the enzymatic digestion was
really poor and really begs the question of whether the experiment should
be repeated.

Assuming no PTMs- and p-missed cleavage sites to the fragmentation set
of a protein string Sm digested with an enzyme E we can associate the follow-
ing set of corresponding fragment masses (the peptide mass map):

 { }k j k j
E p E pM S m F F S j p, ,

, ,() () (), 0, ...,= ∈ =Fm m m m (14.6)

If fi xed modifi cations are specifi ed, the peptide map is computed using

n

K
i

i

m S s
1

() (,), 1
=

= =∑m m g g (14.7)

In this case, we still have KE p E pS M S, ,() ()=F m m ; that is, the size of mass set
equals the number of protein fragments.

However, if a modifi cation is assumed to be variable (may or may not be
present at a particular location), the mass of a peptide is a random variable,
so that all possible arrangements of that modifi cation have to be considered,
during searching, for every peptide fragment. For example, if an amino acid
s ∈ Σ is assumed to undergo a variable modifi cation, for a peptide km F()m

10768_C014.indd 32010768_C014.indd 320 6/17/2010 7:57:43 PM6/17/2010 7:57:43 PM

Parallel FPGA Search Engine for Protein Identifi cation 321

of length l containing three s residues, the following masses have to be
computed:

l
k

i
i

m F s
1

(, 0) ()
=

= ∑m m

k k K km F m F s s m F s(,1) (, 0) (() (,1)) (, 0) ()= − − = − ∆m m mm m m

k k K km F m F s s m F s(, 2) (, 0) 2(() (,1)) (, 0) 2 ()= − − = − ∆m m mm m m

k k K km F m F s s m F s(, 3) (, 0) 3(() (,1)) (, 0) 3 ()= − − = − ∆m m mm m m (14.8)

These correspond to the cases in which we have 0, 1, 2, or 3 modifi ed res-
idues. As a consequence, the size of the theoretical peptide masses corre-
sponding to a single protein can increase dramatically, especially if more
than one variable modifi cation is specifi ed.

14.3.4 Protein Identification by Spectral Matching

Protein mass fi ngerprinting involves comparing an experimental peptide
mass fi ngerprint; that is, a list of r mass queries X = {x1, . . . ,xr}, with the theo-
retical peptide mass map ME(Sμ) computed in silico for every protein Sμ,j string
in the database.

All algorithms used to perform the protein identifi cation task implement
in essence a Bayes statistical decision rule with the goal to minimize/max-
imize the cost/benefi t of incorrect/correct classifi cation. A Bayes classifi er
may assign an unknown peptide mass fi ngerprint pattern X to a protein if

 , , , ,

1 1

(|) (|),
= =

<∑ ∑m m

N N

i j i i k k
i i

P S X P S X� � ∀k≠j (14.9)

where N is the total number of proteins in the database and ξj,k is the cost
of wrongly assigning a mass fi ngerprint of a protein Sj to a protein Sk. For
simplicity ξi,k can be assumed to be 1 for all k ≠ i and 0 when k = i. A practical
score or discriminator function can be defi ned by approximating the proba-
bility functions iP S X,(|)m for all proteins in the database.

A rough approximation is given by the number of theoretical peptide
masses in a protein that match the experimental mass fi ngerprint. An exact
match between xi is found km F()µ

 if

k

ix m F()= m (14.10)

10768_C014.indd 32110768_C014.indd 321 6/17/2010 7:57:45 PM6/17/2010 7:57:45 PM

322 Bioinformatics: High Performance Parallel Computer Architectures

If we take into account mass accuracy R (expressed in ppm) of the instru-
ment, an approximate match is found if

L k H
i ix m F x()≤ ≤m (14.11)

where L
ix and H

ix are positive lower and upper tolerances

 L H
i i i i

R
x x x x

R R

6

6 6

(1 2 /10) 1
;

(1 /10) (1 /10)
−= =
− −

 (14.12)

The basic score provides a distorted approximation of iP S X,(|)m . Specifi cally,
it does not take into account the frequency of occurrence of each peptide in
the database; the measurement accuracy; the individual properties of each
protein searched Si, such as theoretical number of peptides generated by frag-
mentation and the total mass of the protein; or the fact that the sample that
is analyzed may be a mixture of two or more proteins. Whilst the MOWSE
[35] or MASCOT [36] scoring schemes, which incorporate information about
the frequency of peptides from all proteins in the database within a molec-
ular weight range, are superior to the naïve scoring scheme, it still does not
account for the individual properties of the proteins analyzed. A compre-
hensive Bayesian scoring approach, which accounts for all factors listed ear-
lier, can deal with protein mixtures and can incorporate additional a priori
information about the experimentally observed peptides, is implemented by
ProFound (http://prowl.rockefeller.edu/prowl-cgi/profound.exe). The algo-
rithm used by ProFound is described in detail in the paper by Zhang and
Chait [37].

Whilst the basic score alone is not ideal, it has to be computed to implement
more sensitive scoring functions. To decide the most likely protein match, the
score has to be computed for all proteins in the sequence database. To have
an idea of the computational challenge, it is worth mentioning that UniProt,
the largest protein database in the world, currently holds a total of almost 9
million sequence entries covering 204,373 species, with the largest known
protein consisting of 34,350 amino acids.

14.4 Reconfigurable Computing Platform

The hardware processors described in this paper were implemented on a
commercial off-the-shelf (COTS) multi-FPGA reconfi gurable hardware plat-
form, consisting of a BenNuey motherboard and a BenDATA DIME-II mod-
ule from Nallatech Ltd. (www.nallatech.com).

10768_C014.indd 32210768_C014.indd 322 6/17/2010 7:57:46 PM6/17/2010 7:57:46 PM

Parallel FPGA Search Engine for Protein Identifi cation 323

The BenNUEY board is a full-length PCI DIME-II motherboard that houses
a Xilinx Virtex-II XC2V8000 FPGA and 4 Mbytes on-board RAM, providing
substantial on-board FPGA resource for processing and system manage-
ment. In our application, this FPGA has been used to implement the mass
spectra processor that is described elsewhere [28].

The communication between the PC server and the FPGA system, via a
standard PCI interface (32 bits, 33 MHz), is handled by a second, smaller
FPGA (Xilinx Spartan-II) on the motherboard. The motherboard has three
DIME-II expansion slots, which allow users to confi gure additional system
resources to meet processing, memory, and input/output (I/O) require-
ments. The BenDATA DIME-II module has one user FPGA device (Virtex-II
XC2V8000) and 1 GB of DDR SDRAM memory organized in four banks with
a 64-bit wide data bus each. The total data bus width is 256 bits. Each module
is connected with the motherboard FPGA and with the other two modules
via a 64-bit, 40-MHz local bus. This architecture enables the implementation
of parallel searches at FPGA level as well as across modules. The block dia-
gram of the FPGA system is shown in Figure 14.2.

An important factor that has to be considered when choosing an FPGA
platform is the communication overhead associated with data transfer
between PC and device, which should represent only a fraction of the
actual execution time. For a known reconfi gurable computing platform it is
possible to evaluate at this stage the actual communication costs incurred
by transferring data between hardware and software. This aspect is a
major decision factor in the selection of the FPGA system best suited for
an application.

The reconfi gurable computing platform adopted in this work is well suited
for this particular bioinformatics application. More specifi cally

 (a) The FPGA module used to implement the database search engine
(BenData DD) provided suffi cient on-board memory to hold the
entire database, allowing the entire database that is to be searched
to be stored in local memory, resulting in very low communication
overhead.

 (b) The architecture of the module allowed data transfers between
memory and FPGA on a 256-bit-wide channel at 100 MHz so that
multiple proteins could be streamed out from the memory and pro-
cessed in parallel by individual search processors programmed on
the FPGA fabric.

 (c) The hardware system offers the fl exibility to implement distributed
search strategies by adding additional modules.

The code selected to run in hardware should ideally have low data depen-
dency, to facilitate parallel implementation. Fingerprint matching, for exam-
ple, can be performed in parallel on different database partitions. Because the

10768_C014.indd 32310768_C014.indd 323 6/17/2010 7:57:47 PM6/17/2010 7:57:47 PM

3
2
4

Bioinform
atics: H

igh Perform
ance Parallel C

om
puter A

rchitectures

ZBT RAM
4 MB

DDR
SDRAM
Bank 2

DDR
SDRAM
Bank 2

DDR
SDRAM
Bank 3

DDR
SDRAM
Bank 0

DDR
SDRAM
Bank 1

DDR
SDRAM
Bank 3

DDR
SDRAM
Bank 1

DDR
SDRAM
Bank 0

DDR
SDRAM
Bank 2

DDR
SDRAM
Bank 3

DDR
SDRAM
Bank 1

DDR
SDRAM
Bank 0

BenNuey board

PCI bus

BenDATA module BenDATA module (optional) BenDATA module (optional)

Mass spectra
processor

Search engine

PCI
interface

Virtex-II XC2V6800
Virtex-II XC2V6800

Search engine

Virtex-II XC2V6800

Search engine

Virtex-II XC2V6800

Spartan

FIGURE 14.2
Block diagram of the FPGA system.

10768_C
014.indd 324

10768_C
014.indd 324

6/17/2010 7:57:47 PM
6/17/2010 7:57:47 PM

Parallel FPGA Search Engine for Protein Identifi cation 325

number of proteins in the database is very large, the potential for speedup is
huge, given the right FPGA platform.

The design of the present implementation of the database search engine
has been optimized to exploit this particular RC hardware architecture. In
particular, the implementation is scalable so that the system performance
can be easily increased by incorporating additional search modules and dis-
tributing the database across different modules.

Basically, a motherboard equipped with three search modules is able to
deliver a match three times faster than a single module motherboard. Each
system (box) can be scaled up easier by adding up additional FPGA mother-
boards (two to four motherboards per “box” for example). Furthermore, for
the ultimate performance, a FPGA “cluster” could be set up by interconnect-
ing two or more FPGA computing boxes. Considering the fact that single
database search module can deliver the performance of hundreds or even
thousand of conventional single-core microprocessors, a “cluster” FPGA
protein identifi cation system could easily deliver more computational power
than even some of the largest HPC in operation today.

The complete FPGA-hardware solution for PMF, which incorporates a raw
mass spectra processor and a parallel search engine, is presented in the fol-
lowing sections.

14.5 Protein Sequence Database FPGA Search Engine

The database search engine [28] traces the peptide fi ngerprint back to the
originating peptide by matching it against the expected (theoretical) peptide
masses obtained by digesting in silico—on the fl y—all protein sequences in
the database.

To maximize database search speed, the initial search engine has been con-
fi gured as a set of 48 identical search processors that can process database
records (encoded protein streams) in parallel. The search processors operate
at a clock rate of 100 MHz, which is dictated by clock frequency of the 1-GB
on-board DDR SDRAM.

14.5.1 Database Encoding

The protein sequence databases such as MSDB, the database used in this
study, are in fact fl at text fi les. To fully exploit the benefi ts of FPGA acceler-
ation, the entire MSDB database was encoded using 28 symbols coded on
fi ve-bit words. Of the 28 symbols, 20 symbols were required to encode the
constituent amino acids, 6 were additional standard symbols adopted in
the FASTA format, and 2 symbols were used to mark the end of a protein
sequence and the end of the database. By encoding the database using only

10768_C014.indd 32510768_C014.indd 325 6/17/2010 7:57:47 PM6/17/2010 7:57:47 PM

326 Bioinformatics: High Performance Parallel Computer Architectures

fi ve-bit “characters,” the database size was reduced by approximately 40%.
The encoded database occupies approximately 680 MB of the total 1-GB DDR
SDRAM memory installed on the module.

The encoded database was loaded on the local on-board memory of the
BenDATA module in a format that facilitates fast parallel searches. The data-
base was divided into 4 × 12 = 48 data streams of consecutive records for par-
allel processing. Each data stream contains a variable number of complete
protein sequences and the unused memory locations, which could not hold
an entire protein sequence, were padded with zeroes (Figure 14.3). In this
format, each memory module can supply synchronously 12 × 5-bit wide data
streams to 12 search processors that connect to the output of that random
access memory (RAM) bank.

Storing the database in the local module memory eliminates a signifi cant
memory access bottleneck that would be caused, if the protein database
were stored in the computer memory, by the relatively slow PCI interface.

However, the most signifi cant reason for encoding and storing the protein
database in the local memory is that it enables parallel processing of pro-
tein sequences. In the current implementation there are 48 protein sequences
that are streamed out, in parallel, from the memory as shown in Figure 14.4.
Each protein sequence is processed sequentially by a search processor imple-
mented in the module’s FPGA.

14.5.2 Database Search Processor

Each search processor has two major functional blocks, an in silico protein
digestion unit and a scoring module. These blocks perform the following
basic operations:

 (a) The digestion unit computes the theoretical peptide masses [5] for
every protein in the database by in silico digestion [2].

 (b) The scoring unit compares the user supplied experimental masses
with the theoretical peptide masses [10, 11] generated by the diges-
tion unit, computing for each protein the matching score; that is, the
number of matched peptide masses.

14.5.2.1 Digestion Unit

Each search processor reads a fi ve-bit code every clock cycle from the corre-
sponding memory column and passes it to the digestion unit. The digestion
unit is responsible for calculating the peptide masses according to the user-
defi ned digestion rule/parameter (Figure 14.5).

For every clock cycle, the digestion unit calculates the cumulative mass
of the amino acids received from the database until it encounters a cleavage
pattern [2], a protein sequence delimiter or the end-of-database marker. The
theoretical masses of individual amino acids, used to compute the peptide

10768_C014.indd 32610768_C014.indd 326 6/17/2010 7:57:47 PM6/17/2010 7:57:47 PM

Parallel FPGA Search Engine for Protein Identifi cation 327

masses, are stored in a lookup table as 32-bit (12 bits after the radix point)
fi xed-point numbers. In this implementation, fi xed PTM rules are handled
implicitly. The lookup table is loaded with the modifi ed amino acid residue
masses, according to the PTMs specifi ed by the user.

14.5.2.2 Variable Modifi cations

To deal with variable modifi cations, the current design has additional regis-
ters and control logic compared with the original design [28].

One additional register stores the codes of the amino acids that are modifi ed.
Another register is used to store the corresponding s()∆m values [7]. If a var-
iable modifi cation is specifi ed, when a processor encounters a cleavage point,

Address

225-1

0

5 bits 5 bits 4 bits

64 bits

S1 (1,1)

S1 (k,1)

Sn (1,1)

S1 (1,12)

Sj (1,12)

Sm (p,12)

Pr
ot

ei
n

1
Pr

ot
ei

n
k

Data stream 1 Data stream 12

Memory bank module 1

End-of-record

End-of-record

0

0

0

0

0

0

0

End-of-record U

N

U

S

E

D

FIGURE 14.3
Structure of the encoded database stored in one DDR SDRAM memory bank.

10768_C014.indd 32710768_C014.indd 327 6/17/2010 7:57:48 PM6/17/2010 7:57:48 PM

328 Bioinformatics: High Performance Parallel Computer Architectures

the input FIFO is disabled and no more data is streamed out from it, until the
digestion unit that encountered the cleavage point computes the additional
masses required [7]. The number of additional clock cycles inserted equals
the number of possible distinct modifi cations that have to be evaluated; that
is, the number of affected amino acid residues in that peptide.

Because of the increased complexity of the design, only 36 processors that
implement variable modifi cations could be fi tted on the FPGA. From a com-
putational point of view, variable modifi cations are costly, as the parallel
computation fl ow is broken every time a cleavage site is encountered. This
problem can be signifi cantly alleviated by distributing the database across
different search modules.

14.5.2.3 Scoring Unit

The scoring unit calculates the number of peptide masses in the peptide mass
fi ngerprint that are matched for every digested protein in the database. The
user can specify the matching error tolerance R (ppm) in [11], which refl ects
the accuracy of the mass spectrometer and other known sources of errors.

DDR SDRAM
Bank 0

I/O FIFO
BANK 0

I/O FIFO
BANK 1

I/O FIFO
BANK 2

DDR memory controller

I/O FIFO
BANK 3

Database seach engine
(Virtex-II Xc2V8000)

Input data bus
@40 MHz

Output data
Bus @40 MHz

Ready out

Control input

BenDATA module

32

25

5 5 5 897

32

48
38

2
3838

Output
FIFO

(1)

Output
FIFO

(2)

Output
FIFO
(48)

SEARCH
PROCESSOR

(48)

Control unit

15

10

64

64

6

444444 2112

Output registers
(48x45 BIT)

&
multiplexer

Input FIFO
(511x64 BIT)

&
Input register bank

SEARCH
PROCESSOR

(1)

SEARCH
PROCESSOR

(2)

7 64

64 25

RAM address generator and multiplexer

64 25 64 25 64

32 32 32 1-GB DDR SDRAM

DDR SDRAM
Bank 1

DDR SDRAM
Bank 2

DDR SDRAM
Bank 3

FIGURE 14.4
Block diagram of the database search engine.

10768_C014.indd 32810768_C014.indd 328 6/17/2010 7:57:48 PM6/17/2010 7:57:48 PM

Parallel FPGA Search Engine for Protein Identifi cation 329

When the digestion unit detects a cleavage point, the computed theoretical
mass km F()m of a peptide fragment is transferred to a bank of comparators.

The theoretical peptide map is compared in parallel with the experimental pep-
tide mass fi ngerprint X = {x1, x2, . . . , xr), generated by the mass spectra processor.

For the implementation evaluated here r=13. However, the design could
be easily modifi ed to increase the number of m/z query values, at the

Database search processor

Data in

DINA DINB

(VARMODCNT)
PEPEND

PROTEND
DBFEND

(VARMODCNT)

Q

EN
Counter (5 Bits)

OUTWE

DATAIN

RAM
(32x32)

ADDRIN

(Theoretical Peptide Masses)

12

PEPEND
PROTEND
DBFEND

VMF
C1
C2
C3 C4 C5 C6

HALT
HALT

Search processor
Control block

CONSTIN

61(66)

Constants in

SCORETHR

MATCH
GLAGS

PROTEIN
HIT FLAG

Valid

Valid Data

6

38

6 bit counter
EN ADDRINA

DATAINA

WEA
ADDRINB

Output FIFO address input

Output fifo
Dual port RAM

(64X48)

Data bus output

FIFO pointer output

6

38DOUTB

Output

38

Protein
Score
&
Index
Generator

C1 CONSTANTS

MATCH
FLAGS

PROTEIN
HIT FLAG

Parallel comparator
block (13x32bit)

C2

32

32 32
A

A

D

A+B

A+B

Q

32 BIT
Add and

accumulate block 1

32 BIT
Add and

accumulate block 2

32 BIT register
(missed cleavage)

EN

32

32

32

32

32

32

0

1
0

1

897(936) 832(866)

3

13

4

2

2
832

Data valid in
DATA VALID

Cleavage pattern
detector

DINC

5 5 5
0

1
5

5

5

Z-1 Z-1

Q

FIGURE 14.5
Block diagram of a search processor. The dashed-line is used to indicate the additional blocks
and signals that are used to implement variable modifi cation functionality.

10768_C014.indd 32910768_C014.indd 329 6/17/2010 7:57:49 PM6/17/2010 7:57:49 PM

330 Bioinformatics: High Performance Parallel Computer Architectures

expense of increasing the complexity of the design of individual search
processors that will consume more FPGA resources. Effectively, the num-
ber of processors that can be allocated on current FPGA device (Xilinx
XC2V8000) will be smaller. However, as the logic capacity of the latest
FPGA devices (e.g., Xilinx Virtex 5 family) has increased dramatically
compared with the device used in this implementation. In this situation,
the complexity of the design can be increased without compromising on
performance. Moreover, because of the parallel nature of the computa-
tions, the entire database can be divided into distinct subsets and loaded
on separate BenDATA modules.

If a match is found, the score counter is incremented by one. The position
of a match is also recorded in an n-bit match index word. When the end of a
record is found, the record index counter, the score counter, and the match
index register outputs are stored in intermediate registers.

Each search processor has four outputs: (1) the index of the matched pro-
tein, (2) the corresponding protein score, (3) a fl ag indicating that the index
and score output can be written in the output FIFO, and (4) a fl ag that indi-
cates that the processor has reached the end of the corresponding database
segment. The user can specify a score threshold τs so that the record and
match indexes are stored in the output FIFO only if the score is higher than
the specifi ed threshold τs.

Results of the 48 search processor are collected in dual port RAM devices
organized as FIFO structures of 64 words of 38 bits each. When all search
processors reached the end of the database segment, a global fl ag indicating
that the search engine has completed processing is set and the results are
transferred on the PC server side.

The basic score is normally used to implement more sensitive scoring schemes
that account for peptide frequency distributions such as MOWSE [35], PIUMS
[38], or more comprehensive Bayesian scoring approaches that also account
for the individual properties of the proteins analyzed such as ProFound [37].
Because of the low speedup gain expected from a hardware implementation,
these scoring methods have been implemented in software and run on the
PC server post-FPGA processing. The externalization of the scoring statistics
means that the output of the search can be rapidly evaluated using different
scores and even developed into a consensus score validation scheme.

The design includes all necessary control and FIFO structures that imple-
ments a 64-bit wide data transfer between the FPGA devices at a rate of 320
MB/s. In general, the development of a complete reconfi gurable computing
solution involves signifi cant low-level programming for designing control
and synchronization modules to manage data transfers between the hard-
ware processors running on different FPGAs, between the FPGA system and
the host PC, and between FPGAs and the on-board memory modules.

The 48-processor search engine occupies 99% of the FPGA’s logic resources,
99% of the FPGA’s internal RAM resources, and 53% of the FPGA’s I/O
resources.

10768_C014.indd 33010768_C014.indd 330 6/17/2010 7:57:52 PM6/17/2010 7:57:52 PM

Parallel FPGA Search Engine for Protein Identifi cation 331

14.6 Performance Evaluation

Performance evaluations of the FPGA implementation were carried out using
both single and dual (single core) 3.06 GHz Xeon processor servers with 4-GB
RAM under Windows XP Professional [28]. In this study, the performance
of the 48-processor database search engine is compared with that of a dual
quad 3.16 GHz Intel Xeon server with 4 GB of RAM running Windows 2003
Server operating system.

The MSDB database was encoded and loaded in the local 1-GB DDR
SDRAM module memory. The database contains 3,239,079 records with
1,079,594,700 effective code letters. If the additional separator codes are
included the encoded database requires 1,082,833 779 symbols. It is impor-
tant to emphasize that the MSDB database used here is no longer actively
maintained, being last updated on August 8, 2006. It now contains only a
fraction of the currently known proteins.

Performance evaluation was carried out using a reference C program that
models the exact computational fl ow implemented by the hardware design.
In tests, the output results of both the software and FPGA implementation
of the database search engine were identical. For the current comparative
study, the C program was run on a Dual Quad Core 3.16 GHz Intel Xeon PC
server as well as on a single (single core) 3.06 GHz Xeon server.

The performance of both software and hardware (FPGA) designs were
assessed using randomly selected database records that were digested in
silico using trypsin digestion rules. In each case, the search was carried out
using 13 query peptides (m/z values) selected randomly from the theoret-
ical protein digests. The processing time for the software implementation
accounts only for the main computational loop after all variables have been
initialized.

The FPGA system performs a complete database search in 240(±0.02) ms
while the completed average processing time for the C implementation is
approximately 3.92 minutes.

As seen in Figure 14.6, the speed gain of the FPGA over the C software
implementation running on a dual quad processor server is still signifi cant.
Figure 14.7 shows comparatively the speed gains relative to single and dual
quad processor systems. The average speed gain on the dual quad processor
system is 982.77 (standard deviation = 14.9). This compares with an aver-
age of 1,805 (standard deviation = 50.66) when the software was run on the
single-core processor system.

The results show that the latest multiprocessor systems have narrowed
the performance gap but, although the number of cores has increased
from one to eight, the dual system manages to be only twice as fast as the
single-core machine. Moreover, the comparison is somehow “unfair” as
the FPGA platform used in this study is based on very “old” 2004 Virtex-II
technology.

10768_C014.indd 33110768_C014.indd 331 6/17/2010 7:57:52 PM6/17/2010 7:57:52 PM

332 Bioinformatics: High Performance Parallel Computer Architectures

1030

1020

1010

1000

990

980

970

960

950
0 5 10 15 20 25

Simulations

Sp
ee

d
ga

in

30 35 40 45 50

FIGURE 14.6
Speed gains of FPGA versus C implementation.

2000

1800

1600

1400

Sp
ee

d
ga

in

Simulations

1200

1000

800
0 5 10 15 20 25 30 35 40

Single 3.60 GHz Intel Xeon server
Dual Quad Core 3.16 GHz Intel Xeon server

45 50

FIGURE 14.7
Speed gains of FPGA versus C implementation run on single/dual quad processor servers.

10768_C014.indd 33210768_C014.indd 332 6/17/2010 7:57:52 PM6/17/2010 7:57:52 PM

Parallel FPGA Search Engine for Protein Identifi cation 333

Acknowledgments

The authors gratefully acknowledge that this work was funded by BBSRC.
The authors are also grateful for the support received from Xilinx Inc. who
donated the devices and design tools used in this study.

14.7 References

 1. Stein L. D. (2004), Human genome: End of the beginning, Nature 431, 915–916.
 2. Naaby-Hansen S., Waterfi eld M.D., Cramer R. (2001), Proteomics—Post-genomic

cartography to understand gene function, Trends in Pharmacological Sciences, 22,
376–384.

 3. Hugh L., Arthur J.W. (2008), Computational methods for protein identifi cation
from mass spectrometry data, PLoS Computational Biology, 4, 1553–7358.

 4. Beynon J.H. (1956), The use of the mass spectrometer for the identifi cation of
organic compounds, Microchimica Acta, 44, 437–453.

 5. Krishnan A. (2004), A survey of life sciences applications on the grid, New
Generation Computing, 22, 111–126.

 6. Andrade T., Berglund L., Uhlén M., Odeberg J. (2006), Using Grid technology
for computationally intensive applied bioinformatics analyses, In Silico Biology,
6, 495–504.

 7. Andrade J., Andersen M., Sillen A., Graff C., Odeberg J. (2007), The use of grid
computing to drive data-intensive genetic research, European Journal of Human
Genetics, 15, 694–702.

 8. Quandt A., Hernandez P., Kunzst P., Pautasso C., Tuloup M., Hernandez C.,
Appel R.D. (2007), Grid-based analysis of tandem mass spectrometry data in
clinical proteomics, Studies in Health Technology and Informatics, 126, 13–22.

 9. El-Ghazawi T., Bennett D., Poznanovic D., Cantle A., Underwood K.,
Pennington R., Buell D., George A., Kindratenko V. (2006), Is high-performance
reconfi gurable computing the next supercomputing paradigm? Proceedings of
the 2006 ACM/IEEE Conference on Supercomputing, Tampa, Florida. doi:10.1109/
SC.2006.38.

 10. Estrin G. (1960), Organization of computer systems—The fi xed plus variable
structure computer, Proc. Western Joint Computer Conf., New York, pp. 33–40.

 11. Estrin G. (2002), Reconfi gurable computer origins: The UCLA fi xed-plus-variable
(F+V) structure computer, IEEE Ann. Hist. Comput, 24, 3–9.

 12. Gokhale M.B., Graham P.S. (2005), Reconfi gurable computing: Accelerating compu-
tation with Field-Programmable Gate Arrays, Springer.

 13. Hauck S., Dehon A. (2008), Reconfi gurable computing: The theory and practice of
FPGA-Based Computation, Elsevier.

 14. Xilinx. (2009), Virtex 5 family overview. DS100, Xilinx Inc.
 15. Fagin B., Watt J.G., Gross R. (1993), A special-purpose processor for gene

sequence analysis, Computer Applications in the Biosciences, 9, 221–226.

10768_C014.indd 33310768_C014.indd 333 6/17/2010 7:57:53 PM6/17/2010 7:57:53 PM

334 Bioinformatics: High Performance Parallel Computer Architectures

 16. Hughey R. (1996), Parallel hardware for sequence comparison and alignment,
Computer Applications in the Biosciences, 12, 473–479.

 17. Wozniak A. (1997), Using video-oriented instructions to speed up sequence
comparison, Comput Applied Bioinformatics, 13, 145–150.

 18. Guerdoux-Jamet P., Lavenier D. (1997), SAMBA: hardware accelerator for
biological sequence comparison, Computer Applications in the Biosciences, 13,
609–615.

 19. Lavenier D. (1998), Speeding up genome computations with systolic accelerator,
SIAM News 31, 1–8.

 20. Guccione A.S., Keller E. (2002), Gene matching using Jbits, Proceedings of the
Reconfi gurable Computing Is Going Mainstream, 12th International Conference on
Field-Programmable Logic and Applications, 1168–1171.

 21. Simmler H., Singpiel H., Männer R. (2004), Real-time primer design for DNA
chips, Interscience Concurr. Comput.: Pract. Exper. 16, 855–872.

 22. Marongiu A., Palazzari P., Rosato V. (2003), Designing hardware for protein
sequence analysis, Bioinformatics, 19, 1739–1740.

 23. Oliver T., Schmidt B., Nathan D., Clemens R., Maskell D. (2005), Using recon-
fi gurable hardware to accelerate multiple sequence alignment with ClustaIW,
Bioinformatics, 21, 3431–3432.

 24. Anish T.A., Dumontier M., Rose J.S., Hogue C.W.V. (2005), Hardware-accelerated
protein identifi cation for mass spectrometry, Rapid Communications in Mass
Spectrometry, 19, 833–837.

 25. Panitz F. et al. (2007), SNP mining porcine ESTs with MAVIANT, a novel tool for
SNP evaluation and annotation, Bioinformatics, 23, 387–391.

 26. Dandass Y.S., Burgess S.C., Lawrence M., Bridges S.M. (2008), Accelerating string
set matching in FPGA hardware for bioinformatics research, BMC Bioinformatics,
9, doi: 10.1186/1471–2105-9–197.

 27. Bogdan I.A., Coca D., Rivers J., Beynon J.R. (2007), Hardware acceleration of
 processing of mass spectrometric data for proteomics, Bioinformatics, 23, 724–731.

 28. Bogdan I.A., Rivers J., Beynon J.R., Coca D. (2008), High-performance hardware
implementation of a parallel database search engine for real-time peptide mass
fi ngerprinting, Bioinformatics, 24, 1498–1502.

 29. Bogdan I.A., Coca D., Beynon J.R. (2009), Peptide mass fi ngerprinting using
fi eld-programmable gate arrays, IEEE Transactions on Biomedical Circuits and
Systems, 3, 142–149.

 30. Coca D., Bogdan I.A., Beynon R.J. (2009), A high-performance reconfi gurable
computing solution for peptide mass fi ngerprinting, In Proteome Bioinformatics,
Series: Methods in Molecular Biology, 604, Hubbard, Simon J.; Jones, Andrew R.
(Eds.), Humana Press.

 31. Edwards N., Lippert R. (2002), Generating peptide candidates from amino-acid
sequence databases for protein identication via mass spectrometry. In Proc. of the
2nd International Workshop on Algorithms in Bioinformatics (WABI), 68–81.

 32. Cieliebak M., Erlebach T., Liptak Z., Stoye J., Welzl E. (2004), Algorithmic com-
plexity of protein identifi cation: combinatorics of weighted strings, Discrete
Applied Mathematics, 137 (1), 27–46.

 33. Kaltenbach H.M., Sudek H., Böcker S., Rahmann S. (2005), Statistics of cleav-
age fragments in random weighted strings. Tech. Rep. TR-2005–06, Technische
Fakultät der Universität Bielefeld, Abteilung Informationstechnik, http://
bieson.ub.unibielefeld.de/volltexte/2006/900/.

10768_C014.indd 33410768_C014.indd 334 6/17/2010 7:57:53 PM6/17/2010 7:57:53 PM

Parallel FPGA Search Engine for Protein Identifi cation 335

 34. Schechter I., Berger A. (1967), On the size of the active site in proteases.
Biochemical and Biophysical Research Communications, 27, 157–162.

 35. Pappin D.J., Hojrup P., Bleasby A.J. (1993), Rapid identifi cation of proteins by
peptide-mass fi ngerprinting, Current Biology, 3, 327–332.

 36. Perkins D.N., Pappin D.J.C., Creasy D.M., Cottrell J.S. (1999), Probability-based
protein identifi cation by searching sequence databases using mass spectrome-
try data, Electrophoresis, 20, 3551–3567.

 37. Zhang W., Chait B.T. (2000), ProFound: An expert system for protein identi-
fi cation using mass spectrometric peptide mapping information, Analytical
Chemistry, 72, 2482–2489.

 38. Samuelsson J., Dalevi D., Levander F., Rögnvaldsson T. (2004), Modular, script-
able and automated analysis tools for high-throughput peptide mass fi nger-
printing, Bioinformatics, 20, 3628–3635.

10768_C014.indd 33510768_C014.indd 335 6/17/2010 7:57:53 PM6/17/2010 7:57:53 PM

Index

Note: Italicized page numbers refer to figures and tables.

ABYSS, 140
Affine gap penalty function

computing alignments, 61-62
and DP for optimal pairwise

alignment, 10-12
global pairwise alignment with, 5

Affine scoring scheme, 5
Agility, hardware description language

(HDL) tools, 56
Aho-Corasick algorithm (ACA)

operating frequencies of, 279
utilization of

preprocessing phase, 266-267
string set matching, 266

Aho-Corasick preprocessing phase,
266-267

DFA construction, 268-269
failure links addition , 267-268
keyword tree data organization,

266-267
Aho-Corasick tile

architecture of 275
implementation with k tiles, 275,

276
Aligning longer sequences, parallel

communication scheme
tiling scheme for, 65-66

direct memory access (DMA)
transfers under, 66

Alignment, meaning of, 161
Alignment algorithms, 207

basic local alignment search tool
[BLAST], 2,56,143,158,183,
249,317

Needleman-Wunsch algorithm, 6
Smith-Waterman algorithm, 56,60,

63,157,158,162,164,194,249,
250, 251,252

ALLPATHS, 140
Altera Excalibur, commercial hybrid

platforms, 52
Altera FPGAs, 274

ANSI X9.9,235
banking systems, possible attacks on,

238-239
challenge-response authentication,

based on, 236
cryptanalysis of, 237-238

cost-performance figures, for
attacking, 241

Application programming interface
(API), 229

CUDA C-language compiler, 32
Application-specific integrated circuit

(ASIC) design, 50,264
Architecture and Programming, FPGA,

49-50
computing, need for, 50-51
computing architecture, 52-54
developmental tools, 54-56

Area under the curve (AUC), 306
Artificial neural networks (ANNs), 286
ATA disk drives, 280
Automated EDA tools, 54

B

"Badly shaped" datasets, 88
devising new algorithmic concepts,

challenges in, 110
vs. "wellshaped" datasets, 88

Bank indexing process, parallel seed-
based algorithm, 186-188

subset seed AcGL in, 187
Basic and straightforward grid mapping

method, 125
Basic linear algebra subprograms

(BLAS) package, levels of,
40-41

Basic local alignment search tool
(BLAST), 249,317

algorithm
query and reference sequence,

160,161
as replacement of Smith-

Waterman algorithm, 158

A

338 Index

Basic local alignment search tool
(BLAST), (Cont.)

bioinformatics tool, 2
stages of, 23

dynamic programming methods
and, 183

FPGA implementations of, 56
and PLAST, 197-198
position-independent scoring

parameters and, 207
Basic local alignment search tool

for deoxyribonucleic acid
(BLASTN), 143,162,165,166,
176-177

comparison with BLASTP, 24,162,
165.174

DNA database search, 2
gapped extension in, 164,165
hardware and software comparison,

174-175
protein-to-protein sequence

comparison, 162
results of, 176-177
seed generation in, 165
single Virtex-II FPGA for, 176
stages, two-hit algorithm, 23-24

Basic local alignment search tool for
protein (BLASTP), 160,162,165,
166.175

vs. BLASTN, 24,162,165-166,174
in gapped extension, 172
protein database search, 2
in protein seed generation, 168
protein-to-protein sequence

comparison, 162,166
results of, 175
word length and neighborhood

threshold, increase in, 168
word matching in, 165

Bayesian trees and graphs, 285
BEAST, 87,108
BenDATADD,323
BenDATA DIME-II module, 322,323
BenNuey motherboard, 322
Bidirectional asynchronous PCIe data

transfers, CUDA 2.2 release,
38-39

Binary classification test, CUDA-EC
approach, 152

Bioinformatics, and FPGA computing,
56

Bioinformatics algorithms
to CUDA programming model,

mapping, 119
database search and exact matching,

22-26
filtration, 22-24
suffix trees and suffix arrays,

24-26
multiple sequence alignment (MSA),

2,14-22
background of, 14-18
progressive alignment, 18-22

pairwise sequence alignment,
2-14

affine gap penalty function,
DP for optimal pairwise
alignment with, 10-12

definitions and notations, 2-6
linear gap penalty function,

DP for optimal pairwise
alignment with, 6-10

linear space using divide
and conquer, computing
alignments in, 12-14

Bioinformatics application and
COPACOBANA 5000

future work of, 259
motif finding, 252-253

BMA algorithm, 253
BMA implementation, 253-255
BMA in hardware, parallelization

of, 255-257
BMA performance results,

257-259
sequence alignment, 249

hardware implementation,
250-251

performance on, 251-252
Smith-Waterman alignment,

249-250
Biological database search, coalesced

subject sequence arrangement
and, 120

Biosequence databases, 157
Bit-split DFA

architecture of, 274
bioinformatics applications, 63

Index 339

computation, stages of, 161
tables, implementation of, 273-276

Blocks of random access memory
(BRAM)

amino acid sequence set matching
engines, 264

Bloom filter
BLASTN implementation and, 176
definition of, 143
in FPGA device, 166
hash lookup architecture in, 167-168
matching query words by, 166-167
programs and queries, 143-145

Bloom filter data structure
in bioinformatics, 143
and spectrum computation, 143-145

basic local alignment search
tool deoxyribonucleic acid
(BLASTN), 143

BLOSUM45, use in SW Database Search,
122

Boolean matrix algorithm (BMA), 253
algorithm, 253
in hardware, parallelization of,

255-257
implementation of, 253-255
performance results of, 257-259

Bootstrap replicates, parallel
architectures, 107

Bowtie, bioinformatics tools, 25-26
Branch prediction, microarchitectural

changes, 50
BrookGPU, pre-CUDA era and, 108

C

Caching, microarchitectural changes, 50
Car-Parrinello quantum chemistry

applications, FFT-intensive
calculations, 41

Catapult C, commercial HLL to HDL
tools, 56

C compilers, GPU computing, 33
Cell BE alignments on, parallel

algorithms
cell processor, sequence alignments

on, 63
computing alignments, 61-62

affine gap penalty function, 61-62

and computational biology, 60
constant gap penalty function,

use of, 62
hybrid parallel algorithm, 68-76

Hirschberg's technique,
subproblem alignment phase
and, 72-73

hybrid algorithm, performance
of, 74-76

prefix computations, parallel
alignment scheme and, 68-70

space usage, 74
vectorization and memory

management, 73-74
wavefront scheme, problem

decomposition and, 70-71
parallel communication scheme,

63-67
aligning longer sequences, tiling

scheme for, 65-66
tiling scheme, computing optimal

alignment score by, 66-67
specialized alignments, algorithms

for, 76-81
parallel spliced alignment

algorithm, performance of,
78-79

parallel synthetic alignment
algorithm, performance of,
80-81

spliced alignments, 76-78
synthetic alignments, 79-80

Cell block division method, many-core
GPUs, 121

Cell Broadband Engine (CBE), parallel
algorithms, 60

deriving space-saving local
alignment on, 73

hybrid parallel alignment algorithm
on, 69

and parallel communication strategy,
63

Cell processor, sequence alignments
on, 63

CHAOS algorithm, 264
CHIMAERA, 52
Ciphertext registers, 233, 234,240

and plaintext, 234,237, 238
32-bit register, 236, 239

340 Index

C-language subroutine call vs. CUDA
kernel, 35-36

ClawHMMER GPU implementation,
219,220

Cleavage rule, for proteolytic enzyme,
318

ClustalW tool, 2,20,123,124
bioinformatics applications, 63
in multiple sequence alignment

(MSA), 20,22,123,124, 265
progressive alignment method, 22
sequence alignment on cell

processor, 63
speedups of MSA-CUDA, 129

Cluster platforms
vs. FPGA,183

Clusters, 158-159
cooling solutions, need for, 159

Coalesced global memory access,
many-core GPUs, 120-121

Coalesced memory operation, massive
multithreading, 32

Coalesced subject sequence
arrangement, many-core GPUs,
120

Collision tables, hash lookup
architecture, 168

Commercial off-the-shelf (COTS)
multi-FPGA reconfigurable
hardware platform, 322-325

Complexity, history of, 224-225
Complex programmable logic devices

(CPLD),49
Computational biology, computing

alignments and, 60
Compute unified device architecture

(CUDA), see CUDA (compute
unified device architecture)

Computing alignments, 61-62
affine gap penalty function, 61-62
and computational biology, 60
constant gap penalty function, use

of, 62
Configurable I/O blocks (IOB), logic cell

array, 49
Configurable logic blocks (CLB), logic

cell array, 49
schematic layout of, 50

CONSENSUS, 253

Consensus function, multiple sequence
alignment (MSA), 16

Constant memory, GPU, 43,122,216,
217,218

Control unit, in HNN unit, 298-300
COPACOBANA1000,226-227,227

application development, 230-231
backplane, 228-229
FPGA module, 227-228
interface controller, 229-230

COPACOBANA 1000, cryptanalysis
with, 231-232

and COPACOBANA 5000,
differences with, 256-257

DES, exhaustive key search on,
233-235

DES breaking, previous work on,
232-233

DES-based crypto tokens, breaking
of, 235

ANSI X9.9-based challenge-
response authentication,
237-238

banking systems, possible attack
scenarios in, 238-239

token attack on COPACOBANA,
implementing of, 239-241

token based basic authentication,
basics of, 235-237

COPACOBANA 5000,242
application in bioinformatics,

248-249
sequence alignment, 249-250

architecture of, 243
application development,

247-248
bus concept and backplane,

243-244
FPGA module, 244-245
interface controller, 246
power supply and cooling

mechanism, 246-247
and COPACOBANA 1000, differences

between, 256-257
new application, direction toward,

242
requirements, 242-243

COPACOBANA series, basic idea of,
225-226

Index 341

Cost optimal parallel code breaker
(COPACOBANA), 225-226

token attack on, implementing of,
239-241

CRYPTO'93, 233
C-to-hardware, commercial HLL to

HDL tools, 56
CUDA (compute unified device

architecture)
on massively threaded software,

35-45
data maintenance, 38-39
graphics, interoperability with, 46
memory types, 43
pthreads, thread library, 35

CUDA-EC approach, HTSR data and,
139-155

error correction, spectral alignment
approach (SAP) to, 141-143

implementation steps for, 147-149
introduction to, 139-141

Human Genome Project,
challenges to, 139

second-generation sequencers,
output of, 140

parallel error correction with,
143-149

Bloom filter data structure and
spectrum computation, 143-145

error correction, parallel CUDA
algorithm for, 145-147

execution example, 147-149
performance evaluation of, 149-154

accuracy, 152
real datasets, summary of, 150
sensitivity and specificity

measures, 152-153
simulated input datasets, features

of, 149-150
speedups, 151-152

SAP-based error correction, parallel
error correction using, 145-147

CUDA parallelization, 145-147
maximum number of thread

blocks per multiprocessor
(MTBPM), 147

SAP voting procedure, 145
CUDA-EC approach

and NVIDIA GeForce GTX 280,150

CUDA-enabled GPUs, parallel
bioinformatics algorithms for,
117-137

conclusion on, 135-136
introduction to, 117-118

unified device architecture
(CUDA)-enabled GPUs, 118

many-core GPUs, techniques for,
118-121

cell block division method, 121
coalesced global memory access,

120-121
coalesced subject sequence

arrangement, 120
hybrid computing framework,

118-119
intertask and intratask

parallelization, 119
motif discovery, 130-134

MEME (multiple expectation
maximization [EM] for motif
elicitation), 130

multistart search, stages of, 131
multiple sequence alignment,

123-130
basic and straightforward grid

mapping method, 225
distance matrix computation,

ClustalW runtime behavior
and, 123,124

guided tree, ClustalW runtime
behavior and, 123

MSA-CUDA, parallelization
strategy of, 128-130

progressive alignment, ClustalW
runtime behavior and, 124,
127

SW database search, 121-123
constant memory, exploitation of,

122
CudaMalloc(), GPU memory allocation,

38
CudaMemcpyToSy mbol(),CU DA

runtime method, 43
CUDA-MEME, CUDA-enabled GPUs,

118,136
GTX 280 graphics card and, 134

CUDA occupancy calculator tool,
147

342 Index

CUDASW++, CUDA-enabled GPUs, 118
for protein sequence database search,

121-123
BLOSUM50, scoring matrices, 123
performance comparison of,

122-123
stages of, 122

CudaSynchronizeThreads(), CUDA
runtime, 41

CUFFT library, GPU data transfer, 41

Database encoding, 325-326
structure of, 327

Database FPGA search engine, protein
sequence, 325-330

block diagram of, 328
Database search and exact matching,

bioin forma tics algorithms,
22-26

filtration, 22-24
DP-only approach and, 23

suffix trees and suffix arrays, 24-26
string-based problems, 26

Database search processor, 326
block diagram of, 329
output of, 330

Database search tasks, profile-hidden
Markov models (HMMs) and,
204

and efficiency, 207-208
Database sequence, in Smith-Waterman

algorithm, 249-250
Data encryption standard (DES)

breaking based on crypto tokens,
235

ANSI X9.9-based challenge-
response authentication,
237-238

banking systems, possible attack
scenarios in, 238-239

token attack on COPACOBANA,
implementing of, 239-241

token based basic authentication,
basics of, 235-237

exhaustive key search on, 233-235
previous work on, 232-233

Data maintenance, GPU

bidirectional asynchronous PCIe
data transfers, CUDA 2.2
release, 38-39

CUDA runtime and, 38-39
cudaMemcpy(), 38
CUFFT library, GPU data transfer, 41
explicit programmer-initiated data

transfers, data maintenance on
GPU, 38

regression testing, data maintenance
on GPU, 39

streams runtime API, CUDA, 38
Data parallelism, definition of, 160
de Bruijn graph-based approaches,

HTSR data assembler, 140
Deep Crack, 233
Deterministic finite automaton (DFA)

FPGA implementation of string set
matching, 269-270

bit-split DFA architecture,
270-273

bit-split DFA tables,
implementation of, 273-276

table-oriented represendtation of,
270

storage utilization efficiency, 276
Digestion unit, 326-327
Digital signal processing (DSP) blocks,

50
impact of FPGA on, 56

Dime-C, commercial HLL to HDL tools,
56

Dimeric motif, of DNS
recognition of, 296
representation of, 288

Dimeric protein binding site
identification, application to

biological problem, 302-303
hardware-accelerated system,

performance of, 306-307
HRE, dimeric structure of, 303-305
HRE prediction, two-phase neural

system for, 305-306
DIN 41612 connector, 228-229,230
Distance matrix computation, 20,124
Distributed RAM, see Blocks of random

access memory (BRAM)
Divide-and-conquer approach,

Hirschberg, 2

D

Index 343

computing alignments in linear
space using, 12-14

linear-space score-only
computation, 13

optimal midpoint, 13
trace-back path properties, 13-14

linear space, optimal midpoint
computation in, 15

DNA fragment assembly, tools for, 140
DNA sequence

multiple sequence alignment of, 87
numerical representation of, 287-288
sequencing problem

and Human Genome Project, 139
technologies, second-generation, 139

throughput of, 139-140
Double precision floating point

arithmetics, 95-97
Dual-processor commodity

workstations, 30
Dynamically programmed HNN

(DP-HNN), reconfigurable,
297-298

control and matching units, 298-300
FPGA, representation of numerical

values and operations on, 298
hardware-accelerated system,

performance of, 306-307
neuron and memory units, 300-301
operation of, 301-302

Dynamic instruction set computer
(DISC), 52

Dynamic programming (DP)
bioinformatics algorithms, 1, 2
computing pairwise alignments, 60
and field-programmable gate array

(FPGA), 183
and gap extension procedure,

seed-based parallel protein
sequence comparison, 189

E

E5 CSoC families, commercial hybrid
platforms, 52

Emission and transition storage, PE
design features, 212

Ensembl database, of protein sequence,
314

ePassport, 232; see also Machine
Readable Travel Documents

Ethernet, 226,229
gigabit interfaces, 230, 242,243, 246,

248,280
Euler-SR, de Bruijn graph-based

approaches, 140
Exact-match HNN (EM-HNN), 291,297,

304,305,307
Explicit programmer-initiated data

transfers, data maintenance on
GPU, 38

Exploiting internal resources, GPU, 37
constant memory, 43
global memory, 44-45
local memory, 45
register and shared memory, 42-43
texture memory, 43-44

Fabrication techniques, transistors and,
33

FASTA
bioinformatics applications, 63
and concept of seeds, 200
in database encoding, 325
dynamic programming methods

and, 183
Fast Fourier transform (FFT) library,

GPU data transfer, 41
Feed-forward neural network (FFNN),

286,288,297
Felsenstein pruning algorithm, 89-90
Fermi GPUs, latest 20-series, 34,36,37

global memory, advantages related
to, 45

Field programmable gate array (FPGA),
225

in academic research and
commercial domain, 53

architectures of, 52-54
commercial cores under, 52-53
FPGA accelerators, development

of, 53-54
front side bus, 54
hybrid platforms under, 52

in bioinformatics domain, 56
block diagram of, 324

F

344

Field programmable gate array (FPGA),
(Cont.)

vs. cluster platforms, 183
COPACOBANA 1000

architecture of, 240
module of, 227-228

COPACOBANA 5000
architecture of, 245
design of, 246
module of, 244-245

vs. CPU, 52
design, challenge of, 309
development tools of, 54-56

automated EDA tools, 54,56
bitstream, configuration data, 54
system-level tool chains,

availability of, 55
digital signal processor (DSPs) on,

107
discussion about, 56
first FPGA, 49
and GPU, PLAST implementation,

183,194-197
high-computational density

architectures and, 159
introduction to, 49-50

intellectual property (IP) soft
cores, 50

logic cell array, 49
platform FPGA, 50

need for, 50-51
central processing unit

-optimized Cortex Ml processor,
ARM, 52

orchestrating phylogenetic
likelihood function (PLF) on,
86,107

parallelization and profile-HMMs
and, 209-215

performance evaluation, 213-215
system design, 109-213

performance evaluation of, 331-332
pipeline parallelism, exploitation of,

160
search engine, database encoding,

325-326
search engine, database search

processor, 326
digestion unit, 326-327

scoring unit, 328-330
variable modifications, 327-328

and seed-based parallel protein
sequence comparison,
architecture principles, 193

Smith-Waterman algorithm,
implementations of, 251-252

string set matching use in, 265-266
use, in computational biology, 265

Fine-grained implementation
and field-programmable gate array

(FPGA), 183
Fine-grain parallelization, 98-103

coarse-grain approach, multigrain
parallelism, 109

phylogenetic likelihood function
(PLF), library for, 101-102

application programming
interface (API), 102

scalability issues in, 102-103,110
FIPS 113,235
Fixed modification, 318
Floating-point performance, massive

multithreading, 31-32
Flynn's taxonomy, computer

architectures, 35
FORTRAN compilers, GPU computing,

33
Forward algorithm, database search

tasks and, 204
Functional dimers, 286,287, 289
"Future-proofing" applications, massive

multithreading, 33

Gapped extension
BLAST computation stages, 161,

161-162,164
Smith-Waterman recurrence, use

of, 164
in Mercury BLAST, 172-174, 273
parallel seed-based algorithm,

188-189
GARLI, ML phylogeny programs, 91

OpenMP parallelization in, 109
single precision (SP) arithmetics and,

96
Gate array technology, 49

G

Index 345

GenBank, growth of, 182
GenBank Non-Redundant DNA

database, 158,159
Gene expression data analysis, 285
General-purpose graphics processor

unit (GPGPU)
emergence of, 117-118
mapping threads to, 42

execution configuration, 35-36
and massively threaded

programming, scientific
computation, 29-47

compute unified device
architecture (CUDA), 35-45

conclusion of, 46-47
introduction of, 29-31
NVIDIA GPU special processing

units, 30
OpenGL constructs, 46
visualization, 45-46

and PLF, emerging parallel
architectures, 107-108

Genomic sequence comparison
algorithms

bioinformatics and, 181-182
Global alignment

genomic alignment, 60, 61
parallel algorithm for

computation of, 68
and sequential dynamic

programming algorithm, 61
pairwise sequence alignment, 2,3

Global memory, GPU, 44-45
Global MSA, 15,16,17

star alignment approach to, 18
Global ocean sampling (GOS)

expedition, 204
"Glue logic" functionality, 316
GP-HNN, on-chip implementation of,

303
GPU (graphics processing unit), 30

C and FORTRAN compilers, GPU
computing, 33

CUBLAS, GPU library, 40
cudaMalloc(), GPU memory

allocation, 38
exploiting internal resources, 41-45

constant memory, 43
global memory, 44-45

local memory, 45
register and shared memory,

42-43
texture memory, 43-44

Fermi GPUs, latest 20-series, 34,36,
37

global memory, advantages
related to, 45

and fine-grained implementation,
183

and FPGA technologies, PLAST
implementation, 183,194-197

and massive multithreading, 32,33
and NVIDIA C870 Tesla boards,

implementation process,
196-197

and NVIDIA GT200 graphics
processors, impact of, 39-40

phylogenetic analysis and, 85,
107-108

phylogenomic analysis and, 85,
107-108

SP-DP performance gap on, 96
writing or porting software to, 37-45

exploiting internal resources,
41-45

GPU, data maintenance on, 38-39
maximizing work performance,

39-41
GPU, work maximization, 39-41

exploiting internal resources, 41-45
constant memory, 43
global memory, 44-45
local memory, 45
register and shared memory,

42-43
texture memory, 43-44

GPU/FPGA technologies, comparison
of, 183,194-197

execution times, comparison of,
195-196

RCC-TPLASTN and NCBI
TBLASTN, FPGA platform, 196

64 PEs vs. 128 PEs, 199
FPGA implementation, 197
FPGA platform, 194-195
GPU implementation, 196-197
GPU platform, 194
software and dataset, 195

346 Index

GPU boards, and seed-based parallel
protein sequence comparison,
183

GPU-CPU computation, hybrid
computing framework, 118,119

GPU parallelization and results,
profile-hidden Markov models
(HMMs) database searching

CUDA hardware, 216
results, 216-220

database sorting, 217
host optimizations, 219-220
memory hierarchy optimizations,

218
memory layout optimizations,

217-218
Graphics processors

and massive multithreading, 31-32
GSM A5/1 stream cipher, 232
Guided tree, 21

and ClustalW runtime behavior, 123
computation, using neighbor-joining,

22
for five-point sequences, 19-20
by NJ method, example of, 227,128,

130

H

Half-site alignment procedure, 294, 300
Handel-C, hardware description

language (HDL) tools, 56
Hardware accelerated BLASTN

compared to baseline system,
execution time, 176,177

Hardware accelerated BLASTP, 273,175
compared to baseline system,

execution time, 275,177
Hardware accelerated system, 53

performance of, 306-307
Hardware description language (HDL)

tools,FPGA,54,56
commercial HLL to, 56

Hardware-software partitioning, FPGA,
51

Harvard Connectome project, 29
Hashing, 25,141

spectrum list into Bloom filters, 148,
154

spectrum membership test, 143
using on-chip resources, 168

Hash lookup architecture, 167-168
Helicobacter acinonychis, sequencing of, 150
Hidden-Markov model (HMM), 178,308

PE design features, 213
High-computing framework, 134,135,

136
basic structure of, 229
for many-core GPUs, 118-119
using CUDA, 132-133

High-level languages (HLL) tools, 56
to hardware design flow, 55

High-performance computing (HPC), 314
resources, 95

High-throughput comparison, genomic
sequence, 157

High-throughput short-read (HTSR)
data, second-generation
sequencers output, 140

High-throughput short-read sequencing
data (HTSR), CUDA-EC(error
correction) approach for,
139-155

conclusion of, 154
CUDA, parallel error correction with,

143-149
Bloom filter data structure and

spectrum computation, 143-145
error correction, parallel CUDA

algorithm for, 145-147
execution example, 147-149

error correction, spectral alignment
approach (SAP) to, 141-143

introduction to, 139-141
Human Genome Project,

challenges to, 139
second-generation sequencers,

output of, 140
performance evaluation of, 149-154

Hirschberg's technique
space-saving technique-based global

alignment algorithm, 74
subproblem alignment phase and,

72-73
sequential recursive space-saving

scheme in, 72
HMM., see Hidden-Markov model

(HMM)

Index 347

HMMER software, 206, 225
and acceleration, 221
and Pfam construction, 207
Viterbi function of, 217

HMPP compiler, massive
multithreading, 33

HNN learning, 290-291
Hopfield neural network (HNN), 286

adaptation of, 291-297
in neural system, design of, 289-291
performance of, 307

Hormone response elements (HREs)
dimeric structure of, 303-305
prediction of, two-phase neural

system for, 305-306
Host interface, PE design features, 213
Human chromosome 22 and entire

mouse genome, BLASTN
implementation, 176

Hybrid computing approach, 52
Hybrid parallel algorithm, 68-76

Hirschberg's technique, subproblem
alignment phase and, 72-73

sequential recursive space-saving
scheme in, 72

hybrid algorithm, performance of,
74-76

prefix computations, parallel
alignment scheme and, 68-70

problem decomposition phase
under, 68

space usage, 74
vectorization and memory

management, 73-74
wavefront scheme, problem

decomposition and, 70-71

I

IBM BlueGene/L, supercomputer, 86
speed ups of, 110

Illumina Genome Analyzer IIx (IGA-
IIx), DNA sequencing, 139,150

Impulse C, commercial HLL to HDL
tools, 56

Input datasets, phylogenomic, 110-111
Intel processors, 53
Intermediate value storage (IVS), PE

design features, 212,213

Intertask parallelization, 119
for CUDA-enabled GPUs, 135-136
motif discovery and, 133

Intratask parallelization, 119
for CUDA-enabled GPUs, 135-136
motif discovery and, 133

IQPNNI, ML phylogeny programs, 87
OpenMP for SMP systems,

parallelization, 109-110
Iterative generation of matrices (IGOM),

253

K

Kernel, CUDA, 35,148
in CUBA parallelization of, 145
on GPU, 36,39
host code, call from, 35-36
in hybrid computing framework,

basic structure of, 119
NVIDIA GT200 graphics processors,

impact of, 39-40
in UNGAP parallelization of GPU,

191

Larrabee architecture, parallel computer
architectures 102,108,110

Legacy hard disk encryption, breaking
of, 232

LEON SPARC, 53
Likelihood-based Bayesian programs,

87
Metropolis-Coupled Markov-

Chain Monte-Carlo (MCMC)
approach and, 95-96,106

Linear gap penalty function
DP for optimal pairwise alignment

with, 6-10
global pairwise alignment with, 5

Local alignment, genomic alignment,
60,62

Local memory, GPU, 45

M

Machine Readable Travel Documents,
232

L

348 Index

Many-core GPUs, techniques for,
118-121

cell block division method, 121
coalesced global memory access,

120-121
coalesced subject sequence

arrangement, 120
hybrid computing framework,

118-119
CPU and GPU, overlapping

computation of, 118,119
intertask and intratask

parallelization, 119
Mapped memory data transfers, data

maintenance on GPU, 38
Markov Chain Monte Carlo (MCMC)

proposal mechanism, 95-96,
106

fine-grain parallelism vs., 107
MASCOT scoring schemes, 322
Massive multithreading

coalesced memory operation, 32
CUDA, impact of, 35-45
floating-point performance, 31-32
hardware thread scheduler, 32
multiprocessor, hardware

standpoint, 34
programmable shaders, advent of, 34
simple vector multiply, 31
single instruction multiple data

fashion (SIMD) execution,
34-35

Mass spectrometry (MS), 314
in peptide identification, 263
in protein identification, 317
in proteomic research field, 314
in scoring unit, 328-329

Matching unit, 298-300
for recurrent alignment procedure,

299
Matrix-assisted laser desorption/

ionization time-of-flight
(MALDI-TOF)

for analyzing peptide mixture, 317
Medical and biological research

in computational biology, 265
phylogenetic trees, importance of, 87
in protein identification, 317

MemcmpO, GPU, 39

Memec Virtex-4 FX12 Mini Module, 230
Memory bottleneck issue, and

microprocessor, 50
"MemoryTest" application, 226, 231,248
Memory unit, 300-301
Mercury BLAST

architecture of, 165-174
gapped extension, 172-174
seed generation, 166-170
ungapped extension and, 170-172

and seed generation, 166-170
nucleotide seed generation

architecture, 166-168
protein seed generation, 168-170

Message passing interface (MPI),
massive multithreading, 33

Metagenomics, 158,182,204
Metropolis-Coupled Markov-Chain

Monte-Carlo approach, 95-96,
106

Microprocessor and memory bottleneck
issue, performance gap, 50

Mitrion-C, commercial HLL to HDL
tools, 56

ML (maximum likelihood) phylogeny
programs, 87

memory requirements for, 94-95
Molecular sequencing techniques, 85,

111
Moore's law, 117,136, 200,314
MOWSE scoring schemes, 322,330
MrBayes

likelihood-based Bayesian programs,
87

memory savings and single
precision, 95

ML phylogeny programs, 91
single-precision implementation,

advantages of, 95
mRNA sequence, 60, 79
MSA-CUDA, 124,128,129,136

in comparison with ClustalW, 229
CUDA-enabled GPUs, 118

Multicore and many-core technologies,
CPU designers, 50-52

Multicore processors, switching to, 33,
34

Multigene or phylogenomic alignments,
87

Index 349

Multiple sequence alignment (MSA)
background of, 14-18
bioinformatics algorithms, 2,14-22
objective functions for, 15-16
and profile-HMMs, 203,204
progressive alignment, 18-22

Multiple sequence alignment
stages of ClustalW pipeline for,

parallelization, 123-130
task under, 119

MUMmer, bioinformatics tools, 25-26
guided tree, 18-20
optimal global sequence-profile

alignment, 22
star alignment approach, 18,19

N

National Human Genome Research
Institute, 158

NCBI BLAST
BLAST FPGA accelerator, integration

of, 174
and protein database search, 122,

223,189
query and reference sequence

comparison, 161
NCBI TBLASTN, 197,198

and GPUTPLASTN, GPU platform,
196

Needleman-Wunsch algorithm, 6
position-independent scoring

parameters and, 207
Neighbor-joining (NJ) step, computing

guided tree, 20,21
Neural system, design of, 287

DNA sequence, numeric
representation of, 287-288

FFNN, 288
HNN, 289-291

adaptation of, 291-297
Neuron unit, 300-301
New technology file system (NTFS), 280
Newton-Raphson method, 91,101,105,

206
Next-generation sequencing (NGS)

technology, 182
Nondeterministic finite automata (NFA)

in string matching, 266

Norton Diskreet, 232
Nuclear hormone receptor binding site

prediction (NHR)-scan, 308
Nucleotide seed generation

architecture, 166-168
Bloom filter and, 166-168

hash lookup architecture, 167-168
NVIDIA CUDA

enabled
graphics processors, 33
GPUs,41

zone, 47
NVIDIA documentation, massive

multithreading, 36
NVIDIA GeForce GTX 280

and CUDA-EC approach, time
efficiency, 150

NVIDIA GT200 graphics processors,
39-40

NVIDIA Telsa C870 Board and NVIDIA
GTX-280 Board, 198

O

One occurrence per sequence (OOPS),
motif search methods, 130, 235

OpenCL, massive multithreading, 33
Opencores OpenRISC, 53
OpenMP

drawback of, 98
fine-grain parallelism in the PLF,

exploitation of, 109
for SMP systems, IQPNNI, 109-110

Opteron processor-based platforms,
AMD, 53,54

Optimal alignment score and tiling,
66-67

Optimal global pairwise alignment
with affine gap penalty function, 10-12

trace-back procedure, rules for, 11
linear-space method for, 13
with linear gap penalty function,

6-10
Needleman-Wunsch algorithm, 6
trace-back procedure, 7,10

Out-of-order execution,
microarchitectural changes, 50

Overlap graph-based approaches, HTSR
data assembler, 140

350 Index

Pairwise sequence alignment,
bioinformatics algorithms, 2-14

afftne gap penalty function, DP for
optimal pairwise alignment
with, 10-12

definitions and notations, 2-6
BLOSUM62, substitution matrix, 4
empty string, 2
linear scoring scheme, 3
local pairwise alignment, 6

linear gap penalty function, DP for
optimal pairwise alignment
with, 6-10

linear space using divide and conquer,
computing alignments in, 12-14

PAML, ML phylogeny programs, $7
Parallel communication scheme

aligning longer sequences, tiling
scheme for, 65-66

for computing global alignments,
phases in, 68

tiling scheme, computing optimal
alignment score by, 66-67

direct memory access (DMA)
transfers under, 67

Parallel computer architectures
adaptations to, 107-110

fine-grain and coarse-grain
approach, use of, 109

production level implementation,
107,109,110

vector-like processor architecture,
107

future directions of, 110-111
Larrabee architecture, 110

parallel ization strategies, 97-106
general fine-grain parallelization,

98-103
load balance issues in, 103-106
parallel programming paradigms

under, 98
phylogenetic inference, 86-88
phylogenetic likelihood function

(PFL) on, 88-97
avoiding numerical underflow,

92-94,110
memory requirements, 94-95

single or double precision floating
point arithmetics, perspectives
on, 95-97

Parallel disk arrays, 280
Parallelization scheme, PL AST

and cluster platforms, bioinformatics,
182

FPGA
UNGAP parallelization on,

191-193
GPU

SMALL GAP parallelization on,
193-194

UNGAP parallelization on, 191
hardware accelerators and, 183

Parallelization strategies, 97-106
general fine-grain parallelization,

98-103
load balance issues in, 103-106

branch length optimization,
considerations regarding, 101

per-partition branch length
estimate, rationale for using,
105

parallel programming paradigms
under, 98

Parallel local alignment search tool
(PLAST) algorithm, 184-185

and BLAST, 197-198
generic hardware implementation of,

189-190
overview of, 184-185
parallel multithreaded version of,

185-186
Parallel-prefix based special columns

technique, 70
Parallel seed-based algorithm

and generic hardware
implementation, 189-190

protein sequence comparison, 181-200
conclusion of, 197-200
GPU/FPGA technologies,

comparison of, 183,194-197
introduction to, 181-184
parallelization, 190-194
principles of, 184-190

Parallel spliced alignment algorithm,
performance of, 78-79

for phytoene synthase gene, 79

p

Index 351

Parallel synthetic alignment algorithm,
performance of, 80-81

Partitioned-based spatial-merge (PBSM)
usage, 147

Partitioned phylogenomic analyses,
load balance issues in, 103-106

gappy phylogenomic alignment,
schematic representation of,
105

Newton-Raphson procedure, 106
PAUP, ML phylogeny programs, 87
Peptide mass fingerprinting (PMF), 265,

317,321,328,329
PhyloBayes, likelihood-based Bayesian

programs, 87
Phylogenetic footprintings, 285
Phylogenetic inference

goal of, 86
to medical and biological research,

application of, 86-88
multigene or phylogenomic

alignments, 87
Playstation III and, 109
"wellshaped" vs. "badly shaped"

datasets, 88
Phylogenetic likelihood function (PLF),

85,86,88-97
acceleration and parallelization of,

86
application programming interface

(API) for, 102
avoiding numerical underflow, 92-94
computational issues in, 91
Felsenstein pruning model, 89-90
fine-grain parallelization scheme for,

98-103,99
parallel partial tree traversal, 100
partial traversal, 99
traversal descriptor, 98-99

on FPGAs, 107
general time reversible (GTR) model,

89
GPGPUs and, 107-108
implementation issues in, 91-92
library for, 101-102
manual vectorization and, 109
memory requirements, 94-95
OpenMP-based PLF

implementations, 98,109

single or double precision floating
point arithmetics, perspectives
on, 95-97

Eigenvector/Eigenvalue
decomposition, 96

Phylogenies
future, tacking fundamental

problems of, 88
load balance issues and, 103-106
use of, 87-88

PHYML, ML phylogeny programs, 87,
91

Pipeline parallelism, 160,177
Pipelining, microarchitectural changes,

50
"Placing and routing" synthesis, 280
Plaintext registers, 234,240

and ciphertext, 234,237,238
64-bit register, 239

Plan7 architecture, 206,207
algorithm, 208

Plan7 Viterbi algorithm, 212-213
Position-independent scoring

parameters, 207
Position-specific scoring matrix (PSSM),

178
Posttranslational modifications, 318
PowerPC processing element (PPE),

sequence alignment, 63
Primary tables, hash lookup

architecture, 168
probasin gene, in rat, 308
Problem decomposition phase, parallel

algorithm, 68
Production level implementation,

parallel architectures, 107,109,
110

Profile-hidden Markov models (HMMs)
database searching

general transition structure with
four nodes, 206

Plan7 architecture for, 206, 207
and position-dependent information,

207
and protein modeling, 203
on reconfigurable and many-core

architectures, 203-222
background of, 204-209
discussions on, 220-221

352 Index

Profile-hidden Markov models (HMMs)
database searching (Cont.)

FPGA parallelization and results,
209-215

GPU parallelization and results,
215-220

introduction to, 203-204
and speedups, 224,225
ungapped profile and ungapped

MSA, 205-206,205
Viterbi algorithm for, 204

Profile-profile alignment, progressive
alignment, 21

Programmable interconnect, logic cell
array, 49

Programmable logic array (PLA)
device, commercial
development of, 49

Progressive alignment
ClustalW runtime behavior and, 124,

127
and NJ tree reconstruction, speedup

time, 129-130
sequence-profile alignments, 21

PROJECTION, 253
Protein identification

by sequence database searching
abstract computational model, 318
cleavage rules, 318-321
overview, 317
by spectral matching, 321-322

Proteins, role in human body, 314
Protein seed generation, 168-170

complete architecture of, 269
direct lookup table architecture, use

of, 168-169
Protein sequence comparison, parallel

seed-based algorithm for
conclusion of, 197-200
GPU/FPGA technologies,

comparison of, 183,194-197
execution times, comparison of,

195-196
FPGA implementation, 197
FPGA platform, 194-195
GPU implementation, 196-197
GPU platform, 194
software and dataset, 195

introduction to, 181-184

parallel seed algorithm, principles of,
184-190

bank indexing process, 186-188
gap extension procedure,

188-189
overview of, 184-186
PL AST, generic hardware

implementation of, 189-190
ungap extension procedure, 188

parallelization, 190-194
FPGA, UNGAP parallelization on,

190,191-193
GPU, SMALL GAP parallelization

on, 193-194
GPU, UNGAP parallelization on,

190,191
Protein-to-protein sequence

comparison, 162
BLASTP, word matching in, 166
and bloom filter, seed generation, 166

Proteogenomic mapping, 263
Pthreads

and advantages, parallel
programming paradigms, 98

fine-grain parallelism in the PLF,
exploitation of, 109

large data sets, conducting tree
analyses on, 103

thread library, 35

Qlen, cell block division method, 121
Quad-processor commodity

workstations, 30
Query, pairwise alignment algorithm

and, 161
"Query sequence/7 in Smith-Waterman

algorithm, 249-250
QuickSilver Technology ADAPT2400

ACM Architecture, commercial
hybrid platforms, 52

R

RAM blocks
amino acid sequence set matching

engines, 264
RAxML, ML phylogeny programs, 87

Q

Index 353

fine-grain MPI (message passing
interface)-based parallelization
of, 109-110

memory shortages in, 95
SP implementation in, 96,97

RAxML, ML phylogeny programs, 91
RCC-TPLASTN

and NCBITBLASTN, FPGA
platform, 196

64 PEs vs. 128 PEs, execution time
comparison, 199

Real datasets, CUDA-EC approach
corrected/trimmed reads, percentage

of, 154
speed ups for, 152
summary of, 150

Receiver operating characteristic (ROC)
curves, 305

Reconfigurable accelerators, seed-based
parallel protein sequence
comparison and, 183

Reconfigurable computing accelerator,
FPGA-based,51

Reconfigurable computing paradigm,
315-317

Recurrent alignment, 293
for HRE input sequence, 295

Register and shared memory, GPU,
42-43

Register transfer level (RTL), FPGA
development tools, 54

Regression testing, data maintenance
on GPU, 39

RS232 link, 279

S

Saccharomxjces cerevisiae chromosome V,
EC (error correction) approach,
140

Sanger shotgun sequencing, 140
Scalability

and BLASTN, 176
and cluster platforms, bioinformatics,

182
Scaling laws, of Dennard, 33
Score collect and score buffer, PE design

features, 212
Scoring unit, 328-330

Seed-based parallel protein sequence
comparison

algorithm, principles of, 184-190
bank indexing process, 186-188
gap extension procedure,

188-189
overview of, 184-186
PLAST, generic hardware

implementation of, 189-190
ungap extension procedure, 188

conclusion of, 197-200
GPU/FPGA technologies,

comparison of, 183,194-197
execution times, comparison of,

195-196
FPGA implementation, 197
FPGA platform, 194-195
GPU implementation, 196-197
GPU platform, 194
software and dataset, 195

introduction to, 181-184
parallelization, 190-194

FPGA, UNGAP parallelization on,
190,191-193

GPU, SMALL GAP parallelization
on, 193-194

GPU, UNGAP parallelization
on,190,191

Seeded alignment
acceleration of, 160
in basic local alignment search tool

(BLAST), 158,161
Seeded similarity searching, FPGA

acceleration of, 161-179
BLAST algorithm, 161-165

execution profile of, 164-165
seed generation, 162-163
ungapped extension, 161-162,161,

163-164
conclusions of, 177-179
Mercury BLAST, architecture of,

165-174
gapped extension, 172-174
seed generation, 166-170
ungapped extension and,

170-172
results, 174-176

and BLASTN, 176-177
and BLASTP, 175

354 Index

Seed generation
BLAST computation stages, 161-163,

161
word-matching, occurrence of,

162-163
in Mercury BLAST, 166-170

nucleotide seed generation
architecture, 166-168

protein seed generation, 168-170
Seeds, parallel local alignment search

tool (PLAST), 184
Sequence alignments, development of

algorithms for, 60
Sequence analysis tools, bioinformatics,

24-25
Sequence comparison accelerator,

validation of, 160
Sequence database search, task under,

119
Sequence loader, PE design features,

213
Sequence-profile alignment, 22

and profile-profile alignments, 21
Serial ATA (SATA) disk drives, 280
SGI RASC-100 accelerator, FPGA

implementation, 197
Shared-memory nodes, 109
Short frame-shifting mutations, 308
SHREC error correction algorithm, 140
Simulated datasets, CUDA-EC

approach, 149-150
speedups for, 151

Single deterministic finite automaton
(single DFA), 264

Single-instruction multiple-data (SIMD)
style instructions, parallel
algorithms, 60

Single instruction multiple data fashion
(SIMD) execution, massive
multithreading, 34-35

Single precision (SP) arithmetics, 93
vs. dual precision, performance gap,

96-97
implementation of, 96
memory requirements, reduction

of, 95
of ML function, drawbacks of, 96,97
on trees with many taxa, problems

with using, 108

Single precision floating point
arithmetics, 95-97

Single-precision implementation, PLF,
95-97

Single program multiple data (SPMD),
34

asGPGPUs,34
Single silicon die, multiple processor

cores into, 117
Single Virtex-II FPGA, and BLASTN, 176
Slen, cell block division method, 121
Smith-Waterman algorithm, 6,157-160,

249-250
accelerators and large-scale sequence

comparison, 159
basic local alignment search tool

(BLAST) as replacement of, 158
cell block division method for, 121
and gapped extension, BLAST

algorithm, 164
GPU, SMALL GAP parallelization

on, 194
for local alignments, 63
and position-independent scoring

parameters, 207
and sequence alignment, 60

Soft-core processors, FPGA, 52
Software development kit (SDK), 32-33
Space-saving local alignment, space-

saving global alignment and,
73

Spartan3-1000 of Xilinx, 225
computing power, as weakness of

COPACOBANA 1000,243
Spectral alignment approach (SAP)

definition of, 142
to error correction, HTSR data,

141-143
Euler-SR algorithm, erroneous

edges and, 141
spectrum membership test, 143

Spectrum membership test, 143
Speed gains, FPGA vs. C

implementation, 332
Spliced alignment, genomic alignment,

60, 61
runtimes of, 78

Square-space method vs. linear-space
divide-and-conquer method, 14

Index 355

Ssearch, bioinformatics applications, 63
Staphylococcus aureus strain MW2,

sequencing of, 150
Star alignment approach, progressive

alignment, 18
Static random access memory (SRAM),

225
Steroid hormone receptor,, 302-303,304
"Streaming processors/' graphics

processor as, 32
Streams runtime API, CUDA, 38
Stretch S5 and S6 SCP Engines,

commercial hybrid platforms,
52

String-based problems, database search
and exact matching, 26

String-matching approaches, 264
case study in, 277

storage utilization, 277-278
implementation performance,

278-280
computational biology

ACA use in, 264-265
FPGA use in, 265

use in FPGA, 265-266
Subproblem alignment phase, parallel

algorithm, 68
Substitution matrix, linear scoring

scheme, 3
Suffix trees and suffix arrays, database

search and exact matching,
24-26

Sum-of-pairs function, multiple
sequence alignment (MSA), 16

SW-CUDA, protein database search
and, 122

SWPS3, protein database search and,
122

Synergistic processing elements (SPEs),
sequence alignment, 63

parallel communication scheme and,
64

direct memory access (DMA)
transfers under, 66

Syntenic alignments
genomic alignment, 60
genomic sequence, 79-80,81

dynamic programming algorithm
for, 79

solving problems, parallel
algorithm for, 79-80

System on programmable chip (SoPC),
FPGA, 50

T

Taxa, molecular sequence data of, 86,87
TEEFENDER, ML phylogeny programs,

87
Teraflop, scientific computation, 30
Texture memory, GPU, 43-44

mixing CUDA and visualization
code, performance benefits, 44

Tile packing efficiency, 278
Tiling, parallel communication scheme

computing optimal alignment, 66-67
drawbacks of, 67
longer sequences alignment, 65-66

Time efficiency, CUDA-EC approach
and,150

Trace-back procedure
bioinformatics

affine gap penalty function,
10-13

linear gap penalty function, 7,8
optimal local pairwise alignment

computation with, 10
optimal global alignment score and,

62
prefix computations, parallel

alignment scheme and, 69
Traditional (Sanger) sequencers vs.

second-generation sequencers,
40

Transcendental functions, scientific
computation, 30

Transcription factor binding sites
(TFBSs), 285

challenges of recognizing, 307-308
Transition probabilities and emission

probabilities, profile-HMMs,
205

Triscend A7, commercial hybrid
platforms, 52

TROLL algorithm, 264-265
Trypsin

digestion rules, 331
in MS studies, 319

356 Index

Two-phase neural system
design of, 297
dimeric DNA motif recognition of,

286,287-288

U

UIPAC matching algorithm, 285
Ungap extension procedure, parallel

seed-based algorithm, 188
Ungapped extension

BLAST computation stages, 161-162,
262,163-164

X-drop approach in, 163-164
high-scoring segment pair (HSP)

and, 162
in Mercury BLAST, 170-172

E. coli proteome and GenBank
non-redundant protein
database, sequence
comparison, 170-171

Ungapped profile structure, profile-
hidden Markov models
(HMMs), 205

Unified device architecture (CUDA)-
enabled GPUs, 118

UniProtKB/TrEMBL database, 182
UPGMA, computing guided tree, 20
uteroferrin gene, in rabbit, 308

V

VI Cold fire processor, 52
Velvet, de Bruijn graph-based

approaches, 140
Verilog, hardware description language

(HDL), 54
Very-large-scale integration (VLSI)

algorithms, 224
VHDL

BLAST hardware accelerator in, 174
hardware description language

(HDL), 54
Virtex-4 FX-100,277,278

commercial hybrid platforms, 52
Virtex-5 FXT FPGAs, commercial hybrid

platforms, 52

Viterbi algorithm, and database search
tasks, 204

memory layout and usage patterns
and, 217-218

for Plan7 profile HMMs, 208-209
Viterbi kernel without host

optimizations, runtime of, 218

W

Warp, CUDA hardware and thread
partition, 216

Wavefront communication scheme,
parallel communication
strategy, 63-64,64

hybrid parallel alignment algorithm
and, 69

problem decomposition and, 70-71
Weighted alphabet, 318
Weighted strings, concept of, 318
Wet-lab molecular sequencing

techniques, 85
Windows XP workstation, for tile

implementation, 280
"Wiring-diagram/' understanding brain

structure, 29-30

X

X-drop approach
BLAST computation stages

and ungapped extension,
163-164

and Mercury BLAST, ungapped
extension, 170

Xilinx ISE 9.1,241
Xilinx Virtex-2 Pro, commercial hybrid

platforms, 52,55
Xilinx XC2064, first commercially

successful FPGA, 49
schematic layout of, 50

Z

Zero-or-one occurrence per sequence
(ZOOPS), motif search
methods, 130

	Cover Page
	Embedded Multi-Core Systems
	Title Page
	ISBN 9781439814888
	Contents
	Preface
	Editor
	Contributors
	1. Algorithms for Bioinformatics
	1.1 Introduction
	1.2 Pairwise Sequence Alignment
	1.2.1 Definitions and Notations
	1.2.2 DP for Optimal Pairwise Alignment with Linear Gap Penalty Function
	1.2.3 DP for Optimal Pairwise Alignment with Affine Gap Penalty Function
	1.2.4 Computing Alignments in Linear Space Using Divide and Conquer

	1.3 Multiple Sequence Alignment
	1.3.1 Background
	1.3.2 Progressive Alignment

	1.4 Database Search and Exact Matching
	1.4.1 Filtration
	1.4.2 Suffix Trees and Suffix Arrays

	1.5 References

	2. Introduction to GPGPUs and Massively Threaded Programming
	2.1 Introduction
	2.2 Massive Multithreading Is the Key
	2.3 CUDA Simplifies the Creation of Massively Threaded Software
	2.3.1 Step 1: Getting (and Keeping) the Data on the GPU
	2.3.2 Step 2: Maximizing the Amount of Work Performed per Call to the GPU
	2.3.3 Step 3: Exploiting Internal Resources on the GPU

	2.4 Visualization
	2.5 Conclusion
	2.6 References

	3. FPGA: Architecture and Programming
	3.1 Introduction
	3.2 The Need for FPGA Computing
	3.3 FPGA Computing Architectures
	3.4 FPGA Development Tools
	3.5 Discussion
	3.6 References

	4. Parallel Algorithms for Alignments on the Cell BE
	4.1 Computing Alignments
	4.2 Sequence Alignments on the Cell Processor
	4.3 A Parallel Communication Scheme
	4.3.1 Tiling Scheme for Aligning Longer Sequences
	4.3.2 Computing the Optimal Alignment Score Using Tiling
	4.3.3 Computing an Optimal Alignment Using Tiling

	4.4 A Hybrid Parallel Algorithm
	4.4.1 Parallel Alignment Scheme Using Prefix Computations
	4.4.2 Problem Decomposition Using Wavefront Scheme
	4.4.3 Subproblem Alignment Phase Using Hirschberg's Technique
	4.4.4 Further Optimizations: Vectorization and Memory Management
	4.4.5 Space Usage
	4.4.6 Performance of the Hybrid Algorithm

	4.5 Algorithms for Specialized Alignments
	4.5.1 Spliced Alignments
	4.5.2 Performance of Parallel Spliced Alignment Algorithm
	4.5.3 Syntenic Alignments
	4.5.4 Performance of Parallel Syntenic Alignment Algorithm

	4.6 Ending Notes
	4.7 References

	5. Orchestrating the Phylogenetic Likelihood Function on Emerging Parallel Architectures
	5.1 Phylogenetic Inference
	5.2 The Phylogenetic Likelihood Function
	5.2.1 Avoiding Numerical Underflow
	5.2.2 Memory Requirements
	5.2.3 Single or Double Precision?

	5.3 Parallelization Strategies
	5.3.1 Parallel Programming Paradigms
	5.3.2 General Fine-Grain Parallelization
	5.3.3 The Real World: Load Balance Issues

	5.4 Adaptations to Emerging Parallel Architectures
	5.5 Future Directions
	5.6 References

	6. Parallel Bioinformatics Algorithms for CUDA-Enabled GPUs
	6.1 Introduction
	6.2 Techniques for Many-Core GPUs
	6.2.1 Hybrid Computing Framework
	6.2.2 Intertask and Intratask Parallelization
	6.2.3 Coalesced Subject Sequence Arrangement
	6.2.4 Coalesced Global Memory Access
	6.2.5 Cell Block Division Method

	6.3 SW Database Search
	6.4 Multiple Sequence Alignment
	6.5 Motif Discovery
	6.6 Conclusion
	6.7 References

	7. CUDA Error Correction Method for High-Throughput Short-Read Sequencing Data
	7.1 Introduction
	7.2 Spectral Alignment Approach to Error Correction
	7.3 Parallel Error Correction with CUDA
	7.3.1 Bloom Filter Data Structure and Spectrum Computation
	7.3.2 Parallel Error Correction Using CUDA
	7.3.3 Execution Example

	7.4 Performance Evaluation
	7.5 Conclusion and Future Work
	7.6 References

	8. FPGA Acceleration of Seeded Similarity Searching
	8.1 The BLAST Algorithm
	8.1.1 Seed Generation
	8.1.2 Ungapped Extension
	8.1.3 Gapped Extension
	8.1.4 Execution Profile of the BLAST Algorithm

	8.2 A Streaming Hardware Architecture for BLAST
	8.2.1 Seed Generation
	8.2.2 Ungapped Extension
	8.2.3 Gapped Extension

	8.3 Results
	8.3.1 BLASTP
	8.3.2 BLASTN

	8.4 Conclusions
	8.5 References

	9. Seed-Based Parallel Protein Sequence Comparison Combining Multithreading, GPU, and FPGA Technologies
	9.1 Introduction
	9.2 Principles of the Algorithm
	9.2.1 Overview
	9.2.2 Bank Indexing
	9.2.3 Ungap Extension
	9.2.4 Gap Extension
	9.2.5 Generic Hardware Implementation

	9.3 Parallelization
	9.3.1 UNGAP Parallelization on GPU
	9.3.2 UNGAP Parallelization on FPGA
	9.3.3 SMALL GAP Parallelization on GPU

	9.4 Comparison of the GPU/FPGA Technologies
	9.4.1 GPU Platform
	9.4.2 FPGA Platform
	9.4.3 Software and Dataset
	9.4.4 Comparison of the Execution Times
	9.4.5 GPU Implementation
	9.4.6 FPGA Implementation

	9.5 Conclusion
	9.6 References

	10. Database Searching with Profile-Hidden Markov Models on Reconfigurable and Many-Core Architectures
	10.1 Introduction
	10.2 Background
	10.3 FPGA Parallelization and Results
	10.3.1 System Design
	10.3.2 Performance Evaluation

	10.4 GPU Parallelization and Results
	10.4.1 CUDA Hardware
	10.4.2 Results

	10.5 Discussion
	10.6 References

	11. COPACOBANA: A Massively Parallel FPGA-Based Computer Architecture
	11.1 Introduction
	11.1.1 History of Complexity
	11.1.2 Basic Idea of the COPACOBANA Series

	11.2 COPACOBANA 1000
	11.2.1 FPGA Module
	11.2.2 Backplane
	11.2.3 Interface Controller
	11.2.4 Application Development

	11.3 Cryptanalysis with COPACOBANA 1000
	11.3.1 Previous Work on DES Breaking
	11.3.2 Exhaustive Key Search on DES
	11.3.3 Breaking DES-Based Crypto Tokens

	11.4 COPACOBANA 5000
	11.4.1 Direction toward New Applications
	11.4.2 Requirements
	11.4.3 Architecture of COPACOBANA 5000

	11.5 Applications in Bioinformatics
	11.5.1 Sequence Alignment
	11.5.2 Motif Finding
	11.5.3 Future Work

	11.6 References

	12. Accelerating String Set Matching for Bioinformatics Using FPGA Hardware
	12.1 Introduction
	12.1.1 String Matching Approaches
	12.1.2 Use of the ACA in Computational Biology
	12.1.3 Use of FPGAs in Computational Biology
	12.1.4 Use of String Set Matching in FPGAs in Other Domains

	12.2 Approach
	12.2.1 The Aho–Corasick Preprocessing Phase

	12.3 FPGA Implementation of the String Set Matching DFA
	12.3.1 Bit-Split DFA Architecture
	12.3.2 Implementing Bit-Split DFA Tables in FPGAs
	12.3.3 Analysis of DFA Storage Utilization Efficiency

	12.4 Case Study
	12.4.1 Storage Utilization
	12.4.2 Implementation Performance

	12.5 Conclusions
	12.6 References

	13. Reconfigurable Neural System and Its Application to Dimeric Protein Binding Site Identification
	13.1 Introduction
	13.2 Design of the Neural System
	13.2.1 Numerical Representation of DNA Sequences
	13.2.2 The FFNN
	13.2.3 The HNN
	13.2.4 Adaptation of the HNN

	13.3 Reconfigurable DP-HNN
	13.3.1 Representation of Numerical Values and Operations on FPGA
	13.3.2 Control and Matching Units
	13.3.3 Neuron and Memory Units
	13.3.4 Operation of DP-HNN

	13.4 Application to Dimeric Protein Binding Site Identification
	13.4.1 The Biological Problem
	13.4.2 Dimeric Structure of HREs
	13.4.3 Two-Phase Neural System for HRE Prediction
	13.4.4 Performance of the Hardware-Accelerated System

	13.5 Discussions
	13.6 References

	14. Parallel FPGA Search Engine for Protein Identification
	14.1 Introduction
	14.2 The Reconfigurable Computing Paradigm
	14.3 Protein Identification by Sequence Database Searching Using Mass Spectral Fingerprints
	14.3.1 Overview of the Approach
	14.3.2 Abstract Computational Model
	14.3.3 Cleavage Rules
	14.3.4 Protein Identification by Spectral Matching

	14.4 Reconfigurable Computing Platform
	14.5 Protein Sequence Database FPGA Search Engine
	14.5.1 Database Encoding
	14.5.2 Database Search Processor

	14.6 Performance Evaluation
	14.7 References

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

	Back Page

